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Abstract. A well-known result by Cohen and Dunford ([1], 1937) characterizes the class
of all bounded linear operators from the space of all convergent complex sequences into
itself. It follows that a regular matrix transformation cannot be compact. We use the
theory of BK spaces and the Hausdorff measure of noncompactness to present a new
proof for these results and establish their extensions to the spaces of strongly summable
and strongly convergent sequences, and of convergent series.
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1. Introduction and Notations

Measures of noncompactness are very useful tools in functional analysis, for
instance in metric fixed point theory and the theory of operator equations in
Banach spaces. They can also be used in the characterization of classes of compact
bounded operators between BK spaces by establishing identities or estimates for
their Hausdorff measures of noncompactness. This approach was initiated on a
large scale in [2], and later was also presented in detail in [3, 4].

In this paper, we demonstrate how the theory of BK spaces can be applied to
obtain the characterizations of some classes of bounded linear operators between
certain sequence spaces related to convergence and strong summability. We also
obtain the operator norms in each case.

More precisely, we study spaces of sequences that are strongly C;—summable
with index p > 1, and of strongly convergent sequences denoted by w? and [c], es-
tablish representations for the bounded linear operators and their operator norms
from ¢, wP and [c] into ¢, and from the space of convergent series into itself. Fur-
thermore, we obtain estimates for the Hausdorff measure of noncompactness in
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each case, which yield the characterizations of the subclasses of compact oper-
ators. It is also shown that matrix transformations between those spaces that
preserve the associated limits cannot be compact. These results include the spe-
cial case by Cohen and Dunford [1].

We denote, as usual, by w the set of all complex sequences (xj)7,, and
write £, ¢, cg and ¢ for the subsets of all bounded, convergent, null and finite
sequences in w, £, = {x € w: > 00 |zl < oo} for 1 < p < o0, bv = {x €
w Y ey Tk — k41| < oo} for the set of all sequences of bounded variation,
bvg = bv N ¢y, and bs and cs for the sets of all bounded and convergent complex

series. Let e = (e3)2, and e = (e,g"))zozl for n € N denote the sequences with

er = 1 for all k, and e%n) =1 and e,(gn) =0 for k # n.

We recall that a BK space X is a Banach sequence space with the property
that all the coordinates P, : X — C with P,(z) = z, (z = (zx)52, € X)
are continuous; a BK space X is said to have AK if z = hmmﬁoox[m} for
all v = (v4)72, € X, where zl™ = 31" 2e®) denotes the m-section of the
sequence & = (z1)52; € X; X is said to have AD if ¢ is dense in X. Clearly, a
BK space with AK also has AD.

The following results are well known.

Example 1. (a) The sets o, ¢, co, £y for 1 < p < o0, bs, cs, bv and bvy
are BK spaces with their natural norms ||z||c = supy |xk| for s, ¢ and co,
[zl = 202 [zklP)P for £y, ||2|lbs = sup, | Sop—y k| for bs and cs ([5, Example
7.3.1]), and ||z|lpy = D pey |2k — Th1| + | limg 00 k| for x € bu,bvg ([5, 7.3.4]).
(b) The spaces cy, £, for 1 < p < oo, and cs ([5, Example 4.2.14]) and bvg
([5, Theorem 7.3.5 (i)]) have AK; {~ and bs have no Schauder basis, and x =
e+ poy(zp — €)e®) for every x = (k)32 € ¢, where & = limy_,o0 T,

Let X and Y be Banach spaces. Then we write, as usual, B(X,Y") for the
Banach space of all bounded linear operators L : X — Y with the operator
norm ||L|| = sup{||L(z)]| : ||z|]| = 1}; if Y = C, then X* = B(X,C) denotes the
continuous dual of X with the norm || f|| = sup{|f(x)| : ||z] = 1}.

Let X and Y be subsets of w. Then the f— and y—duals of X are the sets

XP={acw:a x=(apx)2, €csforall z € X} and
X"={a€cw:a-xebsforalzeX}.

Remark 1. Obviously X? c X7, and if X D ¢ is a BK space with AD, then
also X7 C XP by [5, Theorem 7.2.7].

The following relations between the continuous and S—duals of a BK space
are well known.
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Proposition 1. ([5, Theorem 7.2.9]) Let X D ¢ be a BK space. Then X# C X*;
this means that there exists a linear one—to—one map T : XP — X*. If X has
AK, then T is onto.

We list the continuous and S—duals of some sequence spaces.

Example 2. We have

(a) WP = ¢, ¢° = w, cgzcﬁzﬁizﬂl,ﬁ’f:ﬁo@, Egzﬁqf0r1§p<oo
and ¢ = p/(p — 1); cs® = v, bs® = bug and W’ = cs ([5, Theorem 7.3.5
(v), (vi), (iit)]);

(b) if X € {co,p (1 < p < 00)}, then XP and X* are norm isomorphic (/6,
Ezamples 6.4.4, 6.4.3]);

(c¢) ([6, Example 6.4.5]) f € c* if and only if there exist b € C and a sequence
a € by with f(z) = b+ > 72| arxy for all © € ¢, where & = limy_,o, x; Moreover
If1I'= 16 + [lal1-

Let A = (ank)z?kﬁ be an infinite matrix of complex entries, X,Y C w and
z be a sequence. We write A, = (an,)?, (n € N) for the sequence in the n'?
row of A, Apz = 722 ankri for n € N and Az = (A,2)52, for the A-transform
of z (provided all the series converge); X4 = {r € w: Az € X for all x € X}
denotes the matrix domain of A in X, and (X,Y") is the class of all matrix
transformations from X into Y, that is, A € (X,Y) if and only if X C Yy, or
equivalently, A € (X,Y) if and only if 4,, € X Bfor alln € N and Az € Y for all
rzeX.

An infinite matrix 7' = (t,1)5, is said to be a triangle if ¢,;, = 0 for k > n
and t,, # 0 for all n.

Let a € w and X be a BK space. Then we write ||a||% = sup{| > ;o axzs| :
|z|| = 1}, provided the expression of the right exists and is finite, which is the
case by Proposition 1, whenever a € X7,

We need the following result.

Proposition 2. The continuous dual of cs is norm isomorphic to bv.

Proof. Let f € cs* be given. Since cs” = bv by Example 2(a), it follows by
Proposition 1, that there exists sequence a € bv such that f(z) =) 2, arxy for
all z € c¢s, and we obtain || f|| = ||al||%; = ||alls» by [7, (2.3)].

<
We recall the following well-known relations betwen (X,Y’) and B(X,Y).

Theorem 1. ([3, Theorem 9.3.3]) Let X and Y be BK spaces.
(a) Then (X,Y) C B(X,Y), that is, every A € (X,Y) defines an operator Ly €
B(X,Y), where

La(z) = Az for all x € X. (1)
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(b) If X has AK then B(X,Y) C (X,Y), that is, for each L € B(X,Y), there
exists a matriz A € (X,Y) such that

Az = L(z) for all z € X (2)

in this case we say that the matriz A represents the operator L.

(c) We have A € (X, l) if and only if
1Al x o) = sup [l An 5 < o0; (3)
moreover, if A € (X,Y), where Y € {cp,c,l}, then

LAl = 1Al x 00)- (4)

Since cs is a BK space with AK, every bounded linear operator L from cs
into a BK space Y is represented by a matrix A € (¢s,Y) as in (2).

Proposition 3. (a) We have L € B(cs, ) if and only if

o
Supz ’ank - an,k+1| < o0 (5)
" k=1
and
sup | im a,i| < oo; (6)
n k—o0

moreover, if L € B(cs,l) then

lim apng > . (7)
k—o0

(b) If A = (ank)y k= is any infinite matriz, then we write C' = (cny)5o—1 for the
matriz with c,, = Z§:1 aji for all n and k. We have L € B(cs,bs) if and only

if (5) and (6) hold any, and ani1y replaced by cpp and cpiq .
(c) We have L € B(cs,cs) if and only if L € B(cs,bs) and

o0
L]l = [|All (s 600) = SUP (Z |ank — an 1] +
" \g=1

o0

Z ang converges for all k. (8)

n=1

(d) If L € B(cs,bs) or L € B(cs,cs), then

HLH = HAH(cs,bs) = HCH(CS,EOO)' (9)
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Proof. (a) Part (a) follows by Theorem 1(b) and (c), and Proposition 2.

(b),(d) Let ¥ = (6°5_,)%,_, be the triangle with the rows %, = e[ for all n,
then C' = X - A, and Parts (b) and (d) follow from Part (a), since bs = ({oo)x,
and by [2, Theorem 3.8(a) and (b)] A € (cs,bs) if and only if C' € (cs, ) and
HA”(cs,bs) = ||C||(cs,éoo)'
(c) We observe that ¢ is a closed subspace of /o, ([5, Example 4.2.6]) and so cs
is a closed subspace of bs by [5, Theorem 4.3.14]. Part (c) now follows from Part
(b), since, by [5, 8.3.6], A € (cs,cs) if and only if A € (cs,bs) and Ae € cs, the
latter condition being that in (8).

<

Remark 2. (a) The characterization of the class (cs,l) can be found in [8,
3. (2.2), (3.1))], where an alternative characterization is given by [8, 3. (3.2))]
which can also be found in [5, Example 8.4.5B].

(b) The characterization of the class (cs,bs) can be found in [8, 34. (33.1),
(34.1))], where an alternative characterization is given by [8, 34. (34.2))] which
can also be found in [5, Example 8.4.6B].

2. The Hausdorff Measure of Noncompactness

We recall the definition of the Hausdorff measure of noncompactness on the
class of bounded sets in complete metric spaces.

Definition 1. (/2, Definition 2.10] or [3, Definition 7.7.1]) Let X be a complete
metric space and M x denote the class of all bounded subsets of X. Then the
function x : Mx — [0,00) with x(Q) = inf{e > 0 : Q has a finite e-net in X} is
called the Hausdorff or ball measure of noncompactness.

The following well-known result gives an estimate for the Hausdorff measure
of noncompactness of bounded sets in Banach spaces with a Schauder basis.

Theorem 2 (Goldenstein-Goh’berg-Markus). ([2, Theorem2.25] or [3, Theorem
7.9.3]) Let X be a Banach space with a Schauder basis (b,)22, and the operator
Rn: X = X for each n € N be defined by Ry(x) = > 3, 1 Mbr for all z =
> oney Akbr € X We put p(Q) = limsup,,_, o (sup,eq |Rn(2)|) for all Q € Mx.
Then the following inequalities hold for all Q € Mx

Lou@) < (@ < in <sgg ||Rn<x>||> < (@), (10)

a

where a = limsup,,_, . ||Rn|| is the basis constant of the Schauder basis.
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Remark 3. ([3, Remark 7.9.4]) The following inequalities also hold instead of
(10) in Theorem 2

1 . .
—-in (SUP HRn(m)H) < [IL]lx < inf (SHP |!Rn($)”> ‘ (11)
zeQ no\zeQ

a n

The next result is an immediate consequence of Theorem 2

Corollary 1. (a) ([2, Theorem 2.15]) Let X be any of the spaces ¢, for1 < p < oo
or ¢yg. Then we have

n—oo

+(Q) = lim <sup||Rn<ar>||> for all Q € M. (12)
rEQ

(b) ([3, Example 7.9.7]) If X = ¢, then the limit on the right hand side in (12)
exists for all Q@ € M. and

L i <sup|mn<x>u> < x(Q) < lim (suplan(x)|!>f0r dl Qe M,. (13)
2 n—ooo z€Q n—o0 \ zeQ
(c) If X = cs, then

1
—-limsup | sup ||Rn(z)]] | < x(Q) <limsup | sup |[|Rn(2)|| | for all Q € M..
2 TEQ n—oo \z€Q

n—oo
(14)
Proof. We need only prove Part (c).
Let n € N be given. Then we have for all = € cs
m n
IR (@)llos = sup | > @il < ll2llos + | D za| < 2- b,
™ k=n+1 k=1
that is, || Ry < 2.
On the other hand, if we choose z = €™ — 2. e then ||zps = 1 and
IR(@)nllbs =2 < || Rnl|-
Thus we have shown a = lim,, o ||Ry| = 2 and the inequalities in (14) follow

immediately from (10).
<

Remark 4. The proof of he existence in (12) and (13) uses the property of the
norms || - ||, and || - ||, namely that if |xg| < |yg| for all k, then ||z||, < ||y, and
lz]loo < ||ylloo (cf. [9, Lemma 1.10], [4, Theorem 5.16] and [3, Example 7.9.7]).
The norm || - ||ps on cs, however, does not have this property, as is easily seen by
taking the sequences x = 2(e(V) + e?)) and y = 3(e™) — @),
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Now we recall the definition of the Hausdorfl measure of noncompactness of
operators between Banach spaces.

Definition 2. ([2, Definition 2.24] or [3, Definition 7.11.1]) Let X and Y be
Banach spaces and x be the Hausdorff measure of noncompactness.
(a) An operator L : X — Y is said to be x—bounded, if L(Q) € My for all
Q € Mx, and if there exists a nonnegative real number ¢ such that

W(L(@)) < ¢ X(Q) for all Q € My. (15)
(b) If an operator L is y—bounded, then the number

|L||y = inf{c > 0: (15) holds} (16)
is called the Hausdorff measure of noncompactness of L.

For the reader’s convenience, we list some important properties of the Haus-
dorff measure of noncompactness of operators.

Let X and Y be Banach spaces and K(X,Y) denote the class of compact
operators in B(X,Y).

Theorem 3. Let X and Y be BK spaces and L € B(X,Y). Then we have
(a) ([2, Theorem 2.25] or [3, Theorem 7.11.4])

ILlly = X(L(Sx)) = x(L(Bx)) = x(L(Bx)), (17)

where Sx, Bx and Bx are the unit sphere, the closed and open unit balls in X ;
(b) ([2, Theorem 2.26] or [3, Theorem 7.11.5 (7.68)])

|L|ly =0 if and only if L € K(X,Y). (18)

Corollary 2. We use the notations of Proposition 3(b). Let L € B(cs,cs). We
put Mm(05705) = Supnzm(zzozl |an - Cn,k—i—l’ + |hmk’—>oo an|> for all m € N.
Then

1
= -limsup My, (cs, cs) < || L[|, <limsup M,,(cs,cs). (19)
2 m—00

m—o0

Furthermore, L € B(cs, cs) is compact if and only if
lim M,,(cs,cs) = 0. (20)
m—r0o0

Proof. If A is an infinite matrix and m € N, then we write A<™~ for the

matrix with the first m rows replaced by the zero sequence. We obviously have
(Rm o L)(z) = A<~z for all x, and so, by (9),

sup [[(Rin © L)(@)]les = R o LIz, = | A~ |

TEScs

y T HC<’”>H(

cs,bs cs,loo)
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Now (19) follows by (7), (17) and (14).
Finally the condition in (20) for the compactness of L follows from (20) by (18).

<

Remark 5. Using (11) instead (10) we obtain

1 . >
3 lim sup (Z |Cnk — Cn 1| +

) < |ILfly <

lim ¢,
k—o00

o
lim sup (Z |Cnk — Cn 1| +

n—oo k=1

) . (21)

3. The Hausdorff Measure of Noncompactness of Some
Operators

lim cpp
k—o00

In this section, we establish some identities and estimates for the Hausdorff
measure of noncompactness of operators from arbitrary BK spaces with AK into
the spaces ¢g and c¢. We need the following general result.

Theorem 4. ([3, Theorem 9.8.4 (a), (b)]) Let X and Y be BK spaces, X have
AK, L € B(X,Y) and A be the matriz that represents L as in (2).
(a) If Y = ¢, then we have

1 -
— - lim (sup HAn
2 m—r0o0 n>m

o) < lEhs i (su 4,

m—0o0 n>m

A C

where

ap = nlLHgO ang for all k (23)

and A = (&nk)fjk,:l is the matriz with ang = ank — o for all n and k.
(b) If Y = ¢y, then we have

1= Jim (s 14,05 ). (24)
m—0oQ nzm

Proof. We write || - [|* = || - ||, for short.
a) Let A = (ank)py=; € (X,c). Then [|L|| = [|A]|(x,e.) < o0 by (3) in Theorem
(c) and the limits oy, exist for all k£ by [5, 8.3.6].

(a.i) We show ()5, € XP.

(
1
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Let x € X be given. Since X has AK, it is easy to see that there exists a positive
constant C' such that ||zI™|| < C||z|| for all m € N and it follows that

m
5 AnkTk

= |42 < ClLA)" - ol < Cll Al (x 0. - o] for all 0 and m,

= lim
n—0o0

m
PILE

k=1

< CllAll(x,000) - l]| for all m. (25)

m
Z UnkTk
k=1

This implies (agxy)32, € bs. Since x € X was arbitrary, we conclude (o), €
X7, and so (o), € X5 by Remark 1, since X has AK and so AD.
Also (ag)$2, € X# implies ||(a)32,||* < oo by Proposition 1.

(a.ii) Now we show

lim A,z = Z apzy for all z € X. (26)

n—oo
k=1
Let z € X and € > 0 be given. Since X has AK, there exists ko € N such that
kol &
o = o) < o
It also follows from (23) that there exists ng € N such that

where M = [[All x,000) + Ier)iZe 1" (27)

ko

Z(ank - O‘k)$k

k=1
Let n > ng be given, Then it follows from (27) and (28) that

< % for all n > nyg. (28)

0o ko 00
Apr =) gz <D (ank — on)zi| + | D (ank — ar)an
k=1 k=1 k=ko+1

<5 HAm = (@R e ol < S 42 =
Thus we have shown (26).

(a.iii) Now we show the inequalities in (22).
Let y = (yn)52; € ¢ be given. Then, by Example 1(b), y has a unique rep-
resentation y = ne + Y o0 (yn — n)el™, where n = lim,_,o0 Y, and so Ry =
S (T n)e™ for all m. We write y,, = Apx for n =1,2,..., and obtain

o0
Anfoozkxk = sup |A,z|
k=1

n>m+1

[Rm(Az)[loo = sup |yn —n| = sup
n>m+1 n>m—+1
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whence sup,e g, ||[Rm(AZ) 0o = supp>pmar [An]™

Now the inequalities in (22) follow from (17), Corollary 1(b) and (13).

Thus we have shown Part (a).

(b) Part (b) follows from (a) with ag = 0 for all k£ and since ||a|| = limy,— o0 || Rm||
=1 by (12) in Corollary 1(a).

<

Remark 6. By (11), the term limy, o0 SUP,>,y, || - % im0 (22) and (23) can be
replaced by limsup,,_, || - [I% -

Example 3. We write q =00 forp=1and q=p/(p—1) for 1 < p < co. Since
l, has AK for 1 < p < oo by Example 1(a), we have by Example 2(a), (b), (22)
and Remark 6

Sup lank — agl (p=1)

HflnIIZ, = ”Aan = ( 0 )

1/q
Gt — akw) (1<p< o)
k=1

1 .
3 lim sup ’An

n—oo

< |||y < limsup HAn
q n—o0 q

and so L € K(£y,¢) by (18) if and only if lim,, o0 || Anlq = 0.

4. Regularity and Strong regularity

In this section, we use the Hausdorff measure of noncompactness to obtain the
well-known result that a regular operator cannot be compact. We also establish
the analogue of this result for series—to—series transformations.

Furthermore, we generalize the concept of regularity to two versions of strong
reqularity involving the concepts of strong summability and strong convergence
to obtain similar results, namely that a strongly regular matrix transformation
cannot be compact.

Throughout, let 1 < p < co. We use the convention that every term with a
subsrcipt < 0 is equal to zero.

The sets wh = {2 € w : limy 00 (1/n) >0 |zx|P =0}, wP = {z €w:x—Ee €
w}y for some & € C} and wh, = {z € w : sup,,(1/n) Y j_; |zx[P < oo} of sequences
that are strongly summable to zero, strongly summable and strongly bounded,
respectively, with index p by the Cesaro method of order 1 were defined and
studied by Maddox [10].

The sets [c]o = {z € w : limy00(1/n) D p_y [kxk — (K — 1)xg—1| = 0}, [] =
{x e w:z—Ee € [c] for some ¢ € C} and [coo] = {7 € w : sup,,(1/n) > ;1 |kxr—
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(k—1)xp_1| < oo} of all sequences that are strongly convergent to zero, strongly
convergent and strongly bounded were studied by Kuttner and Thorpe [11].

Let X be any of the sets ¢, wP for 1 < p < oo and [c]|, and Xy and X the
corresponding sets ¢o, wf, [co], and Lo, wh and [co]. If = (24)72, € X, then
we write £x for the X -limit of x, that is, for the unique complex number £x
with & = limy_yo0 2, the usual limit, lim,—oo(1/n) Y p_q |2k — Ewr[P = 0, the
wP—limit, and limy, oo (1/1) 320 [kxp — (k — )21 — &§g| = 0, the [c]-limit.

We write max, and ), for the maximum and sum taken over all indices
kel2v,2vtt —1] (v =0,1,...) and put

sup |z| (x € co,¢,ls0)
k
1 1/p
el = § s (Sl (@ € b u?,uk
IZS
1
sup <2,/Zy|kxk - (k - 1)Jlk_1|> (l‘ € [CO], {C]a [coo])
\ V

and X = {a € w: |ja|]|x < o0}, where

llallx (x € cp, ¢, lx0)

o0
2Ymax, |ag|

v=0
(p=1)

> 277 (5 Jaxl )1
(1<p<oo; g=p/(p—1))

lallx = (z € wg, wP, wio)

::OO 2¥max, ikczj (z € [eo], [c], [eoc])-

The following results are well known (Examples 1 and 2 for Xg = ¢y, X = ¢
and Xoo = loo; [10], [2, Proposition 3.44] for Xo = w), X = wP and X, = wh;
[12, Theorem 2|, [13, Theorem 2.2],[14, Theorem 2] for Xy = [co], X = [¢] and
Xoo = [ex0))-

Proposition 4. (a) The sets Xo, X and X are BK spaces with respect to the
norm || - || x..; Xo is a closed subspace of X and X is a closed subspace of Xoo;
Xo has AK, and every sequence x = (v1,)7°, € X has a unique representation

r=CE+ Z(xk — §X)e(k), where £x s the X —limit of x; (29)
k=1
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finally, X has no Schauder basis.
(b) We have (Xo)? = (X)? = (Xxo)? = X; X{ is norm isomorphic to (X, |- ||x);
f € X* if and only if there exist b € C and a sequence a = (ay)72, € X such that

flz) =¢&xb+ Y agzy for all x € wP, where {x is the X ~limit of x,
h=t o (30)
a=(f(e™))2y and b= fle) = 3 an;
n=1

moreover
If1l = 16 + llallx for all f € X*; (31)

finally, ||a||% = llal|x for all a € x5

Now we establish a representation of L € B(X,c) and an estimate for ||L||,
when X € {c,w?,[c]}.

Theorem 5. ([3, Theorem 9.9.1] for X = ¢, [15, Theorem 6.3] for X = w? and
[15, Theorem 6.13] for X = [c])

Let X € {c,w?,[c]}. We write L, = P, o L for all n.

(a) We have L € B(X,c) if and only if there exists a sequence b € Ly and a
matriz A € (Xo,c) such that

L(z) = béx + Ax for all x € X, (32)
Anle = Ln(e(k)), b, = Ly(e) — Za”k for all n and k, (33)
k=1
B = T}Ln;o <bn + Z ank> erists, (34)
k=1
and
IL]| = Sgp(\bn\ + [ Anllx) - (35)
(b) If L € B(X,c), then
1. ~ . ~
5 - limsup (1yal + [ Anllx ) < Il < timsup (1yal + [ 4allx),  (36)
n—o0 n—oo
where
li_)m Qng, = oy for all k € N, (37)

A= (dnk)fl‘szl is the matriz with ang = apk — oy for all n and k, and

Yn :bnfﬁqLZak for all n;
k=1
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we also have
lim Ly(x) = (B -3 ak> E4+ ) apy. (38)
k=1 k=1

Proof. (a.i) First we assume that L € B(X, ¢) and show that L has the given
representation and satisfies (35).
We assume L € B(X,c). Since ¢ is a BK space, L, = P,o L € X* for all n € N,
that is, by (30) (with b and ay, replaced by b, and ayy)

Ln(2) = by &x + > anpay for all @ € X, (39)
k=1

with b, and a, from (33); we also have by (31)
| Ln|l = |bn] + ||An||x for all n. (40)

Now (39) yields the representation of the operator in (32).

Furthermore, since L(z(?)) = Az for all (O € Xj, we have A € (X, ¢) and so
by (3) and (4) ||A]| = sup,, || A|l = sup,, [[An]|x < co. Also L(e) = b+ Ae by (32),
and so L(e) € ¢ yields (34), and we obtain ||b|lec < ||L(€)]|oo + ||A]| < 00, that is,
b € l~. Consequently we have by (40) sup,, || Ln| = sup,, (|bn| + ||A]|) < co. Tt is
easy to see that [{x| < ||z||x for all x € X, and we obtain by (39) and (40)

o
bnéx + Z kT
=1

[1L(2)[|oo = sup
n

< [Sup(lbnl + IIAnlx)] Nzlloo = sup [ Ln| - [[#]co,
n n

hence ||L|| < sup,, ||Ln||. We also have |L,(x)| < || L(2)||co < ||L]| for all x € Sx
and all n, that is, sup,, || Ly| < ||L||, and we have shown (35).

(a.ii) Now we show that if L has the given representation, then L € B(X,¢).

We assume A € (co,c¢) and b € /o and that the conditions in (32), (34) and
(35) are satisfied. First A € (Xy,c) implies ||A|| = sup,, ||An]|x < oo by (3) and
Proposition 4(b). This and b € £ yield ||L|| < oo, hence L € B(X, ). Also it
follows from A € (X, c) that A, € Xg for all n. Since X/ = X? by Proposition
29 (b) and e € X, the series > - | any converges for each n. Therefore, if z € X
is given and £x is the X-limit of z, then z — {x - e € X, and, by (32),

Ly(x) = byéx + Zankfﬂk = (bn + Zank) x4+ Ap(r —Ex) for all n. (41)

k=1 k=1
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Now it follows from (34) and A € (X, ¢) that lim,,_,o Ly (z) exists. Since x € X
was arbitrary, we have L € (B(X,c).

(b) Now we show that if L € B(X,c), then ||L||, satisfies the inequalities in (36).
We assume L € (X, ¢).

First we note that the limits 5 and oy exist for all £ by Part (a). Also, since
A € (Xop,c) and Xy is a BK space with AK by Proposition 4(b), it follows that
(o), € X/ = XP by Part (a.i) of the proof of Theorem 4, and so (k)72 € cs.
Therefore ~,, is defined for each n.

Now let 2z € X be given, and y = L(z). It follows from (26) that

nli_)rg(jA r—e-€x) = Zak T —E€x) = Z@kwk—fxzaka (42)
k=1 k=1
and so by (41), (34) and (42)

n= lim y, = lim lfx (bn + Z ank> + Ap(r —&x - 6)] (43)

k=1

= &x - lim (bn + Zank> + lim An(z —€x )

k=1

=ix B Y opwr—Ex > ap =Ex - (5-2%) + Y gy,
k=1 k=1

that is, we have shown (38).
For each m, we have Ry (y) = > 02 1 (Yn — n)e™ for y € ¢ and 1 = lim, 00 Yn.

Writing fr(Lm) () = (Rm(L(x)))n, we obtain for n > m + 1 by (41) and (43)
X (ﬁ - Z%) + Zakwk]

k=1 k=1
=&x - (bn -8+ ak) + ) (ank — )Tk = ExVn + > Anki

k=1 k=1 k=1

PO (@) = yp — 0 = bpbx + Az —

Since fY(Lm) € X*, we have by (31) that ||f7§m)H = |yn|+ || An || x, and it follows that

SUPses, [Rm(L(2))|oo = S0Py LA™ ]| = 8541 (170] + | An ] x)- Now the
inequalities in (36) follow from (17) and (11) with a = 2.

<
Corollary 3. Let X € {c,wP,[c]} and L € B(X,c). Then L € K(X,c) if and
only if
lim (7l + 1 4nllx) = 0. (44)
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Proof. The condition in (44) follows from (36) by (18).

<
As before, let X € {c,w?,[c]}. Then an operator L € B(X,c) is said to be
X —regular, if lim,_,oo Ly (z) = &x for all x € X, where £x is the X-limit of x.
A matrix A € (X, ¢) is said to be X —regular, if the operator L, is X-regular. If
X = ¢, then X—regularity is the usual regularity.

Corollary 4. Let L € B(X,c) be an X —reqular transformation. Then L is com-
pact if and only if
Tim (Jb, — 1]+ | 4]lx) = 0. (45)

Proof. If L € B(X,¢) is regular, then by (33) and (34)

o = lim a,; = lim Ln(e(k)) =0 for each k and = lim L,(e) =1,
n—oo n—oo n—oo

hence 7y, = b, — 1 for all n, and so (45) follows from (44).

<

Remark 7. The case X = ¢ of Corollary 4 is the classical characterisation of
the compact reqular operators by Cohen and Dunford [1]. The condition in this
case is limy o0 (|bn, — 1] + D72 |ank]) = 0.

Corollary 5. Let X € {c,wP,[c]} and A € (X,c). Then

1 > .
5 - limsup (Iﬂ =) ol + HAnllx> <[ Lally <

lim sup <|ﬁ - Zak| + ||xz1n||/’\f> , (46)

where = lim, 00 Y ank, and La € K(X, ¢) if and only if
k=1

Jim. (W =) ol + Hz‘~1n||x> =0. (47)
k=1

Proof. If A € (X,¢), then b, = 0 for all n, and the the conditions in (46) and
(47) follow from (36) and (45).
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Remark 8. (a) If A € (X, ¢) is X —reqular, then B =1 and oy = 0 for all k then
1B = riar| =1, and so La cannot be X —reqular by (47).
(b) If A € (X,c) and L4 is compact, then it follows from (47) that

oo o0
nl;n;oZank — Zak = 0.
k=1 k=1
In the case X = c this means that a compact conservative matriz A is conull.

Finally, we say that an operator L € B(cs, cs) is (cs, cs)-regular if

n

n
JLI{:O;Ln(x) = nl;r{:o;xk for all (zx)p2 € cs.

and establish an analogous result to the case of X = ¢ in Remark 8(a).

Remark 9. Let L € B(cs,cs) and A be the matrix that represents L. Then L is
(cs, cs)—regular if and only if A € (cs,cs) and

Za”k =1 for all k. (48)
n=1

Proof. (i) First, we show the sufficiency of the condition in (48).
We put f(z) = 07 Ly(z) = > 7 Ayz. Since cs is has AK, we have by (48)

)= (Fose) = 3 160 = 35 = 3
k=1 k=1 k=1

k=1n=1
(ii) Now, we show the necessity of the condition in (48).
If f(x) = Y32, x for all @ € cs, then we obtain for z = e/

Fe) =3 Ape =3 Ny =3 el = 1
n=1 n=1 k=1

<
The following result is the series—to—series version of a classical result by
Cohen and Dunford [1] stated in the case of X = ¢ in Remark 8.

Corollary 6. A (cs,cs)-regular operator cannot be compact.
Proof. If L € B(cs, cs), then we have for all r and all m by (48)

n o0 o
sup E jm| > E ajm| =1 = W}gréo E @jm| 5
=1 =0 i=0

n>r |

hence M, (cs,cs) > 1 for all r by (19) and so L & K(cs, cs) by (20).
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