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Abstract. This article intends to investigate the q-recurrence relations and some new
classes of q-difference equations for the q-generalized tangent-Appell polynomials. An
analogous study of these results for the q-generalized tangent-Bernoulli polynomials is
also presented. In addition, graphical representation and zeros of these polynomials are
demonstrated using computer experiment.
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1. Introduction

The subject of q-calculus has established its importance in quantum mechan-
ics, fluid mechanics, and combinatorics. It has a deep connection with Lie algebra
and commutativity relations (see, for details, [13, 14, 12, 11]). The q-standard
notations and definitions reviewed here are taken from [3].

The q-analogue of a number n ∈ C and factorial function are specified as

[n]q =
1− qn

1− q
, q ∈ C \ {1}, (1)

[n]q! =
n∏

m=1

[m]q = [1]q[2]q[3]q · · · [n]q, [0]q! = 1, n ∈ N, 0 < q < 1. (2)

The q-binomial coefficient
[
n
k

]
q

is specified as[
n

k

]
q

=
[n]q!

[k]q![n− k]q!
, k = 0, 1, 2, · · · , n; n ∈ N0. (3)
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The q-exponential functions are specified by

eq(u) =

∞∑
k=0

uk

[k]q!
, 0 < |q| < 1, |u| < |1− q|−1, (4)

Eq(u) =
∞∑
k=0

qk(k−1)/2
uk

[k]q!
, 0 < |q| < 1, u ∈ C, (5)

and satisfy the following relation

eq(t)Eq(−t) = Eq(t)eq(−t) = 1. (6)

The q-derivative Dq of functions eq(u) and Eq(u) are given by

Dqeq(ut) = teq(ut), DqEq(ut) = tEq(qut). (7)

For any two arbitrary functions f(u) and g(u), the q-derivative operator Dq

satisfies the following product and quotient relations [4]:

Dq(f(u)g(u)) = f(qu)Dqg(u) + g(u)Dqf(u) = f(u)Dqg(u) + g(qu)Dqf(u), (8)

Dq

(
f(u)

g(u)

)
=
g(qu)Dqf(u)− f(qu)Dqg(u)

g(u)g(qu)
=
g(u)Dqf(u)− f(u)Dqg(u)

g(u)g(qu)
. (9)

The tangent polynomials and numbers along with their q-analogue have enor-
mous applications in physics, analytic number theory and other related areas.
Several properties of these polynomials are studied and investigated by various
mathematicians, (see [16, 15, 17]). Numerical experiments of the tangent poly-
nomials have been the subject of extensive study in the past few years and much
progress have been made both mathematically and computationally [8, 9, 10].
We recall the following definition of q-generalized tangent polynomials.

Definition 1. The 2-variable q-generalized tangent polynomials (qGTP)
Cn,m,q(u, v)

(
q ∈ C, 0 < |q| < 1, |mt| < π, m ∈ R+

)
is defined as [9]:(

2

eq(mt) + 1

)
eq(ut)Eq(vt) =

∞∑
n=0

Cn,m,q(u, v)
tn

[n]q!
. (10)

When u = v = 0, Cn,m,q(0, 0) := Cn,m,q are the corresponding q-generalized
tangent numbers (qGTN) and are defined as:

Cm,q(t) =

(
2

eq(mt) + 1

)
=

∞∑
n=0

Cn,m,q
tn

[n]q!
. (11)
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We have
lim
m→1

Cn,m,q(u, v) = En,q(u, v), (2-variable q-Euler polynomials (qEP) [6])

lim
m→2

Cn,m,q(u, v) = Tn,q(u, v), (2-variable q-tangent polynomials (qTP) [8])

Definition 2. The q-Appell polynomials An,q(u)
(
q ∈ C, 0 < |q| < 1

)
are defined

by the following generating function [2, 7]:

Aq(t)eq(ut) =
∞∑
n=0

An,q(u)
tn

[n]q!
, (12)

where

Aq(t) =
∞∑
n=0

An,q
tn

[n]q!
, A0,q = 1; Aq(t) 6= 0 (13)

is an analytic function at t = 0 and An,q := An,q(0) are q-Appell numbers.

Different members of q-Appell family can be obtained by selecting appropriate
function Aq(t) in generating function (12). Some of its members along with their
name, generating function and series definition are mentioned in Table 1.

Table 1: Certain Members Belonging to the q-Appell Family.

S. No. Aq(t) Name of q-Special Polynomials Generating Function
and its Associated Numbers of q-Special Polynomials

and its Associated Numbers

I t
eq(t)−1

q-Bernoulli polynomials (Bn,q(u));
t

eq(t)−1
eq(ut) =

∑∞
n=0 Bn,q(u)

tn

[n]q !
;

q-Bernoulli numbers (Bn,q)

[1, 5] t
eq(t)−1

=
∑∞

n=0 Bn,q
tn

[n]q !

II 2
eq(t)+1

q-Euler polynomials (En,q(u));
2

eq(t)+1
eq(ut) =

∑∞
n=0 En,q(u)

tn

[n]q !
;

q-Euler numbers (En,q)

[5, 6] 2
eq(t)+1

=
∑∞

n=0 En,q
tn

[n]q !

By using monomiality principle, Yasmin et al [10] made hybrid of qGTP and
q-Appell polynomials, which are defined as follows:

Definition 3. The q-generalized tangent-Appell polynomials (qGTAP)

CA
(m)
n,q (u, v)

(
q ∈ C, 0 < |q| < 1, |mt| < π, m ∈ R+

)
are defined by

means of the generating function [10]:(
2

eq(mt) + 1

)
Aq(t)eq(ut)Eq(vt) =

∞∑
n=0

CA
(m)
n,q (u, v)

tn

[n]q!
. (14)
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When u = v = 0, CA
(m)
n,q (0, 0) := CA

(m)
n,q are the corresponding q-generalized

tangent-Appell numbers and are defined as:(
2

eq(mt) + 1

)
Aq(t) =

∞∑
n=0

CA
(m)
n,q

tn

[n]q!
. (15)

Selecting suitable function Aq(t) in generating function (14), several members

belonging to the family of qGTAP CA
(m)
n,q (u, v) are obtained. Some of these

members are listed in Table 2.

Table 2: Certain Members Belonging to the qGTAP CA
(m)
n,q (u, v).

S. No. Aq(t) Name of the Resultant Generating Function
Member of Resultant Polynomial

and Resultant Number

I Aq(t) = t
eq(t)−1

q-generalized tangent
(

2
eq(mt)+1

)(
t

eq(t)−1

)
eq(ut)Eq(vt)

-Bernoulli polynomials =
∑∞

n=0 CB
(m)
n,q (u, v) tn

[n]q !
;

(qGTBP) (
2

eq(mt)+1

)(
t

eq(t)−1

)
=
∑∞

n=0 CB
(m)
n,q

tn

[n]q !

II Aq(t) = 2
eq(t)+1

q-generalized tangent
(

2
eq(mt)+1

)(
2

eq(t)+1

)
eq(ut)Eq(vt)

-Euler polynomials =
∑∞

n=0 CE(m)
n,q (u, v) tn

[n]q !
;

(qGTEP) (
2

eq(mt)+1

)(
2

eq(t)+1

)
=
∑∞

n=0 CE(m)
n,q

tn

[n]q !

Remark 1. As for m = 2 the qGTP Cn,m,q(u, v) reduces to the qTP Tn,q(u, v).

So for the same choice of m, the results of qGTBP CB
(m)
n,q (u, v) and qGTEP

CE(m)
n,q (u, v) (Table 2) reduces to the corresponding results of q-tangent Bernoulli

and q-tangent Euler polynomials.

Remark 2. As for m = 1 the qGTP Cn,m,q(u, v) reduces to the qEP E(m)
n,q (u, v).

So for the same choice of m, the results of qGTBP CB
(m)
n,q (u, v) and qGTEP

CE(m)
n,q (u, v) (Table 2) reduces to the corresponding results of q-Euler Bernoulli

and 2-iterated q-Euler polynomials.

In this paper, the q-recurrence relations and some new classes of q-difference
equations for the q-generalized tangent-Appell polynomials are derived in Section
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2. An analogous study of these results for the q-generalized tangent-Bernoulli
polynomials is presented in Section 3. In the last section, graphical representa-
tion, surface plot and zeros of these polynomials are demonstrated using computer
experiment.

2. q-Recurrence Relations and q-Difference Equations

The q-recurrence relations and q-difference equations of the q-Appell and hy-
brid type q-Appell polynomials are helpful in finding the solutions to the devel-
oping problems originating in certain branches of science and engineering. In
this section, we derive q-recurrence relations and q-difference equations for the

qGTAP CA
(m)
n,q (u, v).

Lemma 1. Assume that

t
Dq,t (Cm,q(t))

Cm,q(qt)
=

∞∑
n=0

γn
tn

[n]q!
(16)

and
Cm,q(t)

Cm,q(qt)
=

∞∑
n=0

δn
tn

[n]q!
, (17)

then

γ0 = 0; γn = −m
2

[n]qCn−1,m,q(m, 0), for n ≥ 1 (18)

and

δn =
1

2
(Cn,m,q(mq, 0) + Cn,m,q) , (19)

where Cn,m,q(u, v) and Cn,m,q are the nth qGTP and qGTN given by equations
(10) and (11) respectively.

Proof. Simplifying left hand side of equation (16) using equations (9) and
(11), we get

t
Dqt(Cm,q(t))

Cm,q(qt)
=

mteq(mt)

eq(mt) + 1
. (20)

Now using generating function (10) in appropriate form gives

∞∑
n=0

γn
tn

[n]q!
=
−m

2
[n]q

∞∑
n=1

Cn−1,m,q(m, 0)
tn

[n]q!
, (21)

which on comparing the coefficients of t gives assertion (18).
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Next, simplifying and rewriting left hand side of equation (17) by using equa-
tion (11), we obtain

Cm,q(t)

Cm,q(qt)
=

eq(mqt)

eq(mt) + 1
+

1

eq(mt) + 1
. (22)

Now using generating function (10) in appropriate form gives

∞∑
n=0

δn
tn

[n]q!
=

1

2

∞∑
n=0

(Cn,m,q(mq, 0) + Cn,m,q)
tn

[n]q!
, (23)

which on comparing the coefficients of t gives assertion (19). J

Using Lemma 1, we obtain following recurrence relation for qGTAP

CA
(m)
n,q (u, v).

Theorem 1. Assume that

t
Dq,t(Aq(t))

Aq(qt)
=
∞∑
n=0

αn
tn

[n]q!
(24)

and
Aq(t)

Aq(qt)
=
∞∑
n=0

βn
tn

[n]q!
. (25)

Then the following linear homogeneous recurrence relation holds for the class

of qGTAP CA
(m)
n,q (u, v)

CA
(m)
n,q (qu, v) = uqnCA

(m)
n−1,q(u, v)+

1

[n]q

n∑
k=1

[
n

k

]
q

qn−k
[
αk +

1

2

k−1∑
s=0

[
k

s

]
q

[k−s]qβs

(
v (Ck−s−1,m,q(mq, 0) + Ck−s−1,m,q)−mCk−s−1,m,q(m, 0)

)]
CA

(m)
n−k,q(u, v). (26)

Proof. Replacing u by qu in generating function (14) and then differentiating
the resultant equation with respect to t using formulas (7) and (8). Afterwards
multiplying by t and simplifying gives

∞∑
n=1

CA
(m)
n,q (qu, v)

tn

[n− 1]q!
= Cm,q(qt)Aq(qt)eq(qut)Eq(qvt)

[
qut+ t

Dq,t(Aq(t))

Aq(qt)

+ vt
Cm,q(t)

Cm,q(qt)

Aq(t)

Aq(qt)
+ t

Dq,t (Cm,q(t))

Cm,q(qt)

Aq(t)

Aq(qt)

]
. (27)
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Using generating function (14) (with t replaced by qt) and relations (16), (17),
(24) and (25), equation (27) becomes

∞∑
n=1

[n]q CA
(m)
n,q (qu, v)

tn

[n]q!
=
∞∑
n=0

qnCA
(m)
n,q (u, v)

tn

[n]q!

[
qut+

∞∑
k=0

αk
tk

[k]q!

+ vt
∞∑
s=0

βs
ts

[s]q!

∞∑
k=0

δk
tk

[k]q!
+
∞∑
s=0

βs
ts

[s]q!

∞∑
k=0

γk
tk

[k]q!

]
. (28)

On simplifying equation (28) by using Cauchy product rule, we get

∞∑
n=1

[n]q CA
(m)
n,q (qu, v)

tn

[n]q!
=
∞∑
n=0

∞∑
k=0

[
n

k

]
q

qn−k
[
αk +

k∑
s=0

[
k

s

]
q

βsγk−s

]

CA
(m)
n−k,q(u, v)

tn

[n]q!
+

∞∑
n=0

[
uqn+1

CA
(m)
n,q (u, v)

+ v

n∑
k=0

k∑
s=0

[
n

k

]
q

[
k

s

]
q

qn−kβsδk−sCA
(m)
n−k,q(u, v)

]
tn+1

[n]q!
. (29)

By using the fact that α0 = γ0 = 0 and rearranging limit of summation, the
above equation can also be written as:

∞∑
n=1

CA
(m)
n,q (qu, v)

tn

[n]q!
=
∞∑
n=1

[
uqnCA

(m)
n−1,q(u, v) +

1

[n]q

n∑
k=1

[
n

k

]
q

qn−k

[
αk +

k−1∑
s=0

[
k

s

]
q

βs
(
γk−s + v[k − s]qδk−s−1

)]
CA

(m)
n−k,q(u, v)

]
tn

[n]q!
, (30)

which on comparing the coefficients of t and putting values of γ and δ from
Lemma 1 gives assertion (26). J

To obtain q-difference equation of qGTAP CA
(m)
n,q (u, v), we first prove following

two lemmas.

Lemma 2. The lowering operator of qGTAP CA
(m)
n,q (u, v) with respect to u and

v for n ≥ 1 is given by

Dq,u

[n]q

{
CA

(m)
n,q (u, v)

}
= CA

(m)
n−1,q(u, v) (31)

and
Dq,v

[n]q

{
CA

(m)
n,q (u, v)

}
= CA

(m)
n−1,q(u, qv), (32)

respectively.
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Proof. Differentiating generating function (14) with respect to u using (7),
we get

∞∑
n=0

Dq,u

{
CA

(m)
n,q (u, v)

} tn

[n]q!
=

(
2t

eq(mt) + 1

)
Aq(t)eq(ut)Eq(vt), (33)

which on using (14) on right hand side and then equating the coefficients of same
powers of t yields assertion (31).

Next, differentiating generating function (14) with respect to v using (7), we
get

∞∑
n=0

Dq,u

{
CA

(m)
n,q (u, v)

} tn

[n]q!
=

(
2t

eq(mt) + 1

)
Aq(t)eq(ut)Eq(qvt), (34)

which on using (14) on right hand side and then equating the coefficients of same
powers of t yields assertion (31). J

Lemma 3. The k-times lowering operator of qGTAP CA
(m)
n,q (u, v) with respect to

u and v for n ≥ k is given by

[n− k]q!

[n]q!
Dk

q,u

{
CA

(m)
n,q (u, v)

}
= CA

(m)
n−k,q(u, v) (35)

and
[n− k]q!

[n]q!
Dk

q,v

{
CA

(m)
n,q (u, v)

}
= qk(k−1)/2CA

(m)
n−k,q(u, q

kv), (36)

respectively.

Proof. Differentiating generating function (14) k-times with respect to u using
(7), we get

∞∑
n=0

Dk
q,u

{
CA

(m)
n,q (u, v)

} tn

[n]q!
=

(
2tk

eq(mt) + 1

)
Aq(t)eq(ut)Eq(vt), (37)

which on using (14) on right hand side and then equating the coefficients of same
powers of t yields assertion (31).

Next, differentiating generating function (14) k-times with respect to v using
(7), we get

∞∑
n=0

Dk
q,u

{
CA

(m)
n,q (u, v)

} tn

[n]q!
=

(
qk(k−1)/22tk

eq(mt) + 1

)
Aq(t)eq(ut)Eq(q

kvt), (38)

which on using (14) on right hand side and then equating the coefficients of same
powers of t yields assertion (31). J

Using Lemma 2 and 3 in Theorem 1 we get the following result.
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Theorem 2. The qGTAP CA
(m)
n,q (u, v), satisfy the following q-difference equa-

tions:[
uqnDq,u+

n∑
k=1

qn−k

[k]q!

(
αk+

1

2

k−1∑
s=0

[
k

s

]
q

[k−s]qβs
(
v (Ck−s−1,m,q(mq, 0) + Ck−s−1,m,q)

−mCk−s−1,m,q(m, 0)
))
Dk

q,u

]
CA

(m)
n,q (u, v)− [n]qCA

(m)
n,q (qu, v) = 0 (39)

and

uqnDq,v CA
(m)
n,q

(
u,
v

q

)
+

n∑
k=1

qn−
k(k+1)

2

[k]q!

(
αk +

1

2

k−1∑
s=0

[
k

s

]
q

[k − s]qβs

(
v(Ck−s−1,m,q(mq, 0) + Ck−s−1,m,q)−mCk−s−1,m,q(m, 0)

))
Dk

q,v CA
(m)
n,q

(
u,

v

qk

)
− [n]q CA

(m)
n,q (qu, v) = 0. (40)

In the next section, an analogous study of these results for certain polynomials

belonging to the class of qGTAP CA
(m)
n,q (u, v) is carried out.

3. Examples

In order to give applications of Theorems 1 and 2, we consider the following
example:

Taking Aq(t) = t
eq(t)−1 in generating function (14), leads to obtain q-

generalized tangent Bernoulli polynomials (qGTBP) denoted by CB
(m)
n,q (u, v) de-

fined in Table 2 (I).
To obtain its q-recurrence relations and q-difference equations, we will first

consider the following lemma.

Lemma 4. Assume that

t
Dq,t(Bq(t))

Bq(qt)
=

∞∑
n=0

αn
tn

[n]q!
(41)

and
Bq(t)

Bq(qt)
=

∞∑
n=0

βn
tn

[n]q!
, (42)

then

α0 = 0; αn =
−1

q
Bn,q(1), for n ≥ 1 (43)
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and

βn =
Bn+1,q(q)−Bn+1,q

q [n+ 1]q
, (44)

where Bq(t) = t
eq(t)−1 is Aq(t) for Bernoulli polynomials given in Table 1 (I).

Proof. Simplifying left hand side of equation (41) by putting Bq(t) = t
eq(t)−1

and using relation (9), we get

t
Dqt(Bq(t))

Bq(qt)
=
eq(t)− 1− teq(t)
q(eq(t)− 1)

. (45)

Now using generating function of q-Bernoulli polynomials (Table 1 (I)) in
appropriate form gives

∞∑
n=0

αn
tn

[n]q!
=

1

q
− 1

q

∞∑
n=0

Bn,q(1)
tn

[n]q!
, (46)

which on comparing the coefficients of t gives assertion (43).
Next, simplifying and rearranging left hand side of equation (42) by putting

Bq(t) = t
eq(t)−1 , we obtain

Bq(t)

Bq(qt)
=

1

qt

(
teq(qt)

eq(t)− 1
− t

eq(t)− 1

)
. (47)

Now using generating function of q-Bernoulli polynomials (Table 1 (I)) in
appropriate form and then simplifying, we obtain

∞∑
n=0

βn
tn

[n]q!
=

1

q

∞∑
n=0

(
Bn+1,q(q)−Bn+1,q

[n+ 1]q

)
tn

[n]q!
, (48)

which on comparing the coefficients of t gives assertion (44). J

Using Lemma 4 in Theorems 1 and 2, following results for qGTBP CB
(m)
n,q (u, v)

are obtained.

Theorem 3. The following linear homogeneous recurrence relation holds for the

class of qGTBP CB
(m)
n,q (u, v):

CB
(m)
n,q (qu, v) = uqnCB

(m)
n−1,q(u, v) +

1

[n]q

n∑
k=1

[
n

k

]
q

qn−k
[
−1

q
Bk,q(1) +

1

2

k−1∑
s=0

[
k

s

]
q

Bs+1,q(q)−Bs+1,q

q [s+ 1]q
[k − s]q

(
v (Ck−s−1,m,q(mq, 0) + Ck−s−1,m,q)

−mCk−s−1,m,q(m, 0)
)]

CB
(m)
n−k,q(u, v). (49)
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Theorem 4. The qGTBP CB
(m)
n,q (u, v) satisfy the following q-difference equa-

tions:

[
uqnDq,u +

n∑
k=1

qn−k

[k]q!

(
−1

q
Bk,q(1) +

1

2

k−1∑
s=0

[
k

s

]
q

[k − s]q
Bs+1,q(q)−Bs+1,q

q [s+ 1]q(
v(Ck−s−1,m,q(mq, 0) + Ck−s−1,m,q)−mCk−s−1,m,q(m, 0)

))
Dk

q,u

]
CB

(m)
n,q (u, v)− [n]qCB

(m)
n,q (qu, v) = 0 (50)

and

uqnDq,v CB
(m)
n,q

(
u,
v

q

)
+

n∑
k=1

qn−
k(k+1)

2

[k]q!

(
−1

q
Bk,q(1) +

1

2

k−1∑
s=0

[
k

s

]
q

[k − s]q

Bs+1,q(q)−Bs+1,q
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))
Dk

q,v CB
(m)
n,q

(
u,

v

qk

)
− [n]q CB

(m)
n,q (qu, v) = 0. (51)

Similarly, we can find corresponding results for other q-special polynomials
belonging to the family of qGTAP.

4. Graphical Representation and Zeros

In the previous section, difference equations of qGTBP CB
(m)
n,q (u, v) are ob-

tained. In this section, we present the graphical and computational aspects re-
lated to these polynomials. The software ”Mathematica” is used to show the

behaviour of the qGTBP CB
(m)
n,q (u, v) by means of graph, 3D surface plot and

plotting of zeros. In Figure 1 (left) and Figure 1 (right), graph for the even val-
ues n = 0, 2, 4 · · · , 20 and odd values n = 1, 3, 5, · · · , 19 are shown respectively
for v = 1, m = 2 and q = 1

2 .

By using numerical investigation and computer experiments, we find the real
and complex zeros and observe the phenomenon of distribution of the zeros. In
order to make the above discussion more clear, we draw the graphs showing

shapes with scattered real zeros of qGTBP CB
(m)
n,q (u, v). In Figure 2 (left) and

Figure 2 (right), graph for the even value n = 30 and an odd value n = 31 along
with their real zeros are shown respectively for v = 1, m = 2 and q = 1

2 .
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Figure 1: Curves of qGTBP CB
(m)
n,q (u, v).
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Figure 2: Graph along with real zeros of qGTBP CB
(m)
n,q (u, v).

Using computers it has been checked for several values of n that for b ∈ R
and u ∈ C, zeros of CB

(m)
n,q (u, b) has Im(u) = 0 reflection symmetry. However,

zeros of CB
(m)
n,q (u, b) has not Re(u) = a reflection symmetry (see Figure 3). But,

it still remains unknown whether this is true or not for all values n. In Figure
3 (left) and Figure 3 (right), zeros for the even value n = 30 and an odd value
n = 31 are shown respectively for v = 1, m = 2 and q = 1

2 .
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Figure 3: Zeros of qGTBP CB
(m)
n,q (u, v) has Im(u) = 0 reflection symmetry.

A 3D surface plot displays a 3-dimensional view of the surface defined by a
function of two variables such that z = f(u, v). The 3D surface plots are more
informative and better for analysis. The predictor variables are displayed on the
u and v axes, while the response variable z is represented by a smooth surface
(3D surface plot) or a grid. It help to visualize the response surface and hence
provide a more clear concept. In Figure 4 (left) and Figure 4 (right), surface plot
for the even value n = 30 and an odd value n = 31 are shown respectively for
v = 1, m = 2 and q = 1

2 .
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Figure 4: Surface plot of qGTBP CB
(m)
n,q (u, v).
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The figures presented in this research work gives an unrestricted capabil-
ity to create visual mathematical investigations of the behaviour of qGTBP

CB
(m)
n,q (u, v). We expect that the research in this direction will be a new ap-

proach using numerical computations for the study of the member polynomials

of qGTAP CA
(m)
n,q (u, v). The approach presented in this paper is general and opens

new possibilities to deal with other hybrid families of q-special polynomials.
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