
Azerbaijan Journal of Mathematics
V. 12, No 1, 2022, January
ISSN 2218-6816

Improvements of Some Numerical Radius
Inequalities

M.W. Alomari

Abstract. In this work, we improve and refine some numerical radius inequalities. In
particular, for all Hilbert space operators T , the famous Kittaneh inequality reads:

1

4
‖T ∗T + TT ∗‖ ≤ w2 (T ) ≤ 1

2
‖T ∗T + TT ∗‖ .

In this work we provide some important refinements for the upper bound of the Kittaneh
inequality. Namely, we establish

w2 (T ) ≤ 1

2
‖T ∗T + TT ∗‖ − 1

4
inf
‖x‖=1

(〈|T |x, x〉 − 〈|T ∗|x, x〉)2 ,

which is also refined and improved as

w2 (T ) ≤ 1

2
‖T ∗T + TT ∗‖ − 1

2
inf
‖x‖=1

(〈|T |x, x〉 − 〈|T ∗|x, x〉)2 ,

with the third improvement

w2 (T ) ≤ 1

4
‖|T |+ |T ∗|‖2 − 1

4
inf
‖x‖=1

(〈|T |x, x〉 − 〈|T ∗|x, x〉)2 .

Other related results are also obtained.
Key Words and Phrases: mixed Schwarz inequality, numerical radius, Furuta inequal-
ity.
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1. Introduction

Let B (H ) be the Banach algebra of all bounded linear operators defined on
a complex Hilbert space (H ; 〈·, ·〉) with the identity operator 1H in B (H ). A

http://www.azjm.org 129 c© 2010 AZJM All rights reserved.



130 M.W. Alomari

bounded linear operator A defined on H is selfadjoint if and only if 〈Ax, x〉 ∈ R
for all x ∈H . Consider the real vector space B (H )sa of self-adjoint operators on
H and its positive cone B (H )+ of positive operators on H . A partial order is
naturally equipped on B (H )sa by definingA ≤ B if and only ifB−A ∈ B (H )+.
We write A > 0 to mean that A is a strictly positive operator, or equivalently,
A ≥ 0 and A is invertible.

The Schwarz inequality for positive operators reads that if A is a positive
operator in B (H ), then

|〈Ax, y〉|2 ≤ 〈Ax, x〉 〈Ay, y〉 (1)

for any vectors x, y ∈H .
In 1951, Reid [13] proved an inequality which in some sense was a variant of

the Schwarz inequality. In fact, he proved that for all operators A ∈ B (H ) such
that A is positive and AB is selfadjoint the relation

|〈ABx, y〉| ≤ ‖B‖ 〈Ax, x〉 (2)

holds for all x ∈ H . In [7], Halmos presented the stronger version of the Reid
inequality (2) by replacing ‖B‖ with r (B).

In 1952, Kato [11] introduced a companion inequality of (1), called the mixed
Schwarz inequality, which asserts

|〈Ax, y〉|2 ≤
〈
|A|2α x, x

〉〈
|A∗|2(1−α) y, y

〉
, 0 ≤ α ≤ 1. (3)

for every operator A ∈ B (H ) and any vectors x, y ∈H , where |A| = (A∗A)1/2.
In 1988, Kittaneh [10] proved a very interesting extension combining both

the Halmos–Reid inequality (2) and the mixed Schwarz inequality (3). His result
reads that

|〈ABx, y〉| ≤ r (B) ‖f (|A|)x‖ ‖g (|A∗|) y‖ (4)

for any vectors x, y ∈H , where A,B ∈ B (H ) are such that |A|B = B∗|A| and
f, g are nonnegative continuous functions defined on [0,∞) satisfying f(t)g(t) = t
(t ≥ 0). For instance, if we set f(t) = tα and g(t) = t1−α (0 ≤ α ≤ 1) with
B = 1 in (4), we recapture Kato’s inequality (3). Also, as noticed in [12], if in
the inequality (4) A is assumed to be positive, then the condition AB = B∗A is
equivalent to saying that AB is self-adjoint. In this case, letting f(t) = g(t) = t1/2

and x = y, we obtain the generalized Reid inequality (2) as a special case. A
non-trivial improvement of (4) was established very recently by the author of this
paper in [1]. The Cartesian decomposition form of (4) was also recently proved
by Alomari in [2].
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In 1994, Furuta [6] proved the following generalization of Kato’s inequality
(3): ∣∣∣〈T |T |α+β−1 x, y〉∣∣∣2 ≤ 〈|T |2α x, x〉〈|T |2β y, y〉 (5)

for any x, y ∈H and α, β ∈ [0, 1] with α+ β ≥ 1.
The inequality (5) was generalized for any α, β ≥ 0 with α + β ≥ 1 by

Dragomir in [5]. As noted by Dragomir, the condition α, β ∈ [0, 1] was assumed
by Furuta to fit with the Heinz–Kato inequality, which reads:

|〈Tx, y〉| ≤ ‖Aαx‖
∥∥B1−αy

∥∥
for any x, y ∈H and α ∈ [0, 1], where A and B are prositive operators such that
‖Tx‖ ≤ ‖Ax‖ and ‖T ∗y‖ ≤ ‖By‖ for any x, y ∈H .

For a bounded linear operator T on a Hilbert space H , the numerical range
W (T ) is the image of the unit sphere of H under the quadratic form x→ 〈Tx, x〉
associated with the operator. More precisely,

W (T ) = {〈Tx, x〉 : x ∈H , ‖x‖ = 1} .

Also, the numerical radius is defined to be

w (T ) = sup {|λ| : λ ∈W (T )} = sup
‖x‖=1

|〈Tx, x〉| .

The spectral radius of an operator T is defined to be

r (T ) = sup {|λ| : λ ∈ sp (T )} .

We recall that the usual operator norm of an operator T is defined to be

‖T‖ = sup {‖Tx‖ : x ∈ H, ‖x‖ = 1} .

It is well known that w (·) defines an operator norm on B (H ) which is
equivalent to operator norm ‖ · ‖, and for every T ∈ B (T ), we have

1

2
‖T‖ ≤ w (T ) ≤ ‖T‖. (6)

Thus, the usual operator norm and the numerical radius norm are equivalent.
The inequalities in (6) are sharp: if T 2 = 0, then the first inequality becomes an
equality, while the second inequality becomes an equality if T is normal.

In 2003, Kittaneh [10] refined the right-hand side of (6), by proving that

w (T ) ≤ 1

2

(
‖T‖+ ‖T 2‖1/2

)
(7)
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for any T ∈ B (H ).
After that in 2005, the same author in [8] proved that

1

4
‖A∗A+AA∗‖ ≤ w2 (A) ≤ 1

2
‖A∗A+AA∗‖. (8)

The inequality is sharp.
In 2007, Yamazaki [16] improved (8) by proving that

w (T ) ≤ 1

2

(
‖T‖+ w

(
T̃
))
≤ 1

2

(
‖T‖+

∥∥T 2
∥∥1/2) ,

where T̃ = |T |1/2U |T |1/2 and U is the unitary operator in the polar decomposition
T of the form T = U |T |.

In 2008, Dragomir [4] used Buzano inequality to improve (1), by proving that

w2 (T ) ≤ 1

2

(
‖T‖+ w

(
T 2
))
.

This result was also recently generalized by Sattari et al. in [14] and Alomari in
[2]. For more recent results about the numerical radius see the recent monograph
[3].

In this work, we improve and refine some numerical radius inequalities. In
particular, for all Hilbert space operators T , the famous Kittaneh inequality
reads:

1

4
‖T ∗T + TT ∗‖ ≤ w2 (T ) ≤ 1

2
‖T ∗T + TT ∗‖ .

In this work we provide some important refinements for the upper bound of the
Kittaneh inequality. Namely, we establish

w2 (T ) ≤ 1

2
‖T ∗T + TT ∗‖ − 1

4
inf
‖x‖=1

(〈|T |x, x〉 − 〈|T ∗|x, x〉)2 ,

which is also refined and improved as

w2 (T ) ≤ 1

2
‖T ∗T + TT ∗‖ − 1

2
inf
‖x‖=1

(〈|T |x, x〉 − 〈|T ∗|x, x〉)2 ,

and

w2 (T ) ≤ 1

2
‖T ∗T + TT ∗‖ − 1

2
inf
‖x‖=1

(〈
|T |2 x, x

〉 1
2 −

〈
|T ∗|2 x, x

〉 1
2

)2

,

with the third improvement

w2 (T ) ≤ 1

4
‖|T |+ |T ∗|‖2 − 1

4
inf
‖x‖=1

(〈|T |x, x〉 − 〈|T ∗|x, x〉)2 .

Other related results are also obtained.
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2. Numerical Radius Inequalities

In order to prove our main result we need the following lemmas:

Lemma 1. Let S ∈ B (H ), S ≥ 0 and x ∈ H be a unit vector. Then, the
Jensen’s operator inequality

〈Sx, x〉r ≤ 〈Srx, x〉, r ≥ 1 (9)

and

〈Srx, x〉 ≤ 〈Sx, x〉r, r ∈ [0, 1] . (10)

Kittaneh and Manasrah [9] obtained the following result which is a refinement
of the scalar Young inequality.

Lemma 2. Let a, b ≥ 0, and p, q > 1 be such that 1
p + 1

q = 1. Then

ab+ min

{
1

p
,
1

q

}
(a

p
2 − b

q
2 )2 ≤ ap

p
+
bq

q
. (11)

Recently, Sheikhhosseini et al. [15] have obtained the following generalization
of (11).

Lemma 3. If a, b > 0, and p, q > 1 are such that 1
p + 1

q = 1, then for m =
1, 2, 3, . . . ,

(a
1
p b

1
q )m + rm0 (a

m
2 − b

m
2 )2 ≤

(
ar

p
+
br

q

)m
r

, r ≥ 1, (12)

where r0 = min
{

1
p ,

1
q

}
. In particular, if p = q = 2, then

(a
1
2 b

1
2 )m +

1

2m
(a

m
2 − b

m
2 )2 ≤ 2

−m
r (ar + br)

m
r .

For m = 1

(a
1
2 b

1
2 ) +

1

2
(a

1
2 − b

1
2 )2 ≤ 2

−1
r (ar + br)

1
r .

In what follows, we establish some numerical radius inequalities by providing
some refinements of well-known numerical radius inequalities. Let us begin with
the following result.
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Theorem 1. Let T ∈ B (H ), α, β ≥ 0 be such that α+ β ≥ 1. Then

wm
(
T |T |α+β−1

)
≤ 1

2
m
r

∥∥∥|T |2rα + |T ∗|2rβ
∥∥∥m

r
(13)

− 1

2m
inf
‖x‖=1

(〈
|T |2α x, x

〉m
2 −

〈
|T ∗|2β x, x

〉m
2

)2

Proof. Let y = x in (5). Then for all m ≥ 1 we have∣∣∣〈T |T |α+β−1 x, x〉∣∣∣m ≤ 〈|T |2α x, x〉m
2
〈
|T ∗|2β x, x

〉m
2

≤


〈
|T |2α x, x

〉r
+
〈
|T ∗|2β x, x

〉r
2


m
r

(by (12))

− 1

2m

(〈
|T |2α x, x

〉m
2 −

〈
|T ∗|2β x, x

〉m
2

)2

≤


〈
|T |2rα x, x

〉
+
〈
|T ∗|2rβ x, x

〉
2


m
r

(by Lemma 1)

− 1

2m

(〈
|T |2α x, x

〉m
2 −

〈
|T ∗|2β x, x

〉m
2

)2

.

Taking the supremum over all unit vectors x ∈H , we get the desired result. J

Corollary 1. Let T ∈ B (H ), α, β ≥ 0 be such that α+ β ≥ 1. Then

w2
(
T |T |α+β−1

)
≤ 1

2
2
r

∥∥∥|T |2rα + |T ∗|2rβ
∥∥∥ 2

r
(14)

− 1

4
inf
‖x‖=1

(〈
|T |2α x, x

〉
−
〈
|T ∗|2β x, x

〉)2
Proof. Setting m = 1 in (13) we get the desired result. J

Remark 1. Setting r = 1 in (14), we get

w2
(
T |T |α+β−1

)
≤ 1

4

∥∥∥|T |2α + |T ∗|2β
∥∥∥2

− 1

4
inf
‖x‖=1

(〈
|T |2α x, x

〉
−
〈
|T ∗|2β x, x

〉)2
for all α, β ≥ 0 such that α+ β ≥ 1.
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Choosing α = β = 1
2 , we get

w2 (T ) ≤ 1

4
‖|T |+ |T ∗|‖2 − 1

4
inf
‖x‖=1

(〈|T |x, x〉 − 〈|T ∗|x, x〉)2 .

However, if we choose α = β = 1, we get

w2 (T |T |) ≤ 1

4

∥∥∥|T |2 + |T ∗|2
∥∥∥2

− 1

4
inf
‖x‖=1

(〈
|T |2 x, x

〉
−
〈
|T ∗|2 x, x

〉)2
,

or it can be rewritten as

w2 (T |T |) ≤ 1

4
‖T ∗T + TT ∗‖2 − 1

4
inf
‖x‖=1

〈[T ∗T − TT ∗]x, x〉2 .

.
A generalization of the above results could be embodied as follows:

Theorem 2. Let T ∈ B (H ), α, β ≥ 0 be such that α+ β ≥ 1. Then

w2s
(
T |T |α+β−1

)
≤ 2−

2
r

∥∥∥|T |2rsα + |T ∗|2rsβ
∥∥∥ 2

r

− 1

4
inf
‖x‖=1

[〈
|T |2srα x, x

〉
−
〈
|T ∗|2rsβ y, y

〉]
(15)

for all r, s ≥ 1.

Proof. Let y = x in (5). By applying Lemma 3 with p = q = 2 and m = 2,
we get ∣∣∣〈T |T |α+β−1 x, x〉∣∣∣2s

≤
〈
|T |2α x, x

〉s 〈
|T ∗|2β x, x

〉s
(ts increasing)

≤
〈
|T |2sα x, x

〉〈
|T ∗|2sβ x, x

〉
(by convexity of ts)

≤ 2−
2
r

(〈
|T |2sα x, x

〉r
+
〈
|T ∗|2sβ x, x

〉r) 2
r

(by Lemma 3)

− 1

4

[〈
|T |2srα x, x

〉
−
〈
|T ∗|2rsβ x, x

〉]
≤ 2−

2
r

(〈
|T |2rsα x, x

〉
+
〈
|T ∗|2rsβ x, x

〉) 2
r

(by Lemma1)

− 1

4

[〈
|T |2srα x, x

〉
−
〈
|T ∗|2rsβ x, x

〉]
.

Taking the supremum over all unit vectors x ∈H , we get the desired result. J
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Corollary 2. Let T ∈ B (H ), α, β ≥ 0 be such that α+ β ≥ 1. Then

w2s
(
T |T |α+β−1

)
≤ 1

4

∥∥∥|T |2sα + |T ∗|2sβ
∥∥∥2 − 1

4
inf
‖x‖=1

[〈
|T |2sα x, x

〉
−
〈
|T ∗|2sβ x, x

〉]
(16)

for all s ≥ 1.

Proof. Setting r = 1 in (15). J

Remark 2. Setting α = β = 1
2 in (16), we get

w2s (T ) ≤ 1

4
‖|T |s + |T ∗|s‖2 − 1

4
inf
‖x‖=1

[〈|T |s x, x〉 − 〈|T ∗|s x, x〉]

for all s ≥ 1. In particular case, choosing s = 1 we get

w2 (T ) ≤ 1

4
‖|T |+ |T ∗|‖2 − 1

4
inf
‖x‖=1

[〈|T |x, x〉 − 〈|T ∗|x, x〉] .

.

Remark 3. Setting α = β = 1
s , s ≥ 1, we get

w2s
(
T |T |

2
s
−1
)
≤ 1

4

∥∥∥|T |2 + |T ∗|2
∥∥∥2 − 1

4
inf
‖x‖=1

[〈
|T |2 x, x

〉
−
〈
|T ∗|2 x, x

〉]
.

(17)

In particular case, choosing s = 1 in (17), we get

w2 (T |T |) ≤ 1

4

∥∥∥|T |2 + |T ∗|2
∥∥∥2 − 1

4
inf
‖x‖=1

[〈
|T |2 x, x

〉
−
〈
|T ∗|2 x, x

〉]
, (18)

which can be rewritten as

w2 (T |T |) ≤ 1

4
‖T ∗T + TT ∗‖2 − 1

4
inf
‖x‖=1

[〈
|T |2 x, x

〉
−
〈
|T ∗|2 x, x

〉]
,

Remark 4. Setting α = β = 1
2 , s = 1, r = 2, we get

w2 (T ) ≤ 1

2

∥∥∥|T |2 + |T ∗|2
∥∥∥− 1

4
inf
‖x‖=1

[〈
|T |2 x, x

〉
−
〈
|T ∗|2 x, x

〉]
,

or

w2 (T ) ≤ 1

2
‖T ∗T + TT ∗‖ − 1

4
inf
‖x‖=1

[〈
|T |2 x, x

〉
−
〈
|T ∗|2 x, x

〉]
, (19)

and this refines the upper bound in the Kittaneh inequality (7).
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Theorem 3. Let T ∈ B (H ), α, β ≥ 0 be such that α+ β ≥ 1. Then

w2s
(
T |T |α+β−1

)
≤
∥∥∥∥1

p
|T |2spα +

1

q
|T ∗|2sqβ

∥∥∥∥ (20)

− r0 inf
‖x‖=1

(〈
|T |2sα x, x

〉 p
2 −

〈
|T ∗|2sβ x, x

〉 q
2

)2

for all s ≥ 1 and p, q > 1 such that 1
p + 1

q = 1, where r0 := min
{

1
p ,

1
q

}
.

In particular case, we have

w2s
(
T |T |α+β−1

)
≤ 1

2

∥∥∥|T |4sα + |T ∗|4sβ
∥∥∥ (21)

− 1

2
inf
‖x‖=1

(〈
|T |2sα x, x

〉
−
〈
|T ∗|2sβ x, x

〉)2
.

Proof. Let s ≥ 1. Setting y = x in (5), we get∣∣∣〈T |T |α+β−1 x, x〉∣∣∣2s ≤ 〈|T |2α x, x〉s 〈|T ∗|2β x, x〉s (by (5))

≤
〈
|T |2sα x, x

〉〈
|T ∗|2sβ x, x

〉
(by convexity of ts)

≤ 1

p

〈
|T |2sα x, x

〉p
+

1

q

〈
|T ∗|2sβ x, x

〉q
(by Lemma 2)

− r0
(〈
|T |2sα x, x

〉 p
2 −

〈
|T ∗|2sβ x, x

〉 q
2

)2

≤ 1

p

〈
|T |2spα x, x

〉
+

1

q

〈
|T ∗|2sqβ x, x

〉
(by Lemma1)

− r0
(〈
|T |2sα x, x

〉 p
2 −

〈
|T ∗|2sβ x, x

〉 q
2

)2

Taking the supremum over all unit vectors x ∈ H , we get the required result.
The particular case follows by setting p = q = 2. J

Various interesting special cases could be deduced from (13). In what follows,
we give some of these cases in remarks.

Remark 5. Setting α = β = 1
2 in (14), we have

w2s (T ) ≤ 1

2

∥∥∥|T |2s + |T ∗|2s
∥∥∥− 1

2
inf
‖x‖=1

(〈|T |s x, x〉 − 〈|T ∗|s x, x〉)2

for all s ≥ 1. In particular, for s = 1 we get

w2 (T ) ≤ 1

2

∥∥∥|T |2 + |T ∗|2
∥∥∥− 1

2
inf
‖x‖=1

(〈|T |x, x〉 − 〈|T ∗|x, x〉)2 ,
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which can be rewritten as

w2 (T ) ≤ 1

2
‖T ∗T + TT ∗‖ − 1

2
inf
‖x‖=1

(〈|T |x, x〉 − 〈|T ∗|x, x〉)2 . (22)

This refines the upper bound of the refinement of Kittaneh inequality (19). Clearly,
(22) is better than (19), which, in turn, is better than (7).

Remark 6. Setting α = β = 1 in (20), we have

w2s (T |T |) ≤
∥∥∥∥1

p
|T |2sp +

1

q
|T ∗|2sq

∥∥∥∥
− r0 inf

‖x‖=1

(〈
|T |2s x, x

〉 p
2 −

〈
|T ∗|2s x, x

〉 q
2

)2

for all s ≥ 1 and p, q > 1 such that 1
p + 1

q = 1, where r0 := min
{

1
p ,

1
q

}
.

In particular case, choosing s = 1 and p = q = 2 in the previous inequality,
we get

w2 (T |T |) ≤ 1

2

∥∥∥|T |4 + |T ∗|4
∥∥∥− 1

2
inf
‖x‖=1

(〈
|T |2 x, x

〉
−
〈
|T ∗|2 x, x

〉)2
.

Numerical radius inequality for a special type of Hilbert space operators for
commutators can be established as follows:

Theorem 4. Let T, S ∈ B (H ), α, β, γ, δ ≥ 0 be such that α + β ≥ 1 and
γ + δ ≥ 1. Then

w
(
T |T |α+β−1 + S |S|γ+δ−1

)
(23)

≤ 2−
1
r

∥∥∥|T |2rα + |T ∗|2rβ
∥∥∥ 1

r
+ 2−

1
r

∥∥∥|S|2rγ + |S∗|2rδ
∥∥∥ 1

r

− 1

2
inf
‖x‖=1

(〈
|T |2α x, x

〉 1
2 −

〈
|T ∗|2β x, x

〉 1
2

)2

− 1

2
inf
‖x‖=1

(〈
|S|2γ x, x

〉 1
2 −

〈
|S∗|2δ x, x

〉 1
2

)2

for all r ≥ 1.

Proof. Employing the triangle inequality, we have∣∣∣〈(T |T |α+β−1 + S |S|γ+δ−1
)
x, x

〉∣∣∣
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≤
∣∣∣〈T |T |α+β−1 x, x〉∣∣∣+

∣∣∣〈S |S|γ+δ−1 x, x〉∣∣∣
≤
〈
|T |2α x, x

〉 1
2
〈
|T ∗|2β x, x

〉 1
2

+
〈
|S|2γ x, x

〉 1
2
〈
|S∗|2δ x, x

〉 1
2

(by (5))

≤ 2−
1
r

(〈
|T |2α x, x

〉r
+
〈
|T ∗|2β x, x

〉r) 1
r

(by Lemma 3)

− 1

2

(〈
|T |2α x, x

〉 1
2 −

〈
|T ∗|2β x, x

〉 1
2

)2

+ 2−
1
r

(〈
|S|2γ x, x

〉r
+
〈
|S∗|2δ x, x

〉r) 1
r

− 1

2

(〈
|S|2γ x, x

〉 1
2 −

〈
|S∗|2δ x, x

〉 1
2

)2

≤ 2−
1
r

(〈
|T |2rα x, x

〉
+
〈
|T ∗|2rβ x, x

〉) 1
r

(by Lemma 1)

− 1

2

(〈
|T |2α x, x

〉 1
2 −

〈
|T ∗|2β x, x

〉 1
2

)2

+ 2−
1
r

(〈
|S|2rγ x, x

〉
+
〈
|S∗|2rδ x, x

〉) 1
r

− 1

2

(〈
|S|2γ x, x

〉 1
2 −

〈
|S∗|2δ x, x

〉 1
2

)2

.

Taking the supremum over all unit vectors x ∈H , we get the desired result. J

Corollary 3. Let T, S ∈ B (H ), α, β, γ, δ ≥ 0 be such that α + β ≥ 1 and
γ + δ ≥ 1. Then

w
(
T |T |α+β−1 + S |S|γ+δ−1

)
≤ 1

2

∥∥∥|T |2α + |T ∗|2β + |S|2γ + |S∗|2δ
∥∥∥ (24)

− 1

2
inf
‖x‖=1

(〈
|T |2α x, x

〉 1
2 −

〈
|T ∗|2β x, x

〉 1
2

)2

− 1

2
inf
‖x‖=1

(〈
|S|2γ x, x

〉 1
2 −

〈
|S∗|2δ x, x

〉 1
2

)2

.

Proof. Setting r = 1 in the proof of Theorem 4, and then taking the supremum
over all unit vectors x ∈H , we get the desired result. J

Remark 7. Setting α = β = γ = δ = 1
2 in (24), we get

w (T + S) ≤ 1

2
‖|T |+ |T ∗|+ |S|+ |S∗|‖ − 1

2
inf
‖x‖=1

(
〈|T |x, x〉

1
2 − 〈|T ∗|x, x〉

1
2

)2
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− 1

2
inf
‖x‖=1

(
〈|S|x, x〉

1
2 − 〈|S∗|x, x〉

1
2

)2
In particular, taking S = T we get

w (T ) ≤ 1

2
‖|T |+ |T ∗|+‖ − 1

2
inf
‖x‖=1

(
〈|T |x, x〉

1
2 − 〈|T ∗|x, x〉

1
2

)2
.

Remark 8. Setting α = β = γ = δ = 1 in (24), we get

w (T |T |+ S |S|) ≤ 1

2

∥∥∥|T |2 + |T ∗|2 + |S|2 + |S∗|2
∥∥∥

− 1

2
inf
‖x‖=1

(〈
|T |2 x, x

〉 1
2 −

〈
|T ∗|2 x, x

〉 1
2

)2

− 1

2
inf
‖x‖=1

(〈
|S|2 x, x

〉 1
2 −

〈
|S∗|2 x, x

〉 1
2

)2

In particular, taking S = T , we get

w (T |T |) ≤ 1

2

∥∥∥|T |2 + |T ∗|2
∥∥∥− 1

2
inf
‖x‖=1

(〈
|T |2 x, x

〉 1
2 −

〈
|T ∗|2 x, x

〉 1
2

)2

=
1

2
‖T ∗T + TT ∗‖ − 1

2
inf
‖x‖=1

(〈
|T |2 x, x

〉 1
2 −

〈
|T ∗|2 x, x

〉 1
2

)2
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