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Regularity Versus Compactness
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Abstract. A well–known result by Cohen and Dunford ([1], 1937) characterizes the class
of all bounded linear operators from the space of all convergent complex sequences into
itself. It follows that a regular matrix transformation cannot be compact. We use the
theory of BK spaces and the Hausdorff measure of noncompactness to present a new
proof for these results and establish their extensions to the spaces of strongly summable
and strongly convergent sequences, and of convergent series.
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1. Introduction and Notations

Measures of noncompactness are very useful tools in functional analysis, for
instance in metric fixed point theory and the theory of operator equations in
Banach spaces. They can also be used in the characterization of classes of compact
bounded operators between BK spaces by establishing identities or estimates for
their Hausdorff measures of noncompactness. This approach was initiated on a
large scale in [2], and later was also presented in detail in [3, 4].

In this paper, we demonstrate how the theory of BK spaces can be applied to
obtain the characterizations of some classes of bounded linear operators between
certain sequence spaces related to convergence and strong summability. We also
obtain the operator norms in each case.

More precisely, we study spaces of sequences that are strongly C1–summable
with index p ≥ 1, and of strongly convergent sequences denoted by wp and [c], es-
tablish representations for the bounded linear operators and their operator norms
from c, wp and [c] into c, and from the space of convergent series into itself. Fur-
thermore, we obtain estimates for the Hausdorff measure of noncompactness in
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each case, which yield the characterizations of the subclasses of compact oper-
ators. It is also shown that matrix transformations between those spaces that
preserve the associated limits cannot be compact. These results include the spe-
cial case by Cohen and Dunford [1].

We denote, as usual, by ω the set of all complex sequences (xk)
∞
k=1, and

write `∞, c, c0 and φ for the subsets of all bounded, convergent, null and finite
sequences in ω, `p = {x ∈ ω :

∑∞
k=1 |xk|p < ∞} for 1 ≤ p < ∞, bv = {x ∈

ω :
∑∞

k=1 |xk − xk+1| < ∞} for the set of all sequences of bounded variation,
bv0 = bv ∩ c0, and bs and cs for the sets of all bounded and convergent complex

series. Let e = (ek)
∞
k=1 and e(n) = (e

(n)
k )∞k=1 for n ∈ N denote the sequences with

ek = 1 for all k, and e
(n)
n = 1 and e

(n)
k = 0 for k 6= n.

We recall that a BK space X is a Banach sequence space with the property
that all the coordinates Pn : X → C with Pn(x) = xn (x = (xk)

∞
k=1 ∈ X)

are continuous; a BK space X is said to have AK if x = limm→∞ x
[m] for

all x = (xk)
∞
k=1 ∈ X, where x[m] =

∑m
k=1 xke

(k) denotes the m–section of the
sequence x = (xk)

∞
k=1 ∈ X; X is said to have AD if φ is dense in X. Clearly, a

BK space with AK also has AD.
The following results are well known.

Example 1. (a) The sets `∞, c, c0, `p for 1 ≤ p < ∞, bs, cs, bv and bv0

are BK spaces with their natural norms ‖x‖∞ = supk |xk| for `∞, c and c0,
‖x‖p = (

∑∞
k=1 |xk|p)1/p for `p, ‖x‖bs = supn |

∑n
k=1 xk| for bs and cs ([5, Example

7.3.1]), and ‖x‖bv =
∑∞

k=1 |xk − xk+1|+ | limk→∞ xk| for x ∈ bv, bv0 ([5, 7.3.4]).
(b) The spaces c0, `p for 1 ≤ p < ∞, and cs ([5, Example 4.2.14]) and bv0

([5, Theorem 7.3.5 (i)]) have AK; `∞ and bs have no Schauder basis, and x =
ξe+

∑∞
k=1(xk − ξ)e(k) for every x = (xk)

∞
k=1 ∈ c, where ξ = limk→∞ xk.

Let X and Y be Banach spaces. Then we write, as usual, B(X,Y ) for the
Banach space of all bounded linear operators L : X → Y with the operator
norm ‖L‖ = sup{‖L(x)‖ : ‖x‖ = 1}; if Y = C, then X∗ = B(X,C) denotes the
continuous dual of X with the norm ‖f‖ = sup{|f(x)| : ‖x‖ = 1}.

Let X and Y be subsets of ω. Then the β– and γ–duals of X are the sets

Xβ = {a ∈ ω : a · x = (akxk)
∞
k=1 ∈ cs for all x ∈ X} and

Xγ = {a ∈ ω : a · x ∈ bs for all x ∈ X} .

Remark 1. Obviously Xβ ⊂ Xγ, and if X ⊃ φ is a BK space with AD, then
also Xγ ⊂ Xβ by [5, Theorem 7.2.7].

The following relations between the continuous and β–duals of a BK space
are well known.
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Proposition 1. ([5, Theorem 7.2.9]) Let X ⊃ φ be a BK space. Then Xβ ⊂ X∗;
this means that there exists a linear one–to–one map T : Xβ → X∗. If X has
AK, then T is onto.

We list the continuous and β–duals of some sequence spaces.

Example 2. We have
(a) ωβ = φ, φβ = ω, cβ0 = cβ = `β∞ = `1, `β1 = `∞, `βp = `q for 1 ≤ p < ∞
and q = p/(p − 1); csβ = bv, bsβ = bv0 and bvβ = cs ([5, Theorem 7.3.5
(v),(vi),(iii)]);
(b) if X ∈ {c0, `p (1 ≤ p < ∞)}, then Xβ and X∗ are norm isomorphic ([6,
Examples 6.4.4, 6.4.3]);
(c) ([6, Example 6.4.5]) f ∈ c∗ if and only if there exist b ∈ C and a sequence
a ∈ `1 with f(x) = bξ+

∑∞
k=1 akxk for all x ∈ c, where ξ = limk→∞ xk; moreover

‖f‖ = |b|+ ‖a‖1.

Let A = (ank)
∞
n,k=1 be an infinite matrix of complex entries, X,Y ⊂ ω and

x be a sequence. We write An = (ank)
∞
k=1 (n ∈ N) for the sequence in the nth

row of A, Anx =
∑∞

k=1 ankxk for n ∈ N and Ax = (Anx)∞n=1 for the A–transform
of x (provided all the series converge); XA = {x ∈ ω : Ax ∈ X for all x ∈ X}
denotes the matrix domain of A in X, and (X,Y ) is the class of all matrix
transformations from X into Y , that is, A ∈ (X,Y ) if and only if X ⊂ YA, or
equivalently, A ∈ (X,Y ) if and only if An ∈ Xβ for all n ∈ N and Ax ∈ Y for all
x ∈ X.

An infinite matrix T = (tnk)
∞
k=1 is said to be a triangle if tnk = 0 for k > n

and tnn 6= 0 for all n.
Let a ∈ ω and X be a BK space. Then we write ‖a‖∗X = sup{|

∑∞
k=1 akxk| :

‖x‖ = 1}, provided the expression of the right exists and is finite, which is the
case by Proposition 1, whenever a ∈ Xβ.

We need the following result.

Proposition 2. The continuous dual of cs is norm isomorphic to bv.

Proof. Let f ∈ cs∗ be given. Since csβ = bv by Example 2(a), it follows by
Proposition 1, that there exists sequence a ∈ bv such that f(x) =

∑∞
k=1 akxk for

all x ∈ cs, and we obtain ‖f‖ = ‖a‖∗cs = ‖a‖bv by [7, (2.3)].

J
We recall the following well–known relations betwen (X,Y ) and B(X,Y ).

Theorem 1. ([3, Theorem 9.3.3]) Let X and Y be BK spaces.
(a) Then (X,Y ) ⊂ B(X,Y ), that is, every A ∈ (X,Y ) defines an operator LA ∈
B(X,Y ), where

LA(x) = Ax for all x ∈ X. (1)
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(b) If X has AK then B(X,Y ) ⊂ (X,Y ), that is, for each L ∈ B(X,Y ), there
exists a matrix A ∈ (X,Y ) such that

Ax = L(x) for all x ∈ X; (2)

in this case we say that the matrix A represents the operator L.
(c) We have A ∈ (X, `∞) if and only if

‖A‖(X,`∞) = sup
n
‖An‖∗X <∞; (3)

moreover, if A ∈ (X,Y ), where Y ∈ {c0, c, `∞}, then

‖LA‖ = ‖A‖(X,`∞). (4)

Since cs is a BK space with AK, every bounded linear operator L from cs
into a BK space Y is represented by a matrix A ∈ (cs, Y ) as in (2).

Proposition 3. (a) We have L ∈ B(cs, `∞) if and only if

sup
n

∞∑
k=1

|ank − an,k+1| <∞ (5)

and

sup
n

∣∣∣∣ lim
k→∞

ank

∣∣∣∣ <∞; (6)

moreover, if L ∈ B(cs, `∞) then

‖L‖ = ‖A‖(cs,`∞) = sup
n

( ∞∑
k=1

|ank − an,k+1|+
∣∣∣∣ lim
k→∞

ank

∣∣∣∣
)
. (7)

(b) If A = (ank)
∞
n,k=1 is any infinite matrix, then we write C = (cnk)

∞
n,k=1 for the

matrix with cnk =
∑k

j=1 ajk for all n and k. We have L ∈ B(cs, bs) if and only
if (5) and (6) hold ank and an+1,k replaced by cnk and cn+1,k.
(c) We have L ∈ B(cs, cs) if and only if L ∈ B(cs, bs) and

∞∑
n=1

ank converges for all k. (8)

(d) If L ∈ B(cs, bs) or L ∈ B(cs, cs), then

‖L‖ = ‖A‖(cs,bs) = ‖C‖(cs,`∞). (9)
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Proof. (a) Part (a) follows by Theorem 1(b) and (c), and Proposition 2.
(b),(d) Let Σ = (σ∞n,k=1)∞n,k=1 be the triangle with the rows Σn = e[n] for all n,
then C = Σ · A, and Parts (b) and (d) follow from Part (a), since bs = (`∞)Σ,
and by [2, Theorem 3.8(a) and (b)] A ∈ (cs, bs) if and only if C ∈ (cs, `∞) and
‖A‖(cs,bs) = ‖C‖(cs,`∞).
(c) We observe that c is a closed subspace of `∞ ([5, Example 4.2.6]) and so cs
is a closed subspace of bs by [5, Theorem 4.3.14]. Part (c) now follows from Part
(b), since, by [5, 8.3.6], A ∈ (cs, cs) if and only if A ∈ (cs, bs) and Ae ∈ cs, the
latter condition being that in (8).

J

Remark 2. (a) The characterization of the class (cs, `∞) can be found in [8,
3. (2.2), (3.1))], where an alternative characterization is given by [8, 3. (3.2))]
which can also be found in [5, Example 8.4.5B].
(b) The characterization of the class (cs, bs) can be found in [8, 34. (33.1),
(34.1))], where an alternative characterization is given by [8, 34. (34.2))] which
can also be found in [5, Example 8.4.6B].

2. The Hausdorff Measure of Noncompactness

We recall the definition of the Hausdorff measure of noncompactness on the
class of bounded sets in complete metric spaces.

Definition 1. ([2, Definition 2.10] or [3, Definition 7.7.1]) Let X be a complete
metric space and MX denote the class of all bounded subsets of X. Then the
function χ :MX → [0,∞) with χ(Q) = inf{ε > 0 : Q has a finite ε–net in X} is
called the Hausdorff or ball measure of noncompactness.

The following well–known result gives an estimate for the Hausdorff measure
of noncompactness of bounded sets in Banach spaces with a Schauder basis.

Theorem 2 (Goldenštein–Goh’berg–Markus). ([2, Theorem2.25] or [3, Theorem
7.9.3]) Let X be a Banach space with a Schauder basis (bn)∞n=1 and the operator
Rn : X → X for each n ∈ N be defined by Rn(x) =

∑∞
k=n+1 λkbk for all x =∑∞

k=1 λkbk ∈ X. We put µ(Q) = lim supn→∞(supx∈Q ‖Rn(x)‖) for all Q ∈MX .
Then the following inequalities hold for all Q ∈MX

1

a
· µ(Q) ≤ χ(Q) ≤ inf

n

(
sup
x∈Q
‖Rn(x)‖

)
≤ µ(Q), (10)

where a = lim supn→∞ ‖Rn‖ is the basis constant of the Schauder basis.



122 E. Malkowsky

Remark 3. ([3, Remark 7.9.4]) The following inequalities also hold instead of
(10) in Theorem 2

1

a
· inf
n

(
sup
x∈Q
‖Rn(x)‖

)
≤ ‖L‖χ ≤ inf

n

(
sup
x∈Q
‖Rn(x)‖

)
. (11)

The next result is an immediate consequence of Theorem 2

Corollary 1. (a) ([2, Theorem 2.15]) Let X be any of the spaces `p for 1 ≤ p <∞
or c0. Then we have

χ(Q) = lim
n→∞

(
sup
x∈Q
‖Rn(x)‖

)
for all Q ∈MX . (12)

(b) ([3, Example 7.9.7]) If X = c, then the limit on the right hand side in (12)
exists for all Q ∈Mc and

1

2
· lim
n→∞

(
sup
x∈Q
‖Rn(x)‖

)
≤ χ(Q) ≤ lim

n→∞

(
sup
x∈Q
‖Rn(x)‖

)
for all Q ∈Mc. (13)

(c) If X = cs, then

1

2
· lim sup

n→∞

(
sup
x∈Q
‖Rn(x)‖

)
≤ χ(Q) ≤ lim sup

n→∞

(
sup
x∈Q
‖Rn(x)‖

)
for all Q ∈Mc.

(14)

Proof. We need only prove Part (c).
Let n ∈ N be given. Then we have for all x ∈ cs

‖Rn(x)‖bs = sup
m

∣∣∣∣∣
m∑

k=n+1

xk

∣∣∣∣∣ ≤ ‖x‖bs +

∣∣∣∣∣
n∑
k=1

xk

∣∣∣∣∣ ≤ 2 · ‖x‖bs,

that is, ‖Rn‖ ≤ 2.
On the other hand, if we choose x = e(n) − 2 · e(n+1), then ‖x‖bs = 1 and
‖R(x)n‖bs = 2 ≤ ‖Rn‖.
Thus we have shown a = limn→∞ ‖Rn‖ = 2 and the inequalities in (14) follow
immediately from (10).

J

Remark 4. The proof of he existence in (12) and (13) uses the property of the
norms ‖ · ‖p and ‖ · ‖∞, namely that if |xk| ≤ |yk| for all k, then ‖x‖p ≤ ‖y‖p and
‖x‖∞ ≤ ‖y‖∞ (cf. [9, Lemma 1.10], [4, Theorem 5.16] and [3, Example 7.9.7]).
The norm ‖ · ‖bs on cs, however, does not have this property, as is easily seen by
taking the sequences x = 2(e(1) + e(2)) and y = 3(e(1) − e(2)).
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Now we recall the definition of the Hausdorff measure of noncompactness of
operators between Banach spaces.

Definition 2. ([2, Definition 2.24] or [3, Definition 7.11.1]) Let X and Y be
Banach spaces and χ be the Hausdorff measure of noncompactness.
(a) An operator L : X → Y is said to be χ–bounded, if L(Q) ∈ MY for all
Q ∈MX , and if there exists a nonnegative real number c such that

χ(L(Q)) ≤ c · χ(Q) for all Q ∈MX . (15)

(b) If an operator L is χ–bounded, then the number

‖L‖χ = inf{c ≥ 0 : (15) holds} (16)

is called the Hausdorff measure of noncompactness of L.

For the reader’s convenience, we list some important properties of the Haus-
dorff measure of noncompactness of operators.

Let X and Y be Banach spaces and K(X,Y ) denote the class of compact
operators in B(X,Y ).

Theorem 3. Let X and Y be BK spaces and L ∈ B(X,Y ). Then we have
(a) ([2, Theorem 2.25] or [3, Theorem 7.11.4])

‖L‖χ = χ(L(SX)) = χ(L(B̄X)) = χ(L(BX)), (17)

where SX , B̄X and BX are the unit sphere, the closed and open unit balls in X;
(b) ([2, Theorem 2.26] or [3, Theorem 7.11.5 (7.68)])

‖L‖χ = 0 if and only if L ∈ K(X,Y ). (18)

Corollary 2. We use the notations of Proposition 3(b). Let L ∈ B(cs, cs). We
put Mm(cs, cs) = supn≥m(

∑∞
k=1 |cnk − cn,k+1| + | limk→∞ cnk|) for all m ∈ N.

Then
1

2
· lim sup
m→∞

Mm(cs, cs) ≤ ‖L‖χ ≤ lim sup
m→∞

Mm(cs, cs). (19)

Furthermore, L ∈ B(cs, cs) is compact if and only if

lim
m→∞

Mm(cs, cs) = 0. (20)

Proof. If A is an infinite matrix and m ∈ N, then we write A<m> for the
matrix with the first m rows replaced by the zero sequence. We obviously have
(Rm ◦ L)(x) = A<m>x for all x, and so, by (9),

sup
x∈Scs

‖(Rm ◦ L)(x)‖cs = ‖Rm ◦ L‖∗cs =
∥∥A<m>∥∥

(cs,bs)
=
∥∥C<m>∥∥

(cs,`∞)
.
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Now (19) follows by (7), (17) and (14).
Finally the condition in (20) for the compactness of L follows from (20) by (18).

J

Remark 5. Using (11) instead (10) we obtain

1

2
· lim sup

n→∞

( ∞∑
k=1

|cnk − cn,k+1|+
∣∣∣∣ lim
k→∞

cnk

∣∣∣∣
)
≤ ‖L‖χ ≤

lim sup
n→∞

( ∞∑
k=1

|cnk − cn,k+1|+
∣∣∣∣ lim
k→∞

cnk

∣∣∣∣
)
. (21)

3. The Hausdorff Measure of Noncompactness of Some
Operators

In this section, we establish some identities and estimates for the Hausdorff
measure of noncompactness of operators from arbitrary BK spaces with AK into
the spaces c0 and c. We need the following general result.

Theorem 4. ([3, Theorem 9.8.4 (a), (b)]) Let X and Y be BK spaces, X have
AK, L ∈ B(X,Y ) and A be the matrix that represents L as in (2).
(a) If Y = c, then we have

1

2
· lim
m→∞

(
sup
n≥m

∥∥∥Ãn∥∥∥∗
X

)
≤ ‖L‖χ ≤ lim

m→∞

(
sup
n≥m

∥∥∥Ãn∥∥∥∗
X

)
, (22)

where

αk = lim
n→∞

ank for all k (23)

and Ã = (ãnk)
∞
n,k=1 is the matrix with ãnk = ank − αk for all n and k.

(b) If Y = c0, then we have

‖L‖χ = lim
m→∞

(
sup
n≥m
‖An‖∗X

)
. (24)

Proof. We write ‖ · ‖∗ = ‖ · ‖∗X , for short.
(a) Let A = (an,k)

∞
n,k=1 ∈ (X, c). Then ‖L‖ = ‖A‖(X,`∞) <∞ by (3) in Theorem

1(c) and the limits αk exist for all k by [5, 8.3.6].
(a.i) We show (αk)

∞
k=1 ∈ Xβ.



Regularity Versus Compactness 125

Let x ∈ X be given. Since X has AK, it is easy to see that there exists a positive
constant C such that ‖x[m]‖ ≤ C‖x‖ for all m ∈ N and it follows that∣∣∣∣∣

m∑
k=1

ankxk

∣∣∣∣∣ =
∣∣∣Anx[m]

∣∣∣ ≤ C‖An‖∗ · ‖x‖ ≤ C‖A‖(X,`∞) · ‖x‖ for all n and m,

hence by (23)∣∣∣∣∣
m∑
k=1

αkxk

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣
m∑
k=1

ankxk

∣∣∣∣∣ ≤ C‖A‖(X,`∞) · ‖x‖ for all m. (25)

This implies (αkxk)
∞
k=1 ∈ bs. Since x ∈ X was arbitrary, we conclude (αk)

∞
k=1 ∈

Xγ , and so (αk)
∞
k=1 ∈ Xβ by Remark 1, since X has AK and so AD.

Also (αk)
∞
k=1 ∈ Xβ implies ‖(αk)∞k=1‖∗ <∞ by Proposition 1.

(a.ii) Now we show

lim
n→∞

Anx =

∞∑
k=1

αkxk for all x ∈ X. (26)

Let x ∈ X and ε > 0 be given. Since X has AK, there exists k0 ∈ N such that

‖x− x[k0]‖ ≤ ε

2(M + 1)
, where M = ‖A‖(X,`∞) + ‖(αk)∞k=1‖∗. (27)

It also follows from (23) that there exists n0 ∈ N such that∣∣∣∣∣
k0∑
k=1

(ank − αk)xk

∣∣∣∣∣ < ε

2
for all n ≥ n0. (28)

Let n ≥ n0 be given, Then it follows from (27) and (28) that∣∣∣∣∣Anx−
∞∑
k=1

αkxk

∣∣∣∣∣ ≤
∣∣∣∣∣
k0∑
k=1

(ank − αk)xk

∣∣∣∣∣+

∣∣∣∣∣∣
∞∑

k=k0+1

(ank − αk)xk

∣∣∣∣∣∣
<
ε

2
+ ‖Am − (αk)

∞
k=1‖∗ · ‖x− x[k0]‖ < ε

2
+
ε

2
= ε.

Thus we have shown (26).
(a.iii) Now we show the inequalities in (22).

Let y = (yn)∞n=1 ∈ c be given. Then, by Example 1(b), y has a unique rep-
resentation y = ηe +

∑∞
n=1(yn − η)e(n), where η = limn→∞ yn, and so Rmy =∑∞

n=m+1(yn − η)e(n) for all m. We write yn = Anx for n = 1, 2, . . . , and obtain

‖Rm(Ax)‖∞ = sup
n≥m+1

|yn − η| = sup
n≥m+1

∣∣∣∣∣Anx−
∞∑
k=1

αkxk

∣∣∣∣∣ = sup
n≥m+1

|Ãnx|
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whence supx∈B̄X
‖Rm(Ax)‖∞ = supn≥m+1 ‖Ãn‖∗.

Now the inequalities in (22) follow from (17), Corollary 1(b) and (13).
Thus we have shown Part (a).
(b) Part (b) follows from (a) with αk = 0 for all k and since ‖a‖ = limm→∞ ‖Rm‖
= 1 by (12) in Corollary 1(a).

J

Remark 6. By (11), the term limn→∞ supn≥m ‖ · ‖∗X in (22) and (23) can be
replaced by lim supn→∞ ‖ · ‖∗X .

Example 3. We write q =∞ for p = 1 and q = p/(p− 1) for 1 < p <∞. Since
`p has AK for 1 ≤ p <∞ by Example 1(a), we have by Example 2(a), (b), (22)
and Remark 6

‖Ãn‖∗`p = ‖Ãn‖q =


sup
k
|ank − αk| (p = 1)( ∞∑

k=1

|ank − αk|q
)1/q

(1 < p <∞)
,

1

2
· lim sup

n→∞

∥∥∥Ãn∥∥∥
q
≤ ‖L‖χ ≤ lim sup

n→∞

∥∥∥Ãn∥∥∥
q

and so L ∈ K(`p, c) by (18) if and only if limn→∞ ‖Ãn‖q = 0.

4. Regularity and Strong regularity

In this section, we use the Hausdorff measure of noncompactness to obtain the
well–known result that a regular operator cannot be compact. We also establish
the analogue of this result for series–to–series transformations.

Furthermore, we generalize the concept of regularity to two versions of strong
regularity involving the concepts of strong summability and strong convergence
to obtain similar results, namely that a strongly regular matrix transformation
cannot be compact.

Throughout, let 1 ≤ p < ∞. We use the convention that every term with a
subsrcipt ≤ 0 is equal to zero.

The sets wp0 = {x ∈ ω : limn→∞(1/n)
∑n

k=1 |xk|p = 0}, wp = {x ∈ ω : x−ξe ∈
wp0 for some ξ ∈ C} and wp∞ = {x ∈ ω : supn(1/n)

∑n
k=1 |xk|p <∞} of sequences

that are strongly summable to zero, strongly summable and strongly bounded,
respectively, with index p by the Cesàro method of order 1 were defined and
studied by Maddox [10].

The sets [c]0 = {x ∈ ω : limn→∞(1/n)
∑n

k=1 |kxk − (k − 1)xk−1| = 0}, [c] =
{x ∈ ω : x−ξe ∈ [c0] for some ξ ∈ C} and [c∞] = {x ∈ ω : supn(1/n)

∑n
k=1 |kxk−



Regularity Versus Compactness 127

(k− 1)xk−1| <∞} of all sequences that are strongly convergent to zero, strongly
convergent and strongly bounded were studied by Kuttner and Thorpe [11].

Let X be any of the sets c, wp for 1 ≤ p < ∞ and [c], and X0 and X∞ the
corresponding sets c0, wp0, [c0], and `∞, wp∞ and [c∞]. If x = (xk)

∞
k=1 ∈ X, then

we write ξX for the X–limit of x, that is, for the unique complex number ξX
with ξc = limk→∞ xk, the usual limit, limn→∞(1/n)

∑n
k=1 |xk − ξwp |p = 0, the

wp–limit, and limn→∞(1/n)
∑n

k=1 |kxk − (k − 1)xk−1 − ξ[c]| = 0, the [c]–limit.
We write maxν and

∑
ν for the maximum and sum taken over all indices

k ∈ [2ν , 2ν+1 − 1] (ν = 0, 1, . . . ) and put

‖x‖X∞ =



sup
k
|xk| (x ∈ c0, c, `∞)

sup
ν∈N0

(
1

2ν
∑

ν |xk|p
)1/p

(x ∈ wp0, wp, w
p
∞)

sup
ν

(
1

2ν
∑

ν |kxk − (k − 1)xk−1|
)

(x ∈ [c0], [c], [c∞]).

and X = {a ∈ ω : ‖a‖X <∞}, where

‖a‖X =



‖a‖1 (x ∈ c0, c, `∞)

∞∑
ν=0

2νmaxν |ak|

(p = 1)
∞∑
ν=0

2ν/p (
∑

ν |ak|q)
1/q

(1 < p <∞; q = p/(p− 1))

(x ∈ wp0, wp, w
p
∞)

∞∑
ν=0

2νmaxν

∣∣∣∣∣ ∞∑j=k ajj
∣∣∣∣∣ (x ∈ [c0], [c], [c∞]).

The following results are well known (Examples 1 and 2 for X0 = c0, X = c
and X∞ = `∞; [10], [2, Proposition 3.44] for X0 = wp0, X = wp and X∞ = wp∞;
[12, Theorem 2], [13, Theorem 2.2],[14, Theorem 2] for X0 = [c0], X = [c] and
X∞ = [c∞]).

Proposition 4. (a) The sets X0, X and X∞ are BK spaces with respect to the
norm ‖ · ‖X∞; X0 is a closed subspace of X and X is a closed subspace of X∞;
X0 has AK, and every sequence x = (xk)

∞
k=1 ∈ X has a unique representation

x = ξe+

∞∑
k=1

(xk − ξX)e(k), where ξX is the X–limit of x; (29)
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finally, X∞ has no Schauder basis.
(b) We have (X0)β = (X)β = (X∞)β = X ; X∗0 is norm isomorphic to (X , ‖ · ‖X );
f ∈ X∗ if and only if there exist b ∈ C and a sequence a = (ak)

∞
k=1 ∈ X such that

f(x) = ξXb+
∞∑
k=1

akxk for all x ∈ wp, where ξX is the X–limit of x,

a = (f(e(n)))∞n=1 and b = f(e)−
∞∑
n=1

an;
(30)

moreover
‖f‖ = |b|+ ‖a‖X for all f ∈ X∗; (31)

finally, ‖a‖∗X = ‖a‖X for all a ∈ Xβ
∞.

Now we establish a representation of L ∈ B(X, c) and an estimate for ‖L‖χ
when X ∈ {c, wp, [c]}.

Theorem 5. ([3, Theorem 9.9.1] for X = c, [15, Theorem 6.3] for X = wp and
[15, Theorem 6.13] for X = [c])
Let X ∈ {c, wp, [c]}. We write Ln = Pn ◦ L for all n.
(a) We have L ∈ B(X, c) if and only if there exists a sequence b ∈ `∞ and a
matrix A ∈ (X0, c) such that

L(x) = bξX +Ax for all x ∈ X, (32)

ank = Ln(e(k)), bn = Ln(e)−
∞∑
k=1

ank for all n and k, (33)

β = lim
n→∞

(
bn +

∞∑
k=1

ank

)
exists, (34)

and
‖L‖ = sup

n
(|bn|+ ‖An‖X ) . (35)

(b) If L ∈ B(X, c), then

1

2
· lim sup

n→∞

(
|γn|+ ‖Ãn‖X

)
≤ ‖L‖χ ≤ lim sup

n→∞

(
|γn|+ ‖Ãn‖X

)
, (36)

where
lim
n→∞

ank = αk for all k ∈ N, (37)

Ã = (ãnk)
∞
n,k=1 is the matrix with ãnk = ank − αk for all n and k, and

γn = bn − β +

∞∑
k=1

αk for all n;
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we also have

lim
n→∞

Ln(x) =

(
β −

∞∑
k=1

αk

)
ξ +

∞∑
k=1

αkxk. (38)

Proof. (a.i) First we assume that L ∈ B(X, c) and show that L has the given
representation and satisfies (35).
We assume L ∈ B(X, c). Since c is a BK space, Ln = Pn ◦ L ∈ X∗ for all n ∈ N,
that is, by (30) (with b and ak replaced by bn and ank)

Ln(x) = bn · ξX +
∞∑
k=1

ankxk for all x ∈ X, (39)

with bn and ank from (33); we also have by (31)

‖Ln‖ = |bn|+ ‖An‖X for all n. (40)

Now (39) yields the representation of the operator in (32).
Furthermore, since L(x(0)) = Ax(0) for all x(0) ∈ X0, we have A ∈ (X0, c) and so
by (3) and (4) ‖A‖ = supn ‖A‖∗X = supn ‖An‖X <∞. Also L(e) = b+Ae by (32),
and so L(e) ∈ c yields (34), and we obtain ‖b‖∞ ≤ ‖L(e)‖∞ + ‖A‖ <∞, that is,
b ∈ `∞. Consequently we have by (40) supn ‖Ln‖ = supn (|bn|+ ‖A‖) <∞. It is
easy to see that |ξX | ≤ ‖x‖X for all x ∈ X, and we obtain by (39) and (40)

‖L(x)‖∞ = sup
n

∣∣∣∣∣bnξX +
∞∑
k=1

ankxk

∣∣∣∣∣
≤
[
sup
n

(|bn|+ ‖An‖X )

]
· ‖x‖∞ = sup

n
‖Ln‖ · ‖x‖∞,

hence ‖L‖ ≤ supn ‖Ln‖. We also have |Ln(x)| ≤ ‖L(x)‖∞ ≤ ‖L‖ for all x ∈ SX
and all n, that is, supn ‖Ln‖ ≤ ‖L‖, and we have shown (35).
(a.ii) Now we show that if L has the given representation, then L ∈ B(X, c).
We assume A ∈ (c0, c) and b ∈ `∞ and that the conditions in (32), (34) and
(35) are satisfied. First A ∈ (X0, c) implies ‖A‖ = supn ‖An‖X < ∞ by (3) and
Proposition 4(b). This and b ∈ `∞ yield ‖L‖ <∞, hence L ∈ B(X, `∞). Also it

follows from A ∈ (X0, c) that An ∈ Xβ
0 for all n. Since Xβ

0 = Xβ by Proposition
29 (b) and e ∈ X, the series

∑∞
k=1 ank converges for each n. Therefore, if x ∈ X

is given and ξX is the X–limit of x, then x− ξX · e ∈ X0, and, by (32),

Ln(x) = bnξX +

∞∑
k=1

ankxk =

(
bn +

∞∑
k=1

ank

)
· ξX +An(x− ξX) for all n. (41)
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Now it follows from (34) and A ∈ (X0, c) that limn→∞ Ln(x) exists. Since x ∈ X
was arbitrary, we have L ∈ (B(X, c).
(b) Now we show that if L ∈ B(X, c), then ‖L‖χ satisfies the inequalities in (36).
We assume L ∈ (X, c).
First we note that the limits β and αk exist for all k by Part (a). Also, since
A ∈ (X0, c) and X0 is a BK space with AK by Proposition 4(b), it follows that

(αk)
∞
k=1 ∈ X

β
0 = Xβ by Part (a.i) of the proof of Theorem 4, and so (αk)

∞
k=1 ∈ cs.

Therefore γn is defined for each n.
Now let x ∈ X be given, and y = L(x). It follows from (26) that

lim
n→∞

An(x− e · ξX) =
∞∑
k=1

αk(xk − ξX) =
∞∑
k=1

αkxk − ξX
∞∑
k=1

αk, (42)

and so by (41), (34) and (42)

η = lim
n→∞

yn = lim
n→∞

[
ξX

(
bn +

∞∑
k=1

ank

)
+An(x− ξX · e)

]
(43)

= ξX · lim
n→∞

(
bn +

∞∑
k=1

ank

)
+ lim
n→∞

An(x− ξX · e)

= ξX · β +
∞∑
k=1

αkxk − ξX
∞∑
k=1

αk = ξX ·

(
β −

∞∑
k=1

αk

)
+
∞∑
k=1

αkxk,

that is, we have shown (38).
For each m, we have Rm(y) =

∑∞
n=m+1(yn−η)e(n) for y ∈ c and η = limn→∞ yn.

Writing f
(m)
n (x) = (Rm(L(x)))n, we obtain for n ≥ m+ 1 by (41) and (43)

f (m)
n (x) = yn − η = bnξX +Anx−

[
ξX

(
β −

∞∑
k=1

αk

)
+

∞∑
k=1

αkxk

]

= ξX ·

(
bn − β +

∞∑
k=1

αk

)
+

∞∑
k=1

(ank − αk)xk = ξXγn +

∞∑
k=1

ãnkxk.

Since f
(m)
n ∈ X∗, we have by (31) that ‖f (m)

n ‖ = |γn|+‖Ãn‖X , and it follows that

supx∈SX
‖Rm(L(x))|∞ = supn≥m+1 ‖f

(m)
n ‖ = supn≥m+1(|γn|+ ‖Ãn‖X). Now the

inequalities in (36) follow from (17) and (11) with a = 2.

J

Corollary 3. Let X ∈ {c, wp, [c]} and L ∈ B(X, c). Then L ∈ K(X, c) if and
only if

lim
n→∞

(
|γn|+ ‖Ãn‖X

)
= 0. (44)
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Proof. The condition in (44) follows from (36) by (18).

J
As before, let X ∈ {c, wp, [c]}. Then an operator L ∈ B(X, c) is said to be

X–regular, if limn→∞ Ln(x) = ξX for all x ∈ X, where ξX is the X–limit of x.
A matrix A ∈ (X, c) is said to be X–regular, if the operator LA is X–regular. If
X = c, then X–regularity is the usual regularity.

Corollary 4. Let L ∈ B(X, c) be an X–regular transformation. Then L is com-
pact if and only if

lim
n→∞

(|bn − 1|+ ‖A‖X ) = 0. (45)

Proof. If L ∈ B(X, c) is regular, then by (33) and (34)

αk = lim
n→∞

ank = lim
n→∞

Ln(e(k)) = 0 for each k and β = lim
n→∞

Ln(e) = 1,

hence γn = bn − 1 for all n, and so (45) follows from (44).

J

Remark 7. The case X = c of Corollary 4 is the classical characterisation of
the compact regular operators by Cohen and Dunford [1]. The condition in this
case is limn→∞(|bn − 1|+

∑∞
k=1 |ank|) = 0.

Corollary 5. Let X ∈ {c, wp, [c]} and A ∈ (X, c). Then

1

2
· lim sup

n→∞

(
|β −

∞∑
k=1

αk|+ ‖Ãn‖X

)
≤ ‖LA‖χ ≤

lim sup
n→∞

(
|β −

∞∑
k=1

αk|+ ‖Ãn‖X

)
, (46)

where β = limn→∞
∞∑
k=1

ank, and LA ∈ K(X, c) if and only if

lim
n→∞

(
|β −

∞∑
k=1

αk|+ ‖Ãn‖X

)
= 0. (47)

Proof. If A ∈ (X, c), then bn = 0 for all n, and the the conditions in (46) and
(47) follow from (36) and (45).

J
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Remark 8. (a) If A ∈ (X, c) is X–regular, then β = 1 and αk = 0 for all k then
|β −

∑∞
k=1 αk| = 1, and so LA cannot be X–regular by (47).

(b) If A ∈ (X, c) and LA is compact, then it follows from (47) that

lim
n→∞

∞∑
k=1

ank −
∞∑
k=1

αk = 0.

In the case X = c this means that a compact conservative matrix A is conull.

Finally, we say that an operator L ∈ B(cs, cs) is (cs, cs)–regular if

lim
n→∞

n∑
k=1

Ln(x) = lim
n→∞

n∑
k=1

xk for all (xk)
∞
k=1 ∈ cs.

and establish an analogous result to the case of X = c in Remark 8(a).

Remark 9. Let L ∈ B(cs, cs) and A be the matrix that represents L. Then L is
(cs, cs)–regular if and only if A ∈ (cs, cs) and

∞∑
n=1

ank = 1 for all k. (48)

Proof. (i) First, we show the sufficiency of the condition in (48).
We put f(x) =

∑∞
n=1 Ln(x) =

∑∞
n=1Anx. Since cs is has AK, we have by (48)

f(x) = f

( ∞∑
k=1

xke
(k)

)
=

∞∑
k=1

f(e(k)xk) =

∞∑
k=1

∞∑
n=1

ankxk =

∞∑
k=1

xk.

(ii) Now, we show the necessity of the condition in (48).
If f(x) =

∑∞
k=1 xk for all x ∈ cs, then we obtain for x = e(j)

f(e(j)) =
∞∑
n=1

Ane
(j) =

∞∑
n=1

anj =
∞∑
k=1

e
(j)
k = 1.

J
The following result is the series–to–series version of a classical result by

Cohen and Dunford [1] stated in the case of X = c in Remark 8.

Corollary 6. A (cs, cs)–regular operator cannot be compact.

Proof. If L ∈ B(cs, cs), then we have for all r and all m by (48)

sup
n≥r

∣∣∣∣∣∣
n∑
j=1

ajm

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
∞∑
j=0

ajm

∣∣∣∣∣∣ = 1 =

∣∣∣∣∣∣ lim
m→∞

∞∑
j=0

ajm

∣∣∣∣∣∣ ,
hence Mr(cs, cs) ≥ 1 for all r by (19) and so L 6∈ K(cs, cs) by (20).

J
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