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A Note on the (A, v)}—Statistical Convergence of
the Functions Defined on the Product of Time Scales

M. Basarir

Abstract. In this paper, we have introduced the concepts (A, v)¢ —density of a subset of
the product of time scales T? and (A, v) —statistical convergence of order a (0 < a < 1)
of A— measurable function f defined on the product time scale with the help of modulus
function h and A = ()\,;), v = (vy,) sequences. Later, we have discussed the connection
between classical convergence, A-statistical convergence and (A, v)Y —statistical conver-
gence. In addition, we have seen that f is strongly (X, v)§—summable on T then f is
(A, v)%—statistical convergent of order o .
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1. Introduction

The concept of statistical convergence which is a generalization of classical
convergence was first given by Zygmund [1] and later were introduced indepen-
dently by Steinhaus [2] and Fast [3]. This concept is discussed under different
names in different spaces ([4],[5],[6],[7],[8],[9],[10], [11],[12]). Mursaleen [13] intro-
duced the notion of A-statistical convergence by using the sequence A = () and
then the A-statistical convergence on the time scales was introduced by Yilmaz
et al [14]. The order of statistical convergence of a sequence of positive linear op-
erators was introduced by Gadjiev and Orhan [15]. Later, Colak [16] introduced
and investigated the statistical convergence of order a (0 < a < 1) and strong
p-Cesaro summability of order o of number sequences.

The time scale calculus was first introduced by Hilger in his Ph.D. thesis in
1988 (see [17],[18],[19]). In later years, the integral theory on time scales was
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given by Guseinov [20] and further studies were developed by Cabada-Vivero [21]
and Rzezuchowski [7]. Recently, Seyyidoglu and Tan [8] defined the density of
the subset of the time scale. By using this definition, they gave A—convergence
and A—Cauchy concepts for a real valued function defined on the time scale.
On the other side, the modulus function was first introduced by Nakano [22].
Aizpuru et al.[23] defined a new density concept with the help of a modulus
function and obtained a new convergence concept between ordinary convergence
and statistical convergence. Giirdal and Ozgiir [24] introduced ideal h-statistical
convergence and ideal h-statistical Cauchy concepts in normed space using the
modulus function h and ideals.

In this paper, we have aimed to define (A, v)} —statistical convergence of A—
measurable functions of order & (0 < o < 1) defined on the product time scale
by using modulus function h, A\ = (\,) and v =(v,) sequences in light of works
of Cmar et al [25], Seyyidoglu and Tan [8] and [20].

2. Preliminaries

The concept of statistical convergence is based on the asymptotic (natural)
density of a subset B in N (the set of positive integers) which is defined as

5(B) = lim LF=n: k€ B} (1)
n—o00 n

where |B| denotes the number of elements in B (see [3],[5],[4]). It has been gener-
alized to a-density of a subset B C N and given the definition of a—statistically
convergence (o € (0,1]) by Colak [16]. The notion of A-statistical convergence
was introduced by Mursaleen [13] using the sequence A\ = (\;) which is a non-
decreasing sequence of positive numbers tending to oo as n — oo such that
Antl < A+ 1, A\ =1,and I,, = [n — A\, + 1,n] . Lets denote by A the set of
such A\ = (\,) sequences. The A- density of B C N is defined by

I, : B
55(B) = lim 1EETn ik € B

n—00 An

(2)

and d)(B) reduces to the natural density §(B) in case of \,, = n for all n € N
(see [14]). A sequence xz = (x,) is said to be A- statistically convergent to L of
order a (a € (0,1)) if for every € > 0,

I, : —L|>
iy 1K€ dntop — LI 2 €} _ (3)
n—00 ()\n)a

In this case, we write syo — le xn = L (see [26],[27],[13],[28],]29],[30],[14]) and

we denote by Sya the set of A*- statistically convergent sequences of order . If
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An = n, Sha reduces to S% the set of statistically convergent number sequences of
order . For applications of statistical convergence and A-statistical convergence,
see [31], [32].

On the other hand, we recall that h : [0,00) — [0,00) is called modulus
function, or simply modulus, if it is satisfies:

1) h(s) =0 if and only if s =0,
2) h(s+p) <h(s)+ h(p) for every s,p € [0,00),

(1)
(2)
(3) h is increasing,
(4)

h is continuous from the right at 0.

A modulus may be bounded or unbounded . For instance, h(z) = aP, where
0 < p <1, is unbounded, but h(z) = ¥ is bounded (see [33],[34]).
Let h be an unbounded modulus function. The Ay —density of order o (0 <

a < 1) of aset BC N is defined by

5/\(5 (B) — nll}H;O h(’{n B )\n +h1((§nk)a§) n:ke B}D (4)

whenever this limit exists.

In this study, we shall give a notion of (A, v)¢-statistical convergence on any
time scales product and its properties using the sequences A\,v € A, modulus
function A and any real number a (0 < a < 1). Throughout this paper, we
consider the time scales which are unbounded from above and have a minimum
point. Lets remember some concepts.

A nonempty closed subset of R is called a time scale and is denoted by T. We
suppose that a time scale has the topology inherited from R with the standard
topology. For ¢t € T, we consider the forward (backward) jump operator o,p :
T—Thbyo(t):=inf{se€T:s>t},p(t):=sup{s € T:s < t}. and graininess
function : T — [0,00) by u(t) := o(t) — t. In this definition, we take inf) =
supT. For t € T with a < b, it is defined the interval [a,b] in T by [a,b] =
{teT:a<t<b}.

Let T be a time scale. Denote by F the family of all left-closed and right-open
intervals of T of the form [a,b) ={t € T:a <t < b} with a,b € T and a <b. It
is clear that the interval [a,a) is an empty set, F is semiring of subsets of T. Let
m : F — [0,00) be the set function on F that assigns to each interval [a, b) its
length b — a, m ([a,b)) = b — a. Then m is a countably additive measure on F.
We denote by pua the Caratheodory extension of the set function m associated
with family F (for the Caratheodory extension see [8]) and is denoted by pa,
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the Lebesgue A-measure on T, and that is a countably additive measure . In
this case, it is known that if a € T — {maxT}, then the single point set {a} is A-
measurable and pa(a) =0 (a) —a. If a,b € T and a < b then pa(a,b)r = b—0o (a).
If a,b € T—{mazT}, a <b; pa(a,blr = o(b)—0o (a) and pala, blp= o(b)—a. It
can be easily seen that the measure of a subset of N is equal to its cardinality
(see [8],[6]).

Suppose that T; and T are times scales and o5, p; and p; are forward (back-
ward) jump operators and graininess functions on T; for 1 < j < 2, respectively.
Set T2 = Ty xTe= {t =(t1,t2) : t1 € T1 and to € To}. T? is called product (or
2-dimensional) time scale . T? is complete metric space with the metric defined
by

2
d(t,r) = (3 [t; —ril?)? for t,r e T2

i=1

Recently, the A-statistical convergence on time scale was introduced by Yilmaz
et al [35] and then the notion of (\,v)—statistical convergence of A-measurable
real-valued function defined on product time scale was introduced by Cinar et
al [25]. They also introduced the concept of the (\,v)—density of  on T? as
follows.

Let A, v € A be two sequences of positive real numbers. Throughout the paper
we denote A = {[t — A\t + to, t|r, X[r — vr +70,7|1,} , B = {[to,t]r, X[ro, 7|1y }s
where tg = minTy, rg = minTs. Suppose that ) be a A-measurable subset of
T? = Ty xTs. Then, the set  (¢,7,\,v) is defined by Q (¢,7,\,v) =: {(s,u) €
A (s,u) € Q} for (t,r) € T2. That is Q (¢,7,\,v) = QN A . In this case, the
density of © on T? is defined as

5()\,11)(9) — lim ”A(Q(tv 7 )‘7 U))

™ IR )

provided that the limit exists. In case of T? = N2, this reduces to the classical
concept of the product asymptotic density.

Let f : T2 R be a A— measurable function. It is said that f is (A, v)-
statistically convergent to a real number L on T? if

pa({(s,u) € A: |f(s,u) — L| > €})

lim =0 6
(t,r)—o0 MA(A) ( )
for every € > 0. In this case, we can write s%’v) — lim f(t,r) = L. The set

(t,r)—o0

of all (A, v)— statistically convergent functions on T? will be denoted by Sj(ré’v).



A Note on the (A, v)j —Statistical Convergence of the Functions 19

If one take Ay =t and v, = r in (6), we get the classical statistically convergent
function to a real number L on T2, for the function f, which is defined as :

i 1((s,0) € B2 If(s,0) = 1] 2 )
(t,r)—o0 /LA(B)

=0
3. Main Results

Definition 1. Let Q be a A-measurable subset of T? = T1xTsy, h be a mod-
ulus function, « be any real number (0 < o < 1) and be the set Q(t,r, \,v) =:
{(s,u) € A: (s,u)€ Q} for (t,r) € T? = Ty xTy . In this case, the (\,v)3-density
of Q on T? of order « is defined by

Av)g — lim h(/‘A(Q(t’Tv A?”)))
o ) = (s (D))

provided that the limit exists.

When a = 1, the (X, v)s —density of © on T? returns to the (X, v),—density
and the density will denoted by 51(1,/;’1))’1 (2). In case h(z) = z, (A, v)} —density
becomes (A, v)*—density and is denoted by 51(;;”)& (Q). If @ =1 and h(z) = z,
then (X, v)s —density reduces to (A, v)—density of Q on T?which is denoted by
S (Q). We can easily get 645" () = 6%, (Q) if A = ¢ and v, =7 and
51(;;’7})}” Q) = 51(;5’1})‘1 () if we take h(z) =2z on T2 Ifa =1, h(z) =2, \y =t
and v, = r then (), v)7 —density reduces to A—density of  on T?

Definition 2. Let f : T>> R be a A— measurable function. Then, we call
that f s (), v)fl—statistically convergent function to a real number L of order o
(0<a<1) onT?if

i Mua(i(s,u) € A: [f(s,u) — L] 2 }))
im
(t.r) =00 h((ua(A)))
for every € > 0.
In this case, we write s();’v)” — lim f(¢t,r) = L. The set of all (\,v)s—

T (t,r)—o0

=0 (7)

statistically convergent functions on T? will be denoted by Sq(ré’v)%.

As will be noted that, when o = 1, (A, v)¢ —statistically convergent function
on T? of order a returns to (\,v),—statistically convergent function. If o =
1, h(z) = =, Ay =t and v, = then (\,v)s —statistically convergent function
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on T? reduces to A—convergent function on T? and which is denoted by A —

lim f(¢t,r) = L.
(t,r)—o0
The equality 51(;2\’1))2 Q)+ 5%1))2 (T?\Q) = 1 does not hold for a (0 < a < 1)

and an unbounded modulus h, in general. For instance, if we take h(z) = zP,

0<p<1,0<a<1land Q= {(2n,2m) : n,m € N}, then (5%1})(’? Q) =
51(;;11)2 (T?\) = oo. Also, finite sets have zero (X, v)s—density for any un-

bounded modulus h and a (0 < a < 1) (see [27],[39]).

Lemma 1. Let o be any real number (0 < o < 1), Q be a A-measurable subset
of T2 = Ty xTy , h be an unbounded modulus function . If 5§T)\2’v)h (Q) =0 then
SO (T210) # 0.

Proof. Let a (0 < a < 1) be any given real number and the equality

51(1.);’1));: (©2) = 0 be valid for any unbounded modulus h. Suppose that 51(;;’1))% (T\Q) =
0. Let us say Q(t,r,\,v) = Q(t,r) N A for (t,7) € T? and T2\Q(¢, 7, \,v) =:
{(s,u) € A: (s,u) € T2\Q(t,r)} for (t,r) € T2 Since pua(A) = pa(Qt,r,\, v))+

pa(T2Q(t, r, A\, v)) for (t,r) € T2 and h is subadditive, we have

h(/JfA(A)) < h( MAQ(ta A, U)) + h( NA(TQ\Q(tv A, U))) (8)

Hence we may write

. h(pua(A
e (1 (A)%) ®)
h( pa,Qt, 7, A v)) o h( pa(TNQ(t, 7, A\, v)))
S (N D I T = T N ) O B

Since 5%’1))% (Q) =0 and (51({;’7))% (T?\Q2) = 0, the right side of the inequality is

equal to zero and thus

o hia(4)
(t,r)—o0 h((,UA (A)a)

o s h(pa(4))
This is a contradiction. Because (i (A7) > 1 for a (0 < a < 1) and therefore

=0.

RI(NEY)

o A(ua (A)) 2 1
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For any unbounded modulus » and 0 < o < 1, if (5()‘ Wi (Q) = 0 then

(51(;’1])& () = 0, but the inverse of this does not need to be true ([36]). Namely,
a set having zero a-density for some o (0 < « < 1) might have non-zero
(A, v)g —density for some unbounded modulus h, with the same «. Similarly
a set having zero (\,v)— density might have non-zero (\,v); —density for some
unbounded modulus » and 0 < o < 1. For example, let h( ) log(x + 1)
and Q = {{1,4,9,...}x{1,4,9,...}}. Then 2 (2) = 0 and (5 ( ) = 0 for

1/2 < a <1, but 51(;;’0)(’: Q) > 51(1,)5’1)) (©2) = 1/2 and therefore 5 ( ) #

If & C T? has zero (\,v)s—density for some unbounded modulus h and
for some a (0 < a < 1), then it has zero (A, v)*—density and hence zero
(A, v)—density (see [35]).

Lemma 2. Let h be unbounded modulus and ® C T? . If0 < a < < 1 then
AU s A0)%
o (@) < o (@),

Thus, for any unbounded modulus h and 0 < o < g < 1, if ® has zero
(A, v)3 —density in that case, it has zero (\,v); —density. Specially, a set having
zero (A, v)s —density for some o (0 < o < 1) has zero (A, v),—density. But,
the inverse is not correct. For instance, let h(z) = 2P for 0 < p < 1 and & =
{{1,4,9,...} x{1,4,9,...}}. Then

Av)n _ im h(,LLA((I)(t, T, )‘7 U)TQ))
o (@) = m A (12)
. h([\/MA(‘I’(taT»)\aU)Wﬂ)
S TPANUY) 1)
_ lim ((\/MA((I)(L T, )‘7 ’U)’]I‘Q)—Dp -0
(t,r)—00 (na(A)P
but, if we get 0 < a < 1/2;
A — lim h(ua(¢(t7’A v)r2)))
) = T W (s (A)) (4
~ lim ([ pa(®(t, r, X, v)p2)])P C

(t,r)—00 ((pa(A)>)p

where [r] denotes the integer part of number r.
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Proposition 1. Let f,g : T R be a A— measurable functions such that

SO dim f(tr) = Ly and s oJm g(tr) = Lz and b and k be

(t,r)—o0
modulus functions. Then the following statements hold:

(i) s = Tim (F(t,r) + g(t, 7)) = Ly +La,

(t,r)—o00

i) s5% = lim (cf(t,r) =Ly (c €R)

T2 (t,r)—o0
(iii) If s(/\z’v)% — lim f(¢t,r) = Ly, then sAY — lim f(t,r) = L.
R (tr) 00" ’ T (tr) oo’
(iv) If S%U)h — lim f(t,r) =¢and sq(r);’v)’“ — lim f(t,r) = m, then £ = m.
(t,r)—o0 (t,r)—o0
. (Av)% . .
1 t,r) =14 h— 1 t,r)=1¢ A— 1 t,r) =41
(V) (t,rl)goof( ,T‘) = 512 (t,rl)goof( ’T) = (t,rl)goof( ,T)
Proof. 1t is easy to prove and we omit it.
Theorem 1. s%z C 51(1.)‘2’”)% if and only if
e h((pa(4)")
liminf ————"= > 0. 15
R s () 1)

Proof. For given € > 0, we have

hpa({(s,u)€ B: |f(s,u) = L| = €})) D
h(pa({(s,u)e A: [f(s,u) — L] = €})).

Then
h(pa({(s,u) € B: |f(s,u) — L| > €}))
h((pa(B)*)
o hpal{(s,w) € A: [f(s,u) = L] > €}))
- h((pa(B)*)

- Mpald ) . S, U . s, Uu) — €
~ h((pa(B)®) h(HA(A)a)h(/m({(, YeA: |f(s,u) — L] > €}))

Hence by using (15) and taking the limit as (t,r) — oo, we get s;;rg—( li)m flit,r) —
t,r)—o0

L implies 5(/\2’1))’0; — lim f(t,r) = L.

T (t,r)—o0

The definition of p—strongly (W, \,v) summable functions on T? was given
by Cimnat et al [25] as follows.
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Definition 3. Let f : T?— R be a A— measurable function, \,v € A and 0 <
p < oo . We say that f is p—strongly (W, \,v)—summable functions on T? if
there exists L € R such that

lim ——— s,u) — LIPAs Au = 0. 16
Ay [ e 19

The set of all p—strongly (W, A, v)—summable functions on T? is denoted by
(W, A, 0%

We need to emphasize that measure theory on time scales was first constructed
by Guseinov [20] and Lebesque A —integral on time scales has been introduced
by Cabada and Vivero [38].

Definition 4. Let f : T?>— R be a A— measurable function, \,v € A. We say
that f is strongly (W, (X, v)5:)-summable function on T? if there exists some L € R
such that

: 1 .
(t,ll)rgoom 4/ h(|f(s,u) — L|) As Au=0. (17)

In this case we write (W, (X, v)} )2 ~ li)m f(t,r) = L. The set of all strongly
t,r)—o00

(W, (X, v)3)p2—summable functions on T? will be denoted by [W, (X, v)¢]pz. If we
take h(z) = 2P (0 < p < 00) and a = 1 then we get [W, (X, v)p]72 , the set of all
p—strongly (W, \,v)—summable functions on T? (see [14]).

Lemma 3. Let f : T>— R be a A— measurable function and Q(t,r,\,v,h) =

{(s,u) € A: h( |f(s,u) — L|) > €} for e > 0. In this case , we have

h(pua(Q(t,m, N\ v, h)))

IN

% // h(|f(s,u) — L|) As Au (18)

Q(t,r,\,v,h)

6//h(|f(s,u)—L\) As Au (19)
A

IN

Proof. Tt can be proved by using similar method with [39].

Theorem 2. Let f : T?— R be a A— measurable function, \,v € A, L € R.
Then we get
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(i) If f 1is strongly (W, (A,v)s)r2 —summable function to L, then s%’”)% -
lim f(¢t,r) = L.
(t,r)—o0
(ii) If S?(T/\Q,v);i ~ li)m f(t,r) =L, f is a bounded function and h unbounded
t,r)—o0

modulus such that h(xz) — 2z > 0, then f is strongly (W, (), v)})—summable
function to L.

Proof. (i) Let f is strongly (W, (A, v)$)—summable function to L. For given
e>0,let Qt,r,\v,h) ={ (s,u) € A:h(|f(s,u) — L|) > € } on time scale T?.
Then, it follows from lemma 3

e h(ua (2t N v, b)) < // h(f(s,u) — L)) As A,
A

Dividing both sides of the last equality by h(ua(A)%) and taking limit as (¢,7) —
00, we obtain

- N UGS A v h)))
(t,r)—o0 h((,uA

< lim s,u) — L|) As Au=0
- (tr)—>ooh ,LLA // ‘f |)

which yields that s5"% — lim f(t,r) = L.

(t,r)—o0

(ii) Let f be bounded and s%’”)g—statistically convergent to L on T2. Then,

there exists a positive number M such that |f(t,r) — L| < M for all (t,r) € T?,
and also

lim h(:uA(Q(ta T, )‘7 v, h)))
(tr)=oo  h((pa(A)*)

where Q(t,r, \,v,h) ={ (s,u) € A: h(|f(s,u) — L|) > € } as stated before. Since

//h|fsu — L|) As Au

// h(|f(s,u) — L|) As Au (21)

Q(t,r,\v,h)

=0
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+ // h(|f(s,u) — L|) As Au (22)
T2/Q(t,r,\v,h)

< (h(M)) / As Au+¢ / As Au

Q(t,r,\,v,h) T2\Q(¢,r,\,v,h
< (h(M> (h(:uA(Q(tv A, h)))) te (h’(:UJA(A)))

we obtain
" rl)linooh R // (If(s,u) — L|) As Au (23)
. h(MA(Q(tarﬂ )\,’U, h))) . h(ﬂA(A))
= ) T R s (@) e S ((a (A))

Since € > 0 is arbitrary, the proof follows from (20) and (23).

Theorem 3. Let f be a A— measurable function. Then sOVR _ lim flt,r) =

2
T (t,r)—o0

L if and only if there exists a A— measurable Q C T? such that (5%7})% Q) =1
end lim B(1f(6.r) = L) = 0. ((t.7) € Ot A0, ).
t,r)—00

)

Proof. Tt can be easily proved by using similar way in Theorem 3.9 of Turan
and Duman (see [39]).
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