Azerbaijan Journal of Mathematics Special Issue dedicated to the 67th birth anniversary of Prof. M. Mursaleen, 2021 ISSN 2218-6816

Global Estimates for Generalized Double Bernstein Operators

N. Bhardwaj

Abstract. In this paper, we obtain quantitative estimates for generalized two dimensional Bernstein operators. We calculate global results for these operators using Lipschitz-type space and estimate the error using modulus of continuity.

Key Words and Phrases: Bernstein operators, Lipschitz-type space, modulus of continuity.

2010 Mathematics Subject Classifications: 41A10, 41A25, 41A30, 26A15

1. Introduction

In [2], P. L. Butzer introduced two dimensional Bernstein polynomials $B_n^*(f;x,y)$ on the square $\square := \{(x,y) : 0 \le x,y \le 1\}$ and defined as follows:

$$B_n^*(f;x,y) = \sum_{k,l=0}^n p_{n,k}(x) p_{n,l}(y) f\left(\frac{k}{n}, \frac{l}{n}\right), \quad (x,y) \in [0,1] \times [0,1], \tag{1}$$

where
$$p_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k}$$
 and $p_{n,l}(y) = \binom{n}{l} y^l (1-y)^{n-l}$ are the Bernstein basis with $0 \le k \le n$, $0 \le l \le n$ and $f(x,y) \in C_B[0,1;0,1]$.

Deo and Bhardwaj [3], characterized the rate of approximation by means of K-functionals and estimate the order of convergence by means of a seminorm $\phi(f)$ for the two dimensional Bernstein operators, which was introduced by Stancu [15] and its Durrmeyer variants studied by Zhou [17] on a simplex.

Many researchers have studied better estimate for the one dimensional operators like Bernstein, Szász, Baskakov operators and its variants (see [4]-[8], [12], [13]).

135

Approximation properties of q and (p,q)-analogue of Bernstein operators and its variants are studied in [1], [9], [10] and [11]. Özarslan and Duman [13] have introduced a different approach in order to get a faster approximation without preserving the test functions. Özarslan and Aktugʻlu [14] have calculated quantitative global estimates for two dimensional Szász-Mirakjan operators. Motivated by these research work, we consider generalized two dimensional Bernstein operators and obtained the best error estimate.

The classical Bernstein operators are defined as:

$$B_n(f;x) = \sum_{k=0}^{n} p_{n,k}(x) f\left(\frac{k}{n}\right), \ 0 \le x \le 1.$$
 (2)

Let $f_h(x) = x^h, h \in \{0, 1, 2\}$ then auxiliary properties of (2) are as follows:

$$B_n(f_0; x) = 1, \ B_n(f_1; x) = x, \ B_n(f_2; x) = \left(1 - \frac{1}{n}\right)x^2 + \frac{x}{n}.$$

Following the similar arguments as used in [13], the best error estimation among all the general two dimensional Bernstein operators can be obtained from the case by taking

$$a_n = 1$$
, $b_n = e_n = 0$, $c_n = 1 - \frac{1}{n}$, $d_n = \frac{1}{n}$

for all $n \in \mathbb{N}$ where $(a_n), (b_n), (c_n), (d_n)$ and (e_n) are sequences of non-negative real numbers satisfying the conditions given in [13].

Now observe that

$$u_n^*(x) = \frac{2a_n x - d_n}{2c_n} = \frac{2nx - 1}{2(n-1)} \in [0, 1],$$

if and only if $\frac{1}{2n} \le x \le 1 - \frac{1}{2n}$ for $n \ge 2$ where u_n^* is a functional sequence, $u_n^*: I \to [0,1]$. Hence, choosing

$$I = \left\lceil \frac{1}{4}, \frac{3}{4} \right\rceil \subset [0, 1]$$
.

The best error estimation among all the general two dimensional Bernstein operators can be obtained from the case

$$u_n^*(x) = \frac{2nx-1}{2(n-1)}, v_n^*(y) = \frac{2ny-1}{2(n-1)}; n \in \mathbb{N},$$

for all $f \in C_B([0,1]) \times C_B([0,1])$ and $x, y \in I$. Hence, (1) becomes

$$B_n^{**}(f; x, y) =$$

$$= \sum_{k,l=0}^{n} \binom{n}{k} \binom{n}{l} (u_n^*(x))^k (1 - u_n^*(x))^{n-k} (v_n^*(y))^l (1 - v_n^*(y))^{n-l} f\left(\frac{k}{n}, \frac{l}{n}\right),$$
(3)

where $f \in C_B([0,1]) \times C_B([0,1])$.

For the operators $B_n^{**}(f;x,y)$, we have following Lemma:

Lemma 1. Let $\mathbf{x} = (x, y), \mathbf{t} = (t, s); e_{i,j}(x) = x^i y^j, i, j = 0, 1, 2$ and $\psi_x^2(t) = ||t - x||^2$. Then, for each $x, y \in I$ and $n \ge 2$, we have

- (i) $B_n^{**}(e_{0,0}; x, y) = 1;$
- (ii) $B_n^{**}(e_{1,0}; x, y) = u_n^*(x);$
- (iii) $B_n^{**}(e_{0,1}; x, y) = v_n^*(y);$

(iv)
$$B_n^{**}(e_{2,0} + e_{0,2}; x, y) = \left(1 - \frac{1}{n}\right) \left((u_n^*(x))^2 + (v_n^*(y))^2 \right) + \frac{u_n^*(x) + v_n^*(y)}{n};$$

(v)
$$B_n^{**}\left(\psi_x^2(t); x, y\right) = (u_n^*(x) - x)^2 + (v_n^*(y) - y)^2 - \frac{1}{n}\left((u_n^*(x))^2 + (v_n^*(y))^2\right) + \frac{1}{n}\left(u_n^*(x) + v_n^*(y)\right).$$

2. Global Results

We have used following definitions in this paper for global results of the operators $B_n^{**}(f; x, y)$.

Szàsz [16] earlier considered this space of bivariate extension of Lipschitz-type space, given as:

$$Lip_{M}^{*}\left(\alpha\right) :=% \frac{1}{2}\left\{ \sum_{i=1}^{N}\left(\alpha_{i}\right) \right\} dx$$

$$\left\{ f \in C\left(\left[0,\infty\right)\times\left[0,\infty\right)\right) : \left|f\left(t\right)-f\left(x\right)\right| \le M \frac{\left\|\mathbf{t}-\mathbf{x}\right\|^{\alpha}}{\left(\left\|\mathbf{t}\right\|+x+y\right)^{\frac{\alpha}{2}}}; t, s; x, y \in (0,\infty) \right\}$$

where $\mathbf{t} = (t, s)$, $\mathbf{x} = (x, y)$ and M is any positive constant and $0 < \alpha \le 1$. For all $f \in C([0, \infty) \times [0, \infty))$, the modulus of f denoted by $\omega(f; \delta)$ is defined as

$$\omega(f;\delta) :=$$

$$\sup \left\{ |f(t,s) - f(x,y)| : \sqrt{(t-x)^2 + (s-y)^2} < \delta, (t,s), (x,y) \in [0,\infty) \times [0,\infty) \right\}.$$

Now, for the space $Lip_{M}^{*}\left(\alpha\right)$ with $0<\alpha\leq1$, we have the following approximation result.

Theorem 1. For any $f \in Lip_M^*(\alpha)$, $\alpha \in (0,1]$ and for each $x, y \in I$, $n \geq 2$, we have

$$|B_n^{**}(f;x,y) - f(x,y)| \le \frac{M}{(x+y)^{\frac{\alpha}{2}}} \left[(u_n^*(x) - x)^2 + (v_n^*(y) - y)^2 \right]$$

$$-\frac{1}{n}\left(\left(u_{n}^{*}(x)\right)^{2}+\left(v_{n}^{*}(y)\right)^{2}\right)+\frac{1}{n}\left(u_{n}^{*}(x)+v_{n}^{*}(y)\right)^{\frac{\alpha}{2}}$$
(4)

Proof. Let $\alpha=1.$ For each $x,y\in(0,\infty)$ and for $f\in Lip_{M}^{*}\left(1\right),$ we have

$$|B_{n}^{**}(f;x,y) - f(x,y)| \leq B_{n}^{**}(|f(t,s) - f(x,y)|;x,y)$$

$$\leq MB_{n}^{**}\left(\frac{\|\mathbf{t} - \mathbf{x}\|}{(\|\mathbf{t}\| + x + y)^{1/2}};x,y\right)$$

$$\leq \frac{M}{(x+y)^{1/2}}B_{n}^{**}(\|\mathbf{t} - \mathbf{x}\|;x,y).$$

Applying Cauchy-Schwarz inequality, we get

$$|B_{n}^{**}\left(f;x,y\right)-f\left(x,y\right)| \leq \frac{M}{\left(x+y\right)^{1/2}} \sqrt{B_{n}^{**}\left(\psi_{x}^{2}\left(\mathbf{t}\right);x,y\right)} = \frac{M}{\left(x+y\right)^{1/2}} \sqrt{\left(u_{n}^{*}\left(x\right)-x\right)^{2}+\left(v_{n}^{*}\left(y\right)-y\right)^{2}-\frac{1}{n}\left(\left(u_{n}^{*}\left(x\right)\right)^{2}+\left(v_{n}^{*}\left(y\right)\right)^{2}\right)+\frac{1}{n}\left(u_{n}^{*}\left(x\right)+v_{n}^{*}\left(y\right)\right)}}.$$

Now, let $0 < \alpha < 1$. Then for each $x, y \in I$ and for $f \in Lip_{M}^{*}(\alpha)$, we obtain

$$\begin{aligned} |B_{n}^{**}\left(f;x,y\right) - f\left(x,y\right)| &\leq B_{n}^{**}\left(\left|f\left(t,s\right) - f\left(x,y\right)\right|;x,y\right) \\ &\leq MB_{n}^{**}\left(\frac{\left\|\mathbf{t} - \mathbf{x}\right\|^{\alpha}}{\left(\left\|\mathbf{t}\right\| + x + y\right)^{\alpha/2}};x,y\right) \\ &\leq \frac{M}{\left(x + y\right)^{\alpha/2}}B_{n}^{**}\left(\left\|\mathbf{t} - \mathbf{x}\right\|^{\alpha};x,y\right). \end{aligned}$$

For Hölder inequality with $p = \frac{2}{\alpha}$ and $q = \frac{2}{2-\alpha}$, for any $f \in Lip_M^*(\alpha)$, we have

$$\begin{split} |B_{n}^{**}\left(f;x,y\right)-f\left(x,y\right)| &\leq \frac{M}{\left(x+y\right)^{\alpha\!/\!2}} \!\left[B_{n}^{**}\left(\psi_{x}^{2}\left(\mathbf{t}\right);x,y\right)\right]^{\alpha\!/\!2} = \frac{M}{\left(x+y\right)^{\alpha\!/\!2}} \\ &\left[\left(u_{n}^{*}\left(x\right)-x\right)^{2}+\left(v_{n}^{*}\left(y\right)-y\right)^{2}-\frac{1}{n}\left(\left(u_{n}^{*}\left(x\right)\right)^{2}+\left(v_{n}^{*}\left(y\right)\right)^{2}\right) + \frac{1}{n}\left(u_{n}^{*}\left(x\right)+v_{n}^{*}\left(y\right)\right)\right]^{\alpha\!/\!2}, \end{split}$$

which is the required result. \triangleleft

Lemma 2. For each x, y > 0,

$$B_{n}^{**} \left(\sqrt{\left(\sqrt{t} - \sqrt{x}\right)^{2} + \left(\sqrt{s} - \sqrt{y}\right)^{2}}; x, y \right)$$

$$\leq \frac{1}{\sqrt{x}} \sqrt{\left(u_{n}^{*}(x) - x\right)^{2} - \frac{\left(u_{n}^{*}(x)\right)^{2} - u_{n}^{*}(x)}{n}}$$

$$+ \frac{1}{\sqrt{y}} \sqrt{\left(v_{n}^{*}(y) - y\right)^{2} - \frac{\left(v_{n}^{*}(y)\right)^{2} - v_{n}^{*}(y)}{n}}.$$

$$(5)$$

Proof. We have $\sqrt{c+d} \leq \sqrt{c} + \sqrt{d} \, (c, d \geq 0)$, therefore

$$\begin{split} B_{n}^{**} &\left(\sqrt{\left(\sqrt{t} - \sqrt{x}\right)^{2} + \left(\sqrt{s} - \sqrt{y}\right)^{2}}; x, y\right) \\ &= \sum_{k,l=0}^{n} \binom{n}{k} \binom{n}{l} \sqrt{\left(\sqrt{\frac{k}{n}} - \sqrt{x}\right)^{2} + \left(\sqrt{\frac{l}{n}} - \sqrt{y}\right)^{2}} \\ & (u_{n}^{*}(x))^{k} (1 - u_{n}^{*}(x))^{(n-k)} (v_{n}^{*}(y))^{l} (1 - v_{n}^{*}(y))^{(n-l)} \\ &\leq \sum_{k=0}^{n} \binom{n}{k} \left|\sqrt{\frac{k}{n}} - \sqrt{x}\right| (u_{n}^{*}(x))^{k} (1 - u_{n}^{*}(x))^{(n-k)} \\ &+ \sum_{l=0}^{n} \binom{n}{l} \left|\sqrt{\frac{l}{n}} - \sqrt{y}\right| (v_{n}^{*}(y))^{l} (1 - v_{n}^{*}(y))^{(n-l)} \\ &= \sum_{k=0}^{n} \binom{n}{k} \frac{\left|\frac{k}{n} - x\right|}{\sqrt{\frac{k}{n}} + \sqrt{x}} (u_{n}^{*}(x))^{k} (1 - u_{n}^{*}(x))^{(n-k)} \\ &+ \sum_{l=0}^{n} \binom{n}{l} \frac{\left|\frac{l}{n} - y\right|}{\sqrt{\frac{l}{n}} + \sqrt{y}} (v_{n}^{*}(y))^{l} (1 - v_{n}^{*}(y))^{(n-l)} \end{split}$$

$$\leq \frac{1}{\sqrt{x}} \sum_{k=0}^{n} \binom{n}{k} \left| \frac{k}{n} - x \right| (u_n^*(x))^k (1 - u_n^*(x))^{(n-k)} + \frac{1}{\sqrt{y}} \sum_{l=0}^{n} \binom{n}{l} \left| \frac{l}{n} - y \right| (v_n^*(y))^l (1 - v_n^*(y))^{(n-l)}.$$

Using the Cauchy-Schwarz inequality,

$$B_{n}^{**}\left(\sqrt{\left(\sqrt{t}-\sqrt{x}\right)^{2}+\left(\sqrt{s}-\sqrt{y}\right)^{2}};x,y\right)$$

$$\leq \frac{1}{\sqrt{x}}\sqrt{\sum_{k=0}^{n}\binom{n}{k}\left(\frac{k}{n}-x\right)^{2}(u_{n}^{*}(x))^{k}(1-u_{n}^{*}(x))^{(n-k)}}$$

$$+\frac{1}{\sqrt{y}}\sqrt{\sum_{l=0}^{n}\binom{n}{l}\left(\frac{l}{n}-y\right)^{2}(v_{n}^{*}(y))^{l}(1-v_{n}^{*}(y))^{(n-l)}}.$$

Using Lemma 1,

$$B_{n}^{**} \left(\sqrt{\left(\sqrt{t} - \sqrt{x}\right)^{2} + \left(\sqrt{s} - \sqrt{y}\right)^{2}}; x, y \right)$$

$$\leq \frac{1}{\sqrt{x}} \sqrt{\left(u_{n}^{*}(x) - x\right)^{2} - \frac{\left(u_{n}^{*}(x)\right)^{2} - u_{n}^{*}(x)}{n}}$$

$$+ \frac{1}{\sqrt{y}} \sqrt{\left(v_{n}^{*}(y) - y\right)^{2} - \frac{\left(v_{n}^{*}(y)\right)^{2} - v_{n}^{*}(y)}{n}},$$

which is the desired result. \triangleleft

Theorem 2. Let $g(x,y) = f(x^2,y^2)$. Then we have for each $x,y \in I$,

$$|B_n^{**}(f;x,y) - f(x,y)| \le 2\omega \left(q; \delta_n(x,y)\right),$$

where

$$\delta_n(x,y) = \frac{1}{\sqrt{x}} \sqrt{(u_n^*(x) - x)^2 - \frac{(u_n^*(x))^2 - u_n^*(x)}{n}} + \frac{1}{\sqrt{y}} \sqrt{(v_n^*(y) - y)^2 - \frac{(v_n^*(y))^2 - v_n^*(y)}{n}}.$$

Proof. We have

$$|B_{n}^{**}(f;x,y) - f(x,y)| \leq B_{n}^{**}(|f(t,s) - f(x,y)|;x,y)$$

$$= B_{n}^{**}\left(\left|g\left(\sqrt{t},\sqrt{s}\right) - g\left(\sqrt{x},\sqrt{y}\right)\right|;x,y\right)$$

$$\leq B_{n}^{**}\left(\omega\left(g;\sqrt{\left(\sqrt{t} - \sqrt{x}\right)^{2} + \left(\sqrt{s} - \sqrt{y}\right)^{2}}\right);x,y\right)$$

$$= \sum_{k,l=0}^{n} \binom{n}{k} \binom{n}{l} \omega \left(g;\sqrt{\left(\sqrt{\frac{k}{n}} - \sqrt{x}\right)^{2} + \left(\sqrt{\frac{l}{n}} - \sqrt{y}\right)^{2}};x,y\right)$$

$$(u_{n}^{*}(x))^{k}(1 - u_{n}^{*}(x))^{(n-k)}(v_{n}^{*}(y))^{l}(1 - v_{n}^{*}(y))^{(n-l)}$$

$$= \sum_{k,l=0}^{n} \binom{n}{k} \binom{n}{l}$$

$$\omega \left(g; \frac{\sqrt{\left(\sqrt{\frac{k}{n}} - \sqrt{x}\right)^{2} + \left(\sqrt{\frac{l}{n}} - \sqrt{y}\right)^{2}}}{B_{n}^{**}\left(\sqrt{\left(\sqrt{t} - \sqrt{x}\right)^{2} + \left(\sqrt{s} - \sqrt{y}\right)^{2}};x,y\right)}$$

$$B_{n}^{**}\left(\sqrt{\left(\sqrt{t} - \sqrt{x}\right)^{2} + \left(\sqrt{s} - \sqrt{y}\right)^{2}};x,y\right);x,y\right).$$

Now, we have

$$\omega\left(f;\lambda\delta\right)\leq\left(1+\lambda\right)\omega\left(f;\delta\right).$$

Therefore,

$$|B_{n}^{**}(f;x,y) - f(x,y)| \le \omega \left(g; B_{n}^{**} \left(\sqrt{\left(\sqrt{t} - \sqrt{x}\right)^{2} + \left(\sqrt{s} - \sqrt{y}\right)^{2}}; x, y\right)\right)$$

$$\times \sum_{k,l=0}^{n} {n \choose k} {n \choose l} \left[1 + \frac{\sqrt{\left(\sqrt{\frac{k}{n}} - \sqrt{x}\right)^{2} + \left(\sqrt{\frac{l}{n}} - \sqrt{y}\right)^{2}}}{B_{n}^{**} \left(\sqrt{\left(\sqrt{t} - \sqrt{x}\right)^{2} + \left(\sqrt{s} - \sqrt{y}\right)^{2}}; x, y\right)}\right]$$

$$(u_{n}^{*}(x))^{k} (1 - u_{n}^{*}(x))^{(n-k)} (v_{n}^{*}(y))^{l} (1 - v_{n}^{*}(y))^{(n-l)}$$

$$\leq 2\omega \left(g; B_n^{**} \left(\sqrt{\left(\sqrt{t} - \sqrt{x}\right)^2 + \left(\sqrt{s} - \sqrt{y}\right)^2}; x, y\right)\right).$$

Now, using Lemma 2, completes the proof. ◀

Theorem 3. Let $g(x, y) = f(x^2, y^2)$. Let

$$g \in Lip_{M}(\alpha) := \{g \in C_{\mathbf{B}}([0,1] \times [0,1]) : |g(t) - g(x)| \le M||t - x||^{\alpha}; t, s; x, y \in I\},$$

where $\mathbf{t} = (t, s)$, $\mathbf{x} = (x, y)$ and M is any positive constant and $0 < \alpha \le 1$. Then,

$$|B_n^{**}(f;x,y) - f(x,y)| \le M\delta_n^{\alpha}(x,y),$$
 (6)

where $\delta_n(x,y)$ is the same as in Theorem 2.

Proof. We have

$$|B_{n}^{**}(f;x,y) - f(x,y)| \le B_{n}^{**}(|f(t,s) - f(x,y)|;x,y)$$

$$= B_{n}^{**}\left(\left|g\left(\sqrt{t},\sqrt{s}\right) - g\left(\sqrt{x},\sqrt{y}\right)\right|;x,y\right)$$

$$\le MB_{n}^{**}\left(\left(\left(\sqrt{t} - \sqrt{x}\right)^{2} + \left(\sqrt{s} - \sqrt{y}\right)^{2}\right)^{\alpha/2};x,y\right)$$

$$= M\sum_{k,l=0}^{n} \binom{n}{k} \binom{n}{l} \left(\left(\sqrt{\frac{k}{n}} - \sqrt{x}\right)^{2} + \left(\sqrt{\frac{l}{n}} - \sqrt{y}\right)^{2}\right)^{\alpha/2}$$

$$(u_{n}^{*}(x))^{k}(1 - u_{n}^{*}(x))^{(n-k)}(v_{n}^{*}(y))^{l}(1 - v_{n}^{*}(y))^{(n-l)}.$$

For Hölder inequality with $p = \frac{2}{\alpha}$ and $q = \frac{2}{2-\alpha}$, we have

$$|B_n^{**}(f;x,y) - f(x,y)| \le M \left[B_n^{**} \left(\sqrt{\left(\sqrt{t} - \sqrt{x}\right)^2 + \left(\sqrt{s} - \sqrt{y}\right)^2}; x, y \right) \right]^{\alpha}.$$

By using Lemma 2, completes the proof. ◀

Acknowledgement

The author is extremely thankful to Science and Engineering Research Board (SERB), Govt. of India, for providing the financial support under Teachers Associateship for Research Excellence (TARE) Award (TAR/2018/000356).

References

- [1] A. Khan, V. Sharma, Statistical approximation by (p,q)-analogue of Bernstein-Stancu operators, Azerb. J. Math., 8(2), 2018, 100-121.
- [2] P.L. Butzer, On two dimensional Bernstein polynomials, Canad. J. Math., 5, 1953, 107-113.
- [3] N. Deo, N. Bhardwaj, Some approximation theorems for multivariate Bernstein operators, SEA. Bull. Math., 34, 2010, 1023-1034.
- [4] N. Deo, N. Bhardwaj, Some approximation results for Durrmeyer Operators, Appl. Math. Comput., 217, 2011,5531-5536.
- [5] N. Deo, Faster rate of convergence on Srivastava-Gupta operators, Appl. Math. Comput., 218, 2012, 10486-10491.
- [7] O. Duman, M.A. Özarslan, B. Della Vecchia, Modified Szász-Mirakjan-Kantrovich operators preserving linear functions, Turkish J. Math., 33, 2009, 151-158.
- [8] V. Gupta, N. Deo, A note on improved estimations for integrated Szász-Mirakyan operators, Math. Slovaca, 61(5), 2011, 799-806.
- [9] M. Mursaleen, K.J. Ansari, A. Khan, On~(p,q)-analogue of Bernstein operators, Appl. Math. Comput., **266**, 2015, 874-882 [Erratum: Appl. Math. Comput., **278**, 2016, 70-71].
- [10] M. Mursaleen, K.J. Ansari, A. Khan, Some approximation results by (p,q)-analogue of Bernstein-Stancu operators, Appl. Math. Comput., 264, 2015, 392-402 [Corrigendum: Appl. Math. Comput., 269, 2015, 744-746].
- [11] M. Mursaleen, Md. Nasiruzzaman, A. Khan, K.J. Ansari, Some approximation results on Bleimann-Butzer-Hahn operators defined by (p,q)-integers, Filomat, 30(3), 2016, 639-648.
- [12] M.A.Özarslan, O. Duman, MKZ type operators providing a better estimation on [1/2, 1], Canad. Math. Bull., **50**, 2007, 434-439.
- [13] M.A. Özarslan, O. Duman, A new approach in obtaining a better estimation in approximation by positive linear operators, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math Stat., **58(1)**, 2009, 17-22.

- [15] D. Stancu, Some Bernstein polynomials in two variables and their applications, Soviet. Math., 1, 1960, 1025-1028.
- [16] O. Szász, Generalization of S. Bernstein's polynomials to the infinite interval,
 J. Research Nat. Bur. Standards, 45, 1950, 239-245.
- [17] D.X. Zhou, Inverse theorems for multidimensional Bernstein-Durrmeyer operators in L_p^* , J. Approx. Theory, **70**, 1992, 68-93.

Neha Bhardwaj

 $Department\ of\ Mathematics,\ Amity\ Institute\ of\ Applied\ Sciences,\ Amity\ University,\ Noida\ 201303,\ India.$

E-mail:nbhardwaj1@amity.edu

Received 05 March 2020 Accepted 29 September 2020