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Numerical Algorithm for Coupled Viscous Burger’s
Equation Using Quasi-variable Meshes Compact
Operators

N. Jha*, M. Wagley

Abstract. We describe a quasi-variable meshes implicit compact finite-difference dis-
cretization having an accuracy of order four in the spatial direction and second-order in
the temporal direction for obtaining numerical solution values of coupled viscous Burger’s
equations. The new difference scheme is derived on a quasi-variable meshes network to
the extent that the magnitude of local truncation error of the high accuracy compact
formulation remains unchanged even in the case of a uniform meshes network. Practi-
cally, quasi-variable meshes schemes yield a more precise solution compared with uniform
meshes schemes of the same magnitude. The computational results with coupled Burger’s
equations are obtained using quasi-variable meshes high-order compact scheme and com-
pared with a numerical solution using uniform meshes high-order schemes to demonstrate
capability and accuracy.
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1. Introduction

The parabolic partial differential equations assume a significant role in engi-
neering and physical sciences such as convection effect, diffusion transport interac-
tion, option pricing, fluid flow, and image processing. In the convection-diffusion
phenomenon, when convection is significant comparing with diffusion, for as much
second-order discretization of the convection term gives rise to oscillatory solu-
tion values. Such an oscillatory behavior can be resolved by unrealistic small
mesh step-size or by a high-order accurate method. Many high-order schemes
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have been developed on uniformly spaced mesh-points, and nearly satisfactory
results have been obtained earlier. In the finite differencing approaches, there is
a direct connection between the truncation error and mesh spacing. The supra-
convergence of discretization errors indicates that satisfactory numerical solution
values can be computed when truncation error exhibits a lower order truncation
error [1, 2, 3, 4]. There are two major limitations to finite-difference discretization
on uniformly spaced mesh-points. The type of mesh network involves information
about truncation error, and solution values in the finite-difference discretization
relies on the mesh step-size as well as derivatives of a function. As a result,
uniform distribution of local truncation error terms is not possible on uniform
meshes. To gain uniform distribution of local truncation error, we need bet-
ter networks in highly deviant derivative and coarse meshes for highly analytic
function [5, 6]. Such an arrangement of meshes disperses the error uniformly all
over the region and yields a more precise resolution. Therefore, high accuracy
finite-difference discretization developed on a non-uniformly spaced mesh-point
provides stable and accurate solution values.

The present work’s contribution is to describe a high-order accurate, compact
scheme and analyze the effect of variable mesh spacing on the truncation error
(local). It is shown that the new scheme is fourth-order accurate in the spa-
tial direction and is second-order exact in the time axis for both uniform mesh
spacing as well as quasi-variable mesh spacing. The discretization takes one
central mesh-point and two adjacent meshes at any time level, producing a com-
pact scheme that is straightforward to implement. In the next section, we discuss
quasi-variable meshes and algorithms to determine them. A two-level three-point
implicit compact scheme of high-order has been presented in section 3. Numer-
ical illustration of quasi-variable meshes compact scheme has been presented in
section 4 and finalized with remarks.

2. Quasi-variable mesh network and compact operators

For the discretization purpose, the domain {(x, t); 0 ≤ x ≤ 1, t > 0} is par-
titioned as {(xn, tj) : j = 0(1)J, n = 0(1)N + 1}, where 0 = x0 < x1 < · · · <
xN+1 = 1, tj = jk, j = 0(1)J , with J,N are positive integers and k = 1/J
is a fixed time-step. Let hn = xn − xn−1, n = 1(1)N + 1 be the unequal
step-lengths along spatial direction. The subsequent step-length is obtained by
hn+1 = (1 + µhn)hn, n = 1(1)N . Since, the length of diffusion space is one, thus∑N+1

n=1 hn = 1 and for a given value of mesh parameter µ, it is quite easy to find
initial and subsequent mesh step-size. For particular value µ = 0, the meshes
are evenly spaced and h = hn for all n. The procedure to generate unequal
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step-length in spatial direction is presented in the following algorithm:

r1 = 1; r2 = 1 + µ; for(n = 3; n ≤ 1 +N ;n+ +) rn = rn−1(µrn−1 + 1);

sum = 0; for(n = 3; n ≤ 1 +N ;n+ +)sum+ = rn;

h1 = (xN+1 − x0)/sum; for(n = 1; n < N ;n+ +) hn+1 = (1 + µhn/h1)hn;

xN+1 = 1;x0 = 0; for(n = 1; n ≤ N ;n+ +)xn = xn−1 + hn; .

Now, let us take a uniform segmentation of the domain S = [0, 1] = {sn = nh :
n = 0(1)N + 1}, with the equal step-size h = 1/(1 + N). Since hn > 0 ∀n,
therefore, hn+1 = hn(1 + µhn/h1) > hn for µ > 0. Therefore, the finite sequence
{hn}N+1

n=1 of mesh-step size is monotonic for µ > 0. The monotonicity of mesh
step sequence permits us to construct a one-one onto mapping

F : S −→ Ω such that F(sn) = xn, n = 0(1)N + 1, (1)

and the Jacobian J(s) = dF(s)/ds is a bounded function (0 < r ≤ J(s) ≤ R <
∞, ∀s ∈ S). Thus,

J(s) > 0⇒ dF(s)

ds
> 0⇒ F(sn)−F(sn+1)

sn − sn+1
> 0⇒ xn − xn+1

nh− (n+ 1)h
> 0. (2)

This implies, hn+1 > 0 for all integer values of n. Also, J(s) ≤ R ⇒ dF(s)

ds
≤

R ⇒ xn+1 − xn
(n+ 1)h− nh

≤ R. That is, 0 < hn+1 ≤ Rh ∀ n. Consequently, we

find that maxn |hn+1| ≤ Rh, and ‖ h ‖∞≤ Rh =
R

N + 1
≤ R

N
, where h =

[h1, h2, · · · , hn] is step-length vector. Therefore,

‖ h ‖∞= O(h) = O

(
1

N

)
, and if N →∞, ‖ h ‖∞→ 0. (3)

Such a quasi-variable mesh spacing permits three-points second-order accurate
discretization to the second-order partial derivatives Uxx = ∂2U/∂x2. Private
communication between Samarskii and Saul’yev on variable meshes can be found
in the literature [7, 8]. Discussion of this type of mesh network in the circum-
stance of electrochemical simulation, ocean circulation wind-driven model, and
convection-dominated phenomenon can be noticed in [9, 10, 11].

To derive the high-order compact scheme, we need to construct operators that ap-
proximate first and second-order derivatives along the spatial direction in such a
manner that it uses the minimum number of stencils. At the mesh-point (xn, tj),
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let Un,j = U(xn, tj), Vn,j = V (xn, tj) and un,j , vn,j represents the exact and ap-
proximate solution values of the coupled viscous Burger’s equations. We shall
denote

Uxn,j =

(
∂U

∂x

)
(xn,tj)

, Uxxn,j =

(
∂2U

∂x2

)
(xn,tj)

, U tn,j =

(
∂U

∂t

)
(xn,tj)

,

V x
n,j =

(
∂V

∂x

)
(xn,tj)

, V xx
n,j =

(
∂2V

∂x2

)
(xn,tj)

, V t
n,j =

(
∂V

∂t

)
(xn,tj)

.

By the assistance of linear combinations of solution values Un,j and Un±1,j evalu-
ated at the central mesh-point (xn, tj) and their neighbouring mesh-points (xn±1, tj)
respectively, one obtains

FxUn,j =
1

(1 + µhn)(2 + µhn)
Un+1,j +

µhn
µhn + 1

Un,j −
1 + µhn
µhn + 2

Un−1,j , (4)

SxUn,j =
2

(1 + µhn)(2 + µhn)
Un+1,j −

2

µhn + 1
Un,j +

2

µhn + 2
Un−1,j , (5)

FtUn,j =Un,j+1 − Un,j . (6)

Then, the application of series expansion yields

FxUn,j =hnU
x
n,j +O(h3n), SxUn,j = h2nU

xx
n,j +O(h4n), FtUn,j =kU tn,j +O(k2),

(7)

and in particular when µ = 0, the operator Sx reduced to the of well known
second central-difference operator δ2Un,j = −2Un,j + Un−1,j + Un+1,j commonly
applied to discretize the diffusion term when a uniform mesh step-size is taken into
the consideration. Similarly, Fx represents the twice multiple of the composite
of averaging and central-difference operators. The application of such operators
gives rise to supra-convergent scheme and is useful for solving fully nonlinear
parabolic equations in one-dimension, with a lower order of accuracy.

3. Difference scheme for coupled viscous Burger’s equations

Burger’s equation describes a mathematical model of sedimentation or emer-
gence of volume concentration to different sorts of particles in liquid suspensions,
or colloids by the impact of gravitational attraction [12]. A differential quadra-
ture formula was applied to solve coupled Burger’s equation by Mittal and Jiwari
[13]. Recently, He and Tang [14] described a lattice Boltzmann method, and high
accuracy compact numerical scheme for the Burgers’ equations was obtained in
[15]. The viscous Burgers’ model is presented as

−εUxx + 2UUx + α(UV x + V Ux) + U t = 0, (8)
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−εV xx + 2V V x + β(UV x + V Ux) + V t = 0, t ≥ 0, x ∈ [0, 1], (9)

along with the initial data

U(x, 0) = φ1(x), V (x, 0) = φ2(x), (10)

and the end-point values

U(0, t) = F1(t), V (0, t) = G1(t), U(1, t) = F2(t), V (1, t) = G2(t), (11)

where 0 < ε� 1, defines viscosity and Re = 1/ε is the cell Reynolds number.

Let Un,j and Vn,j be the specific arrangement estimations of U(x, t) and V (x, t)
at the mesh-point (xn, tj). Then, the high-order discretization is defined in the
following manner:

t̃j = ζtj+1 + (1− ζ)tj , (12)[
Ũn+τ, j
Ṽn+τ, j

]
= ζ

[
Un+τ, j+1

Vn+τ, j+1

]
+ (1− ζ)

[
Un+τ, j
Vn+τ, j

]
, τ = 0,±1, (13)[

Ũ tn+τ, j+1

Ṽ t
n+τ, j+1

]
=

1

k

[
Un+τ, j+1 − Un+τ, j
Vn+τ, j+1 − Vn+τ, j

]
, τ = 0,±1, (14) Ũxn, j

Ũxn+1, j

Ũxn−1, j

 = M

 Ũn, j
Ũn+1, j

Ũn−1, j

 ,
 Ṽ x

n, j

Ṽ x
n+1, j

Ṽ x
n−1, j

 = M

 Ṽn, j
Ṽn+1, j

Ṽn−1, j

 , (15)

[
ψ̃n±1,j
ϕ̃n±1,j

]
=

[
Ũ tn±1, j + 2Ũn±1, jŨ

x
n±1, j + α(Ũn±1, j Ṽ

x
n±1, j + Ṽn±1, jŨ

x
n±1, j)

Ṽ t
n±1, j + 2Ṽn±1, j Ṽ

x
n±1, j + β(Ũn±1, j Ṽ

x
n±1, j + Ṽn±1, jŨ

x
n±1, j)

]
,

(16)˜̃Uxn, j˜̃
V
x

n, j

 =

[
Ũxn, j − ϑhn(ψ̃n+1, j − ψ̃n−1, j)
Ṽ x
n,j − ϑhn(ϑ̃n+1, j − ϑ̃n−1, j)

]
, (17)

[˜̃
ψ
x

n,j˜̃ϕxn,j
]

=

Ũ tn, j + 2Ũn, j
˜̃
U
x

n, j + α(Ũn, j
˜̃
V
x

n, j + Ṽn, j
˜̃
U
x

n, j)

Ṽ t
n, j + 2Ṽn, j

˜̃
V
x

n, j + β(Ũn, j
˜̃
V
x

n, j + Ṽn, j
˜̃
U
x

n, j)

 , (18)

[
εSxŨn,j
εSxṼn,j

]
= h2n

[
β1ψ̃n+1, j + β0

˜̃
ψn, j + β2ψ̃n−1, j

β1ϕ̃n+1, j + β0 ˜̃ϕn, j + β2ϕ̃n−1, j

]
+

[
O(h2nk

2 + h4nk + h6n)
O(h2nk

2 + h4nk + h6n)

]
,

(19)
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where n = 1(1)N, j = 0, 1, 2, · · · , ϑ =
1 + µhn

10ε(2 + µhn)
, ζ =

1

2
,

M =


µ

1 + µhn

1

(1 + µhn)(2 + µhn)hn
− 1 + µhn

(2 + µhn)hn

− 2 + µhn
(1 + µhn)hn

3 + 2µhn
(1 + µhn)(2 + µhn)hn

1 + µhn
(2 + µhn)hn

2 + µhn
(1 + µhn)hn

− 1

(1 + µhn)(2 + µhn)hn
− 3 + 2µhn

(2 + µhn)hn

 ,

β0 =
2µ2h2n + 5µhn + 5

6(1 + µhn)
, β1 =

3µhn + 1

6(1 + µhn)(2 + µhn)
, β2 =

(1 + µhn)(1− 2µhn)

6(2 + µhn)
,

(20)
and

SxŨn,j =
2

(2 + µhn)(1 + µhn)
Ũn+1, j −

2

1 + µhn
Ũn, j +

2

µhn + 2
Ũn−1, j , (21)

SxṼn,j =
2

(2 + µhn)(1 + µhn)
Ṽn+1, j −

2

µhn + 1
Ṽn, j +

2

µhn + 2
Ṽn−1, j . (22)

The new quasi-variable mesh discretization method (19) yields a scheme of ac-
curacy four in space and two along the temporal axis. If λn denotes the mesh-
ratio parameter, then the choice of time step-size k ≈ λnh

2
n yields the local

truncation error LTE ≈ O(h6n). Consequently, the order of the scheme (19) is
h−2n LTE ≈ O(h4n) for µ to be zero or non-zero. In other words, we have ob-
tained the fourth-order accurate difference formula on a uniform mesh-network
and quasi-variable mesh-network as well. The consistency of the difference scheme
(19) can be seen as LTE → 0, when maxn hn → 0. For the algorithmic imple-
mentations, we omit the truncation error and combine it with the initial and
boundary data

Un,0 = φ1(xn), U0,j = F1(tj), UN+1,j = F2(tj),

Vn,0 = φ2(xn), V0,j = G1(tj), VN+1,j = G2(tj), n = 0(1)N + 1, j = 0(1)J.

On neglecting higher-order terms, the system of nonlinear equations (19) is nu-
merically solved by Newton’s block iterative procedure. Since the values Un+τ,j ,
Vn+τ,j , τ = 0, ±1 are known from the initial data or previous iterations, it is
feasible to express the system of equation (19) as follows

Pn ≡ Pn(Un−1, j , Un, j , Un+1, j , Vn−1, j , Vn, j , Vn+1, j) = 0, (23)

Qn ≡ Qn(Un−1, j , Un, j , Un+1, j , Vn−1, j , Vn, j , Vn+1, j) = 0, (24)
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where
Pn = −εSxŨn, j + h2n(β1ψ̃n+1, j + β0

˜̃
ψn, j + β2ψ̃n−1, j), (25)

Qn = −εSxṼn, j + h2n(β1ϕ̃n+1, j + β0 ˜̃ϕn, j + β2ϕ̃n−1, j). (26)

Let U j+1 = [U1,j+1, U2,j+1, · · · , UN,j+1]
T ,V j+1 = [V1,j+1, V2,j+1, · · · , VN,j+1]

T be
the solution vectors at (j + 1)th-time level and denote

F (U j+1, V j+1) = [F1, F2, · · · , FN ]T , G(U j+1, V j+1) = [G1, G2, · · · , GN ]T .

Then, the Jacobian of F and G is given by J =

[
A B
C D

]
2N×2N

, where A =

[al,m],B = [bl,m],C = [cl,m] and D = [dl,m], are tri-diagonal matrices of order N
having the following form

[al,m] =


a1,1 a1,2 0

a2,1
. . .

. . .
. . .

. . . aN−1,N
0 aN,N−1 aN,N

 ,

and al,m =
∂Fl

∂Um,j+1
, bl,m =

∂Fl
∂Vm,j+1

, cl,m =
∂Gl

∂Um,j+1
, dl,m =

∂Gl
∂Vm,j+1

.

Now, Newton’s block iterative procedure is given by[
A B
C D

] [
δU j+1

δV j+1

]
+

[
F (U j+1, V j+1)
G(U j+1, V j+1)

]
=

[
0
0

]
, (27)

where δU j+1 and δV j+1 acts as liaise solution vectors with some finite starting
guess. Let us define[

U
(l+1)
j+1

V
(l+1)
j+1

]
=

[
U

(l)
j+1

V
(l)
j+1

]
+

[
δU

(l)
j+1

δV
(l)
j+1

]
, l = 0, 1, 2 · · · . (28)

We can solve the system of equations (27) for δU
(l)
j+1 and δV

(l)
j+1 by applying

block inner iteration in the following manner:[
AδU

(m+1)
j+1 + F (U

(m)
j+1, V

(m)
j+1) +BδV

(m+1)
j+1

DδV
(m+1)
j+1 +G(U

(m)
j+1, V

(m)
j+1) +CδU

(m+1)
j+1

]
=

[
0
0

]
,m = 0, 1, 2 · · · . (29)

This coupled form of nonlinear equations may be computed to obtain δU
(l)
j+1

and δV
(l)
j+1 by means of Thomas algorithm and, we shall compute δU

(l+1)
j+1 and

δV
(l+1)
j+1 , l = 0, 1, 2 · · · . The Newton’s iteration converges with the initial solution

vector taken to be close to the exact solution values [16, 18].
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4. Computational experiments

To illustrate the proposed scheme, we have computed accuracies in approxi-
mate solution values and exact solution values using the metrics maximum ab-
solute (MA), root-mean-squared (RMS) errors and numerical convergence order
Θ∞ and Θ2. They are defined in the following manner for W = U, V,w = u, v:

‖ ε ‖(N)
∞ = max

j=1(1)J,n=1(1)N
|Wn,j − wn,j |, Θ∞ = log2(‖ ε ‖(N)

∞ / ‖ ε ‖(2N+1)
∞ ),

‖ ε ‖(N)
2 =

√√√√ 1

NJ

N∑
n=1

J∑
j=1

|Wn,j − wn,j |2, Θ2 = log2(‖ ε ‖
(N)
2 / ‖ ε ‖(2N+1)

2 ).

The norm values are calculated for both the mesh spacing; quasi-variable meshes
(µ 6= 0) and uniform mesh step sizes (µ = 0). As a test procedure, the ini-
tial and end data are determined from the known solution. Newton’s iterative
method solve the nonlinear difference equations using the error tolerance value
10−12 along with zero vector as an initial guess [16]. In all the computations,
we have chosen mesh ratio parameter λn = 1.6 and the number of temporal
steps J = (N + 1)2/λn , so that k ≈ λnhn

2 and hence, it is practical to ver-
ify the fourth-order exactness of convergence to the numerical scheme. Maple’s
CodeGeneration is utilized to generate difference relations, and numerical com-
putations are performed in C on the Mac operating system.

Example 1: We do experiment with the coupled viscous Burgers’ equation
(8)-(11) that possesses following traveling wave solutions [17]

for α 6= 1, β 6= 1 :

U(x, t) = 2
α− 1

αβ − 1
[1− ε tanh(8t− 2x)], V (x, t) = 2

β − 1

αβ − 1
[1− ε tanh(8t− 2x)],

and for α = 1, β = 1 :

U(x, t) = 1− ε tanh(2x− 8t), V (x, t) = 1− ε tanh(2x− 8t).

Boundary and initial data are taken from the true values of solutions as a
test case. Experiments with equal-spaced meshes compact scheme (19) for ε =
10−2, 10−3 yield unstable solutions while the quasi-variable meshes high-order
compact scheme (19) for µ 6= 0 gives rise to the accurate solution in conformity
with order and accuracies. If α < β � ε, the solution behavior is regular; there-
fore we shall perform experiments for the following three cases: ε � α < β;
ε � α = β, and ε � β < α. Table 1 adduces maximum errors (absolute), root-
mean-squared errors along with computational order for the equal values of α,
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and β at the temporal level t = 1, for various unequal mesh spacing. In Table
2 and Table 3, we assessed the maximum errors in absolute, root-mean-squared
errors along with the order of convergence for α 6= β, committed in the solution
data U(x, t) and V (x, t) at the time level t = 1 for various unequal mesh spacing.

Table 1: MA and RMS errors and computational order in example 1.

N + 1 µ ||ε||(N)
∞ ||ε||(N)

2 Θ∞ Θ2

ε = 10−2, α = β = 1
4 0.600 3.86e− 04 2.34e− 04 −− −−
8 0.339 2.43e− 05 1.71e− 05 4.0 3.8
16 0.102 1.43e− 06 9.94e− 07 4.1 4.1
32 0.040 8.61e− 08 5.73e− 08 4.1 4.1
ε = 10−3, α = β = 1

4 0.990 1.17e− 04 7.17e− 05 −− −−
8 0.428 9.78e− 06 6.78e− 06 3.6 3.6
16 0.111 4.91e− 07 2.91e− 07 4.3 4.5
32 0.041 3.13e− 08 2.13e− 08 4.0 3.8

ε = 10−2, α = β = 10
4 0.600 7.01e− 05 4.28e− 05 −− −−
8 0.339 4.41e− 06 3.10e− 06 4.0 3.8
16 0.103 2.67e− 07 1.87e− 07 4.0 4.1
32 0.040 1.56e− 08 7.89e− 09 4.1 4.6

ε = 10−3, α = β = 10
4 0.9900 2.13e− 05 1.44e− 05 −− −−
8 0.4320 5.30e− 06 3.44e− 06 2.0 2.1
16 0.1121 2.78e− 07 7.81e− 07 4.2 4.2
32 0.0420 1.83e− 08 6.66e− 09 4.1 4.8

5. Remarks and conclusions

Based on a quasi-variable meshes network, a new compact scheme of accu-
racy O(h4n) in the spatial and O(k2) in time direction has been obtained for the
numerical computation of coupled viscous Burger’s equation. The new scheme
utilizes the minimum number of stencils for the discretization purpose. It refers
to both quasi-variable meshes and uniform meshes high-order method of the same
order of solution accuracy, similar to a supra-convergent discretization that has
a lower order of truncation errors. For a particular choice of mesh parameter
(µ = 0), it is a fourth-order uniform mesh scheme, and for (µ 6= 0), it results
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Table 2: MA and RMS errors and computational order in example 1 for U(x, t).

N + 1 µ ||ε||(N)
∞ ||ε||(N)

2 Θ∞ Θ2

ε = 10−2, α = 3, β = 8
4 0.380 6.61e− 05 4.78e− 05 −− −−
8 0.341 4.15e− 06 2.96e− 06 4.0 4.0
16 0.103 2.61e− 07 1.83e− 07 4.0 4.0
32 0.040 1.44e− 08 1.04e− 09 4.2 4.1

ε = 10−3, α = 3, β = 8
4 0.0000 1.07e− 04 1.10e− 05 −− −−
8 0.4300 8.86e− 06 5.69e− 06 3.6 4.3
16 0.1121 4.79e− 07 3.06e− 07 4.2 4.2
32 0.0412 2.92e− 08 1.16e− 09 4.0 4.7

ε = 10−2, α = 7, β = 4
4 0.580 1.73e− 04 1.10e− 04 −− −−
8 0.342 1.30e− 05 9.13e− 06 3.7 3.6
16 0.103 6.92e− 07 4.85e− 07 4.2 4.2
32 0.040 4.06e− 08 3.78e− 08 4.1 3.7

in a fourth-order quasi-variable mesh scheme. The truncation error depends on
mesh spacing and derivative of the variable. Thus, the uniform distribution of
discretization error is possible only through the variable spacing between mesh
points. Experiments with various values of parameters that appeared in the gov-
erning equations have been described in detail and obtained convergent solution
values. The error estimates on the new scheme prove superior as compared with
existing results.
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