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On the Crossing Numbers of Join Products of Four
Graphs of Order Six With the Discrete Graph

M. Staš

Abstract. The aim of this paper is to extend known results concerning crossing numbers
of graphs by giving the crossing number for join product G∗ +Dn of the connected graph
G∗ of order six consisting of one 3-cycle and three leaves of which exactly two are adjacent
with the same vertex of such 3-cycle, and Dn consists of n isolated vertices. The proofs
rely on a partial classification of all subgraphs whose edges cross the edges of G∗ just
once. Due to the mentioned algebraic topological approach, we extend known results
concerning crossing numbers for join products of new graphs. Finally, by adding new
edges to the graph G∗, the crossing numbers of Gi + Dn for three other graphs Gi of
order six will be also established.
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1. Introduction

The crossing number cr(G) of a simple graph G with the vertex set V (G) and
the edge set E(G) is the minimum possible number of edge crossings in a drawing
of G in the plane (for the definition of a drawing, see also Klešč [13]). One can
easily verify that a drawing with the minimum number of crossings (an optimal
drawing) is always a good drawing, meaning that no two edges cross more than
once, no edge crosses itself, and also no two edges incident with the same vertex
cross. Let D be a good drawing of the graph G. We denote by crD(G) the number
of crossings among edges of G in the drawing D.

Let Gi and Gj be two edge-disjoint subgraphs of G. We denote, by crD(Gi, Gj),
the number of crossings between the edges of Gi and edges of Gj , and, by crD(Gi)
and crD(Gj), the number of crossings among edges of Gi and of Gj in D, respec-
tively. For any three mutually edge-disjoint subgraphs Gi, Gj , and Gk of G
by [13], the following equations hold:
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crD(Gi ∪Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj) ,

crD(Gi ∪Gj , Gk) = crD(Gi, Gk) + crD(Gj , Gk) .

The investigation on the crossing number of graphs is a classical and very
difficult problem. Garey and Johnson [6] proved that determining cr(G) is an
NP-complete problem. Nevertheless, many researchers are trying to solve this
problem. Research of the problem of reducing the number of crossings in the
graph is studied not only in the graph theory, but also by computer scientists.
Note that the exact values of the crossing numbers are known for only a few
families of graphs, see Clancy et al. [5]. The purpose of this article is to extend
the known results concerning this topic. Some parts of proofs will be based
on Kleitman’s result [11] on the crossing numbers for some complete bipartite
graphs. He showed that

cr(Km,n) =
⌊m

2

⌋⌊m− 1

2

⌋⌊n
2

⌋⌊n− 1

2

⌋
, with min{m,n} ≤ 6.

The join product of two graphs Gi and Gj , denoted Gi +Gj , is obtained from
vertex-disjoint copies of Gi and Gj by adding all edges between V (Gi) and V (Gj).
For |V (Gi)| = m and |V (Gj)| = n, the edge set of Gi + Gj is the union of the
disjoint edge sets of the graphs Gi, Gj , and the complete bipartite graph Km,n.
Let Dn and Pn be the discrete graph and the path on n vertices, respectively.
The crossings numbers of the join products of the discrete graphs and paths
with all graphs of order at most four have been well-known for a long time by
Klešč [12], and Klešč and Schrötter [17], and therefore it is understandable that
our immediate goal is to establish the exact values for the crossing numbers of
G + Dn and G + Pn also for all graphs G of order five and six. Of course, the
crossing numbers of G+Dn are already known for a lot of graphs G of order five
and six, see [1, 3, 8, 9, 10, 13, 15, 14, 16, 19, 20, 21]. In all these cases, the graph
G is connected and contains usually at least one cycle. Note that the crossing
numbers of the join product G+Dn are known only for some disconnected graphs
G on five or six vertices [4, 18, 22, 23].

In the paper, we will use definitions and notation of the crossing numbers
of graphs presented by Klešč [12]. Let G∗ be the connected graph of order six
consisting of one 3-cycle (for brevity, we will write C3(G

∗)) and three leaves of
which exactly two are adjacent with the same vertex of such C3(G

∗). The main
aim of the paper is to establish the crossing numbers of the join products of G∗

with the discrete graph Dn. The required result of Theorem 1 is determined for
all positive integers n mainly by using several auxiliary statements. The paper
concludes by giving the crossing numbers of Gi + Dn for three different graphs
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Gi in Corollary 2. The methods presented in the paper are based on multiple
combinatorial properties of the cyclic permutations. The similar methods were
partially used first time by Hernández-Vélez et al. [7]. By Berežný and Staš [3, 4],
the properties of cyclic permutations are also verified by the help of software. In
our paper, certain parts of proofs can be also simplified with the help of software
COGA generating all cyclic permutations of six elements and its description can
be found in Berežný and Buša [2]. The list with the short names of 6!/6 = 120
cyclic permutations of six elements are collected in Table 1 of [3]. Note that we
were unable to determine the crossing number of the join product G∗+Dn using
the methods used by Klešč [13]. In the proofs of the paper, we will often use the
term “region” also in nonplanar drawings. In this case, crossings are considered
to be vertices of the “map”.

2. Cyclic Permutations and Configurations

We consider the join product of the graph G∗ with the discrete graph Dn on n
vertices. The graph G∗+Dn consists of one copy of the graph G∗ and n vertices
t1, t2, . . . , tn, where any vertex ti, i = 1, 2, . . . , n, is adjacent to every vertex of
G∗. Let T i, 1 ≤ i ≤ n, denote the subgraph induced by the six edges incident
with the vertex ti. This means that the graph T 1 ∪ · · · ∪ Tn is isomorphic to the
complete bipartite graph K6,n and

G∗ + Dn = G∗ ∪K6,n = G∗ ∪

(
n⋃

i=1

T i

)
. (1)

Let D be a drawing of the graph G∗ + Dn. The rotation rotD(ti) of a vertex
ti in the drawing D is the cyclic permutation that records the (cyclic) counter-
clockwise order in which the edges leave ti has been defined by Hernández-Vélez et
al. [7] or Woodall [24]. We use the notation (123456) if the counter-clockwise order
the edges incident with the vertex ti is tiv1, tiv2, tiv3, tiv4, tiv5, and tiv6. Recall
that a rotation is a cyclic permutation; that is, (123456), (234561), (345612),
(456123), (561234), and (612345) denote the same rotation. By rotD(ti), we
understand the inverse permutation of rotD(ti). We will separate all subgraphs
T i of the graph G∗ + Dn into three mutually-disjoint subsets depending on how
many times the considered T i crosses the edges of G∗ in D. For i = 1, . . . , n,
T i ∈ RD if crD(G∗, T i) = 0, and T i ∈ SD if crD(G∗, T i) = 1. Every other
subgraph T i crosses the edges of G∗ at least twice in D. Moreover, let F i denote
the subgraph G∗ ∪ T i for T i ∈ RD, where i ∈ {1, . . . , n}. Thus, for a given
subdrawing of G∗ in D, any subgraph F i is exactly represented by rotD(ti).
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According to the arguments in the proof of the main Theorem 1, if we would
like to obtain an optimal drawing D of G∗ + Dn, then the set RD must be
nonempty. Thus, we will only consider drawings of the graph G∗ for which there
is a possibility to obtain a subgraph T i whose edges do not cross the edges of G∗.
Since there is only one subdrawing of its subgraph C3(G

∗), the remaining edges
of G∗ can cross the edges of C3(G

∗) or they cross each other in the considered
subdrawings. Hence, there are thirteen possible non isomorphic drawings of G∗

which are presented in Figure 1, and their vertex notation will be justified later.
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Figure 1: Thirteen possible non isomorphic drawings of the graph G∗.
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Let us first assume a good drawing D of the graph G∗ + Dn in which the
edges of G∗ do not cross each other. In this case, without loss of generality, from
the drawings in Figure 1 we can choose the vertex notation of the graph G∗ as
shown in Figure 1(a). Our aim shall be to list all possible rotations rotD(ti) which
can appear in D if the edges of T i do not cross the edges of G∗. Since there is
only one subdrawing of F i \{v2, v3} represented by the rotation (1654), there are
two and three possibilities for how to obtain the subdrawing of F i depending on
which region the edges tiv2 and tiv3 are placed in, respectively. These 2× 3 = 6
possibilities under our consideration are denoted by Ap, for p = 1, . . . , 6, and we
will call them by the configurations of corresponding subdrawings of the subgraph
F i in D. For our purposes, it does not matter which of the regions is unbounded,
so we can assume that the drawings are as shown in Figure 2.
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Figure 2: Drawings of six possible configurations from M of the subgraph F i.

In the rest of the paper, we represent a cyclic permutation by the permuta-
tion with 1 in the first position. Thus the configurations A1, A2, A3, A4, A5,
and A6 are represented by the cyclic permutations (136542), (165324), (136524),
(163524), (163542), and (165342), respectively. Of course, in a fixed drawing of
the graph G∗+Dn, some configurations fromM = {A1,A2,A3,A4,A5,A6} need
not appear. So we denote byMD the set of all configurations for the drawing D
belonging to M.
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We remark that if two different subgraphs F i and F j with configurations from
MD cross in a drawing D of G∗+Dn, then only the edges of T i cross the edges of
T j . Let X , Y be the configurations fromMD. We denote by crD(X ,Y) the num-
ber of crossings in D between T i and T j for different T i, T j ∈ RD such that F i, F j

have configurations X , Y, respectively. Finally, let cr(X ,Y) = min{crD(X ,Y)}
over all good drawings of the graph G∗ + Dn with X ,Y ∈ MD. Our aim is to
establish cr(X ,Y) for all pairs X ,Y ∈ M. Let Pi denote the inverse cyclic per-
mutation to the permutation Pi, for i = 1, . . . , 120, where the list with the short
names of 6!/6 = 120 cyclic permutations of six elements is presented in Table 1
of [3]. Woodall [24] defined the cyclic-ordered graph COG with the set of vertices
V = {P1, P2, . . . , P120}, and with the set of edges E, where two vertices are joined
by the edge if the vertices correspond to the permutations Pi and Pj , which are
formed by the exchange of exactly two adjacent elements of the 6-tuple (i. e.,
an ordered set with 6 elements). Hence, if dCOG(”rotD(ti)”, ”rotD(tj)”) denotes
the distance between two vertices which correspond to the cyclic permutations
rotD(ti) and rotD(tj) in the graph COG, then

crD(T i, T j) ≥ Q(rotD(ti), rotD(tj)) = dCOG(”rotD(ti)”, ”rotD(tj)”) (2)

for any two different subgraphs T i and T j , where Q(rotD(ti), rotD(tj)) has been
already defined in [3] as the minimum number of interchanges of adjacent elements
of rotD(ti) required to produce the inverse cyclic permutation of rotD(tj). It turns
out that the property (2) is a useful tool for the establishing lower bounds for
several cases.

Now, we are ready to find the necessary numbers of crossings between sub-
graphs T i and T j for the corresponding configurations of F i and F j from M.
In particular, the configurations A1 and A2 are represented by the cyclic per-
mutations P111 = (136542) and P72 = (165324), respectively. Since P72 =
(142356) = P4, we have cr(A1,A2) ≥ 3 using dCOG(”P111”, ”P4”) = 3. Details
have been worked out by Woodall [24]. The same reason gives cr(A1,A3) ≥ 5,
cr(A1,A4) ≥ 4, cr(A1,A5) ≥ 5, cr(A1,A6) ≥ 4, cr(A2,A3) ≥ 4, cr(A2,A4) ≥ 5,
cr(A2,A5) ≥ 4, cr(A2,A6) ≥ 5, cr(A3,A4) ≥ 5, cr(A3,A5) ≥ 4, cr(A3,A6) ≥ 3,
cr(A4,A5) ≥ 5, cr(A4,A6) ≥ 4, and cr(A5,A6) ≥ 5. Moreover, by a discussion
of possible subdrawings, we can verify that cr(A3,A5) ≥ 6 and cr(A3,A6) ≥ 4.
For any T i ∈ RD with the configuration A6 of F i, if there is a subgraph T j ,
j 6= i such that crD(T i, T j) ≤ 3, then the vertex tj must be placed in one of
three possible regions with three vertices of G∗ on its boundary in the subdraw-
ing D(F i). For all three possible placements of tj , three edges of T j enforce at
least 4 crossings on the edges of T i if the edges of the graph G∗ cannot be crossed
by T j , and therefore, cr(A3,A6) ≥ 4. Similar arguments can be applied to show
that cr(A3,A5) ≥ 6. Clearly, also cr(Ap,Ap) ≥ 6 for any p = 1, . . . , 6. The
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resulting lower bounds for the number of crossings of configurations fromM are
summarized in the symmetric Table 1 (here, Ap and Aq are configurations of the
subgraphs F i and F j , where p, q ∈ {1, . . . , 6}).

− A1 A2 A3 A4 A5 A6

A1 6 3 5 4 5 4

A2 3 6 4 5 4 5

A3 5 4 6 5 6 4

A4 4 5 5 6 5 4

A5 5 4 6 5 6 5

A6 4 5 4 4 5 6

Table 1: The necessary number of crossings between T i and T j for the configurations Ap and Aq.

For easier and more accurate labeling in the proofs of assertions, let us define
notation of regions in some subdrawings of G∗ + Dn. For T i ∈ RD, the unique
drawing of F i contains six regions with the vertex ti on its boundary. For example,
if F i has the configuration A1, then let us denote these six regions by ω1,2,
ω2,4, ω2,4,5,3, ω3,5,6, ω3,6, and ω1,3 depending on which of vertices are located on
the boundary of the corresponding region.

3. The Crossing Number of G∗ + Dn

Two vertices ti and tj of G∗ + Dn are antipodal in a drawing of G∗ + Dn if
the subgraphs T i and T j do not cross. A drawing is antipode-free if it has no
antipodal vertices. The following statements related to some restricted drawings
will be helpful in proving the main theorem.

Lemma 1 ([3], Lemma 3.1). Let D be a good and antipode-free drawing of G∗ +
Dn, n > 2. Let 2|RD| + |SD| > 2n − 2

⌊
n
2

⌋
and let T i, T j ∈ RD be two different

subgraphs with crD(T i ∪ T j) ≥ 4. If both conditions

crD(G∗ ∪ T i ∪ T j , T l) ≥ 10 for any T l ∈ RD \ {T i, T j}, (3)

crD(G∗ ∪ T i ∪ T j , T l) ≥ 7 for any T l ∈ SD (4)

hold, then there are at least 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
crossings in D.

Let us first note that if D is a good and antipode-free drawing of G∗ + Dn

with the vertex notation of the graph G∗ in a way shown in Figure 1(a), and
T i ∈ RD such that F i = G∗ ∪ T i has some configuration Ap ∈ MD, then
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crD(G∗ ∪ T i, T l) ≥ 2 holds for any T l, l 6= i, see Figure 2. Therewith, there are
possibilities of an existence of a subgraph T k ∈ SD with crD(T i, T k) = 1 only for
the case of the configuration A1 of F i.

Lemma 2. Let D be a good and antipode-free drawing of G∗ + Dn, n > 2, with
the vertex notation of the graph G∗ in a way shown in Figure 1(a). Let T i ∈ RD

be a subgraph such that F i has configuration A1 ∈ MD. If there is a subgraph
T k ∈ SD with crD(T i, T k) = 1, then

a) crD(G∗ ∪ T i ∪ T k, T l) ≥ 8 for any subgraph T l ∈ SD, l 6= k with respect to
the restriction crD(T i, T l) = 1;

b) crD(G∗ ∪ T i ∪ T k, T l) ≥ 7 for any subgraph T l ∈ RD, l 6= i;

c) crD(G∗ ∪ T i ∪ T k, T l) ≥ 7 for any subgraph T l ∈ SD with crD(T i, T l) ≥ 2;

d) crD(G∗ ∪ T i ∪ T k, T l) ≥ 7 for any subgraph T l 6∈ RD ∪ SD.

Proof. Let us assume the configuration A1 of F i, and remark that it is
represented by the cyclic permutation P111 = (136542).

a) The unique drawing of F i contains six regions with the vertex ti on their
boundaries, see Figure 2. If there is a subgraph T k ∈ SD with crD(T i, T k) =
1, then the vertex tk must be placed in the pentagonal region of D(F i)
with four vertices of G∗ on its boundary, i.e., tk ∈ ω2,4,5,3. This enforces
that the edge v2v3 of the graph G∗ must be crossed by the edge tkv1 and
crD(T i, T k) = 1 only for the subgraph T k with rotD(tk) = (124653) = P79.
Then, crD(T k, T l) ≥ 6 holds for any T l ∈ SD, l 6= k with respect to the
restriction crD(T i, T l) = 1, because rotD(tk) = rotD(tl), for more see also
Woodall [24]. Hence, crD(G∗ ∪ T i ∪ T k, T l) ≥ 1 + 1 + 6 = 8 is fulfilled for
such a subgraph T l.

b) Let us assume that T l ∈ RD, l 6= i, with the configuration Ap ∈ MD of
F l for some p ∈ {1, . . . , 6}. Since any subgraph F l is exactly represented
by rotD(tl), then the lower bounds of crD(T k, T l) can be defined by the
property (2). The resulting lower bounds of number of crossings for such
a graph T k ∪ T l are given in the second column of Table 2. The values in
the first column of Table 2 are given by the lower bounds from the first
column of Table 1. The smallest value in the last column of Table 2 gives
the required minimum number of crossings, because T l does not cross the
edges of G∗.
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conf(F l) crD(T i, T l) crD(T k, T l) crD(T i ∪ T k, T l)

A1 6 1 7

A2 3 4 7

A3 5 2 7

A4 4 3 7

A5 5 2 7

A6 4 3 7

Table 2: All possibilities of F l for T l ∈ RD with crD(T i, T k) = 1, and T k ∈ SD.

c) Let T k ∈ SD be a subgraph with crD(T i, T k) = 1, i.e., the subdrawing
of F k is represented by P79 = (124653). If we still assume a T l ∈ SD

such that crD(T i, T l) = 2, then the vertex tl is also placed in the region of
D(F i) with four vertices of G∗ on its boundary, i.e., tl ∈ ω2,4,5,3. It is not
hard to verify that rotD(tl) is either P80 = (142653) or P37 = (124635) or
P117 = (146532) or P71 = (156324). Now, using P79 = (135642) = P109,
dCOG(”P80”, ”P109”) = dCOG(”P37”, ”P109”) = dCOG(”P117”, ”P109”) = 5,
and dCOG(”P71”, ”P109”) = 3, we see that crD(T k, T l) ≥ 5 trivially holds
for the first three possibilities. The subdrawing of G∗∪T i∪T k∪T l should be
used for the last one, and therefore, crD(G∗ ∪ T i ∪ T k, T l) ≥ 1 + 2 + 5 = 8.
We can apply the same idea for the case of crD(T k, T l) ≤ 2. Clearly, if
crD(T i, T l) ≥ 3 and crD(T k, T l) ≥ 3, we obtain the desired result crD(G∗ ∪
T i ∪ T k, T l) ≥ 1 + 3 + 3 = 7.

d) Let T l be any subgraph by which the edges of G∗ are crossed at least twice.
As crD(K6,3) ≥ 6 and crD(T i, T k) = 1, the edges of T i ∪ T k are crossed at
least five times by the edges of T l, which yields that crD(G∗∪T i∪T k, T l) ≥
2 + 5 = 7. J

Lemma 3. Let D be a good and antipode-free drawing of G∗ + Dn, n > 2, with
the vertex notation of the graph G∗ in a way shown in Figure 1(a). Let T i ∈ RD

be a subgraph such that F i has configuration Ap ∈ MD, p ∈ {1, 2, 3, 5}. If there
is a subgraph T k ∈ SD with crD(T i, T k) = 2, then

a) crD(G∗ ∪ T i ∪ T k, T l) ≥ 7 for any subgraph T l ∈ SD, l 6= k with respect to
the restriction crD(T i, T l) = 2;

b) crD(G∗ ∪ T i ∪ T k, T l) ≥ 7 for any subgraph T l ∈ SD with crD(T i, T l) ≥ 3.

Proof. Let us consider the configuration A2 of F i, and note that it is repre-
sented by the cyclic permutation P72 = (165324).
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a) We can follow the similar arguments as in the proof in Lemma 2. The unique
drawing of F i contains six regions with the vertex ti on their boundaries,
see Figure 2. If there is a T k ∈ SD with crD(T i, T k) = 2, then the vertex
tk must be placed in the quadrangular region of D(F i) with three vertices
of G∗ on its boundary, i.e., tk ∈ ω1,3,6. This forces that no edge of the
graph G∗ can be crossed by the edge tkv4, and crD(T i, T k) = 2 only for
T k with either rotD(tk) = (123654) = P55 or rotD(tk) = (135642) = P109

if the edge v1v3 or v3v6 is crossed by the edge tkv2 or tkv5, respectively.
Using P109 = (124653) = P79, and dCOG(”P55”, ”P79”) = 4 we obtain
crD(G∗ ∪T i ∪T k, T l) ≥ 1 + 2 + 4 = 7 for any subgraph T l ∈ SD, l 6= k with
crD(T i, T l) = 2.

b) Let T k ∈ SD be a subgraph with crD(T i, T k) = 2, i.e., the subdrawing of F k

is represented by either P55 = (123654) or P109 = (135642). Without loss
of generality, let us assume that rotD(tk) = (123654). If there is a T l ∈ SD

with crD(T k, T l) = 1, then the vertex tl must be placed in the pentagonal
region of D(F k) with four vertices of G∗ on its boundary. Hence, the
subgraph F l must be represented by the cyclic permutation P71 = (156324).
Since P71 = (142365) = P28, the distance dCOG(”P28”, ”P72”) = 5 implies
crD(T i, T l) ≥ 5. Thus, crD(G∗∪T i∪T k, T l) ≥ 1+5+1 = 7. Further, let us
assume that crD(T k, T l) ≥ 2 for any T l ∈ SD. Since the case crD(T i, T l) ≥
4 implies crD(G∗∪T i∪T k, T l) ≥ 1+4+2 = 7, let us consider a subgraph T l

with crD(T i, T l) = 3. Hence, the vertex tl must be placed in the region ω1,3,6

of the unique subdrawing of F i. Consequently, we have crD(T k, T l) ≥ 3,
i.e., crD(G∗ ∪ T i ∪ T k, T l) ≥ 1 + 3 + 3 = 7.

Since we are able to use the similar arguments for the remaining configurations
A1, A3 andA5 of F i, this completes the proof of Lemma 3. J

Corollary 1. Let D be a good and antipode-free drawing of G∗ + Dn, for n > 2,
with the vertex notation of the graph G∗ in a way shown in Figure 1(a). If
T i, T j ∈ RD are different subgraphs such that F i, F j have different configurations
from any of the sets {A2,A3} and {A2,A5}, then

crD(T i ∪ T j , T k) ≥ 6 for any T k ∈ SD,

i.e.,

crD(G∗ ∪ T i ∪ T j , T k) ≥ 7 for any T k ∈ SD.

Moreover, if there is no T k ∈ SD with crD(T i, T k) = 1 for each T i ∈ RD with the
configuration A1 ∈MD of F i, then the same result is true for the pair {A1,A2}.
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Proof. Let us assume the configurations A2 of F i and A3 of F j . If there
is a subgraph T k ∈ SD with crD(T i, T k) = 2, then the subgraph F k can be
represented only by the cyclic permutation either P55 = (123654) or P109 =
(135642). Note that the configuration A3 is represented by P69. Using P69 =
(142563) = P74, and dCOG(”P55”, ”P74”) = dCOG(”P109”, ”P74”) = 4 we obtain
crD(T j , T k) ≥ 4. Hence, crD(G∗ ∪ T i ∪ T j , T k) ≥ 1 + 2 + 4 = 7. We can apply
the same idea for the case where there is a T k ∈ SD with crD(T j , T k) = 2. Let us
assume that crD(T i, T k) ≥ 3, and crD(T j , T k) ≥ 3 for any T k ∈ SD. This enforces
that, crD(G∗∪T i∪T j , T k) ≥ 1+3+3 = 7 trivially holds for any T k ∈ SD. The sim-
ilar arguments can be used for the remaining pairs of configurations, and this com-
pletes the proof of Corollary 1. J

We have to emphasize that, in Corollary 1, the assumption crD(T i, T k) ≥ 2
for any T k ∈ SD and each T i ∈ RD with the configuration A1 ∈ MD of F i is
inevitable. For T k ∈ SD and for T j ∈ RD with the configuration A2 of F j , the
reader can easily find a subdrawing of G∗∪T i∪T j ∪T k in which crD(T i, T k) = 1
and crD(T j , T k) = 4, that is, crD(G∗ ∪ T i ∪ T j , T k) = 6.

v
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v
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v
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v
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v
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v
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Figure 3: The good drawing of G∗ + Dn with 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2

⌊
n
2

⌋
crossings.

Theorem 1. If n ≥ 1, then cr(G∗ + Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
.

Proof. In Figure 3, the edges of K6,n cross each other 6
⌊
n
2

⌋⌊
n−1
2

⌋
times, each

subgraph T i, i = 1, . . . ,
⌈
n
2

⌉
on the left side does not cross the edges of G∗ and each

subgraph T i, i =
⌈
n
2

⌉
+ 1, . . . , n on the right side crosses the edges of G∗ exactly

twice. Thus, cr(G∗ + Dn) ≤ 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
. We prove the reverse inequality

by induction on n. The graph G∗ + D1 is planar; hence, cr(G∗ + D1) = 0. It is
clear from the possibility of adding a subgraph T k ∈ SD with two crossings into
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the subdrawing of A1 in Figure 2 that cr(G∗ + D2) ≤ 2. The graph G∗ + D2

contains a subdivision of K3,4, and therefore cr(G∗+D2) ≥ 2. So, cr(G∗+D2) = 2
and the result is true for n = 1 and n = 2. Suppose now that, for some n ≥ 3,
there is a drawing D with

crD(G∗ + Dn) < 6
⌊n

2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
, (5)

and that

cr(G∗ + Dm) = 6
⌊m

2

⌋⌊m− 1

2

⌋
+ 2
⌊m

2

⌋
for any integer m < n. (6)

We claim that the considered drawing D must be antipode-free. For a contra-
diction, suppose that crD(T k, T l) = 0 for two different subgraphs T k and T l. If
at least one of T k and T l, say T k, does not cross G∗, it is not difficult to verify in
Figure 1 that T l must cross G∗ ∪T k at least twice, that is, crD(G∗, T k ∪T l) ≥ 2.
By [11], we already know that cr(K6,3) = 6, which yields that any Tm, m 6= k, l,
crosses the edges of the subgraph T k ∪ T l at least six times. So, the number of
crossings of G∗ + Dn in D is given by

crD (G∗ + Dn−2) + crD(K6,n−2, T
k ∪ T l) + crD(G∗, T k ∪ T l) + crD(T k ∪ T l)

≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 2
⌊n− 2

2

⌋
+ 6(n− 2) + 2 = 6

⌊n
2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
.

This contradicts the assumption (5) and confirms that D is antipode-free.
Moreover, if r = |RD| and s = |SD|, the assumption (5) together with the well-
known fact cr(K6,n) = 6

⌊
n
2

⌋⌊
n−1
2

⌋
imply that in D:

crD(G∗)+
∑

T i∈RD

crD(G∗, T i)+
∑

T i∈SD

crD(G∗, T i)+
∑

T i 6∈RD∪SD

crD(G∗, T i) < 2
⌊n

2

⌋
,

i.e.,

crD(G∗) + 0r + s + 2(n− r − s) < 2
⌊n

2

⌋
. (7)

This readily enforces that 2r+s > 2n−2
⌊
n
2

⌋
and r > n−r−s, that is, r ≥ 1,

and so there is at least one subgraph T i whose edges do not cross the edges of
G∗. Now, for T i ∈ RD, we will discuss the existence of possible configurations
of subgraph F i = G∗ ∪ T i in the drawing D and we show that in all cases the
contradiction with the assumption (5) is obtained.

Case 1: crD(G∗) = 0. Without loss of generality, we can choose the vertex
notation of the graph G∗ in a way shown in Figure 1(a). We deal with the
following possibilities for the nonempty set of configurations MD.
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Let us first consider that A1 ∈ MD, and let also for some T i ∈ RD with the
configuration A1 of F i there be a subgraph T k ∈ SD such that crD(T i, T k) = 1.
By Lemma 2, we already know that the subgraph T k is uniquely represented by
rotD(tk) = (124653). Let us denote SD(T i) = {T k ∈ SD : crD(T i, T k) = 1}, and
s1 = |SD(T i)|. Note that SD(T i) is a subset of SD and 1 ≤ s1 ≤ s. Then, by
fixing the graph G∗ ∪ T i ∪ T k and using the lower bounds in Lemma 2, we have

crD(G∗ + Dn) = crD(K6,n−2) + crD(K6,n−2, G
∗ ∪ T i ∪ T k) + crD(G∗ ∪ T i ∪ T k)

≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 7(r − 1) + 8(s1 − 1) + 7(s− s1) + 7(n− r − s) + 2

= 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 7n + s1 − 13 ≥ 6

⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 7n + 1− 13

≥ 6
⌊n

2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
.

This contradicts the assumption of D. Now, suppose that for any T k ∈ SD,
crD(T i, T k) ≥ 2 holds for each T i ∈ RD with the configuration A1 ∈MD of F i.

a) Ap ∈ MD for some p ∈ {4, 6}. Without loss of generality, let us assume
that Tn ∈ RD with the configuration either A4 or A6 of Fn. Only for these
two subcases, the reader can easily verify in seven possible regions of D(Fn)
that crD(G∗ ∪ Tn, T k) ≥ 4 is true for any subgraph T k, k 6= n. Thus, by
fixing the subgraph G∗ ∪ Tn, we have

crD(G∗ +Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 4(n− 1) + 0 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
.

This confirms a contradiction with the assumption in D, and therefore, we
can suppose that Ap 6∈ MD for any p = 4, 6 in all following cases.

b) {A1,A2} ⊆ MD. Without loss of generality, let us consider two subgraphs
Tn−1, Tn ∈ RD such that Fn−1 and Fn have different configurationsA1,A2,
respectively. Then, crD(G∗∪Tn−1∪Tn, T i) ≥ 9 is true for any T i ∈ RD with
i 6= n− 1, n by summing the values in the first two rows for each column of
Table 1, and crD(G∗∪Tn−1∪Tn, T k) ≥ 7 holds for any subgraph T k ∈ SD by
Corollary 1. Moreover, crD(Tn−1 ∪Tn, T i) ≥ 4 is fulfilled for any subgraph
T i with i 6= n− 1, n according to the properties of the cyclic permutations.
Since crD(Tn−1 ∪ Tn) ≥ 3, then by fixing the graph G∗ ∪ Tn−1 ∪ Tn, we
have

crD(G∗ + Dn) ≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 9(r − 2) + 7s + 6(n− r − s) + 3
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= 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 6n + r + (2r + s)− 15

≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 6n + 1 + 2n− 2

⌊n
2

⌋
+ 1− 15

≥ 6
⌊n

2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
.

This also contradicts the assumption of D.

c) {A1,A2} 6⊆ MD. Here, two subcases may occur:

1. {A2,A3} ⊆ MD or {A2,A5} ⊆ MD. Without loss of generality, let us
consider two subgraphs Tn−1, Tn ∈ RD such that Fn−1 and Fn have
different configurations A2,A3, respectively. The condition (3) is true
by summing the values in all remaining columns in the corresponding
two rows of Table 1, and the condition (4) holds by Corollary 1. Thus,
all assumptions of Lemma 1 are fulfilled. Due to the symmetry of the
configurations, we are able to use the same arguments for the case of
A2 of Fn−1 and A5 of Fn.

2. {A2,A3} 6⊆ MD and {A2,A5} 6⊆ MD. In this case, we discuss
simultaneously either MD = {Aq} for only one q ∈ {1, 2, 3, 5} or
{Ap,Aq} ⊆ MD for some different p, q ∈ {1, 3, 5}. Without loss of
generality, we can assume the configuration Aq ∈ MD of Fn. Let us
denote SD(Tn) = {T k ∈ SD : crD(Tn, T k) = 2}, and s2 = |SD(Tn)|.
Remark that SD(Tn) is a subset of SD and s2 ≤ s. If the set SD(Tn)
is empty, then by fixing the graph G∗ ∪ Tn, we have

crD(G∗ + Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 5(r − 1) + 4s + 3(n− r − s) + 0

≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 3n + (2r + s)− 5

≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 3n + 2n− 2

⌊n
2

⌋
+ 1− 5

≥ 6
⌊n

2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
.

In addition, let T k be a subgraph from the nonempty set SD(Tn).
Since all rotations rotD(tk) for A1 are different from the intended
rotD(tk) for A3 and A5, we have crD(G∗ ∪ Tn ∪ T k, T i) ≥ 6 + 2 = 8
or crD(G∗ ∪ Tn ∪ T k, T i) ≥ 5 + 3 = 8 for any T i ∈ RD, i 6= n. By
Lemma 3, crD(G∗ ∪ Tn ∪ T k, T i) ≥ 7 is fulfilled for any T i ∈ SD,



94 M. Staš

i 6= k. Moreover, crD(G∗ ∪ Tn ∪ T k, T i) ≥ 2 + 4 = 6 holds for any
T i 6∈ RD∪SD. Since n−r−s ≤ r−1, by fixing the graph G∗∪Tn∪T k,
we have

6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 8(r− 1) + 7(s2 − 1) + 7(s− s2) + 6(n− r− s) + 3

≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 7(r−1) + 7(s2−1) + 7(s− s2) + 7(n− r− s) + 3

= 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 7n− 11 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
.

All these subcases confirm a contradiction with the assumption in D.

Case 2: crD(G∗) ≥ 1. In all considered subdrawings of the graph G∗, without loss
of generality, we can choose the vertex notation of the graph G∗ in a way shown
in Figure 1(b)−(m). In all cases without the subdrawing of G∗ as in Figure 1(h),
there are one or two or three or four configurations, and for T i ∈ RD, one can
easily verify in all possible regions of D(F i) that crD(G∗ ∪ T i, T k) ≥ 4 holds for
any subgraph T k, k 6= i. Hence, by fixing the subgraph G∗ ∪ T i, we have

crD(G∗ + Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 4(n− 1) + 1 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
.

Finally, for the subdrawing of G∗ as in Figure 1(h), there are three configurations
denoted by H1, H2 and H3, and they are represented by the cyclic permutations
(146532), (146352) and (143652), respectively. Of course again, in a fixed drawing
of the graph G∗ + Dn, some configurations from N = {H1,H2,H3} need not
appear. So, we denote by ND the subset of N consisting of all configurations
that exist in the drawing D. If Hp ∈ ND for some p ∈ {2, 3}, then we are able to
apply the same idea as in the previous subdrawings provided that, for T i ∈ RD

with the configuration Hp of F i, the edges of G∗ ∪ T i are crossed at least four
times by edges of each subgraph T k, k 6= i. In case of ND = {H1}, we have to
consider the same two possibilities as in the last subcase of Case 1 according to
the possibility of an existence of a subgraph T k ∈ SD with crD(T i, T k) = 2 for
the configuration H1 of F i.

Thus, it was shown in all mentioned cases that there is no good drawing D
of the graph G∗+Dn with fewer than 6

⌊
n
2

⌋⌊
n−1
2

⌋
+2
⌊
n
2

⌋
crossings, and the proof of

Theorem 1 is done. J
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4. Three Other Graphs

Finally, in the drawing in Figure 3, we are able to add the edges v4v5 and v5v6
to the graph G∗ without additional crossings, and we obtain three new graphs Gi

for i = 1, 2, 3 in Figure 4. Therefore, the drawings of the graphs G1+Dn, G2+Dn,
and G3 +Dn with 6

⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
crossings are obtained. On the other hand,

G∗+Dn is a subgraph of each Gi+Dn, and therefore, cr(Gi+Dn) ≥ cr(G∗+Dn)
for any i = 1, 2, 3. Thus, the following result is obvious.

Corollary 2. If n ≥ 1, then cr(Gi +Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+2
⌊
n
2

⌋
, where i = 1, 2, 3.

G2G1 G3
Figure 4: Three graphs G1, G2, and G3 by adding new edges to the graph G∗.

Remark that the crossing numbers of the graphs G2 + Dn and G3 + Dn were
already obtained in [20] also using the vertex rotation. Furthermore, in the
drawing in Figure 3, it is possible to add n − 1 edges, which form the path Pn,
n ≥ 2 on the vertices of Dn without another crossing. Thus, the following result
is also obvious.

Theorem 2. If n ≥ 2, then cr(G∗ + Pn) = cr(G1 + Pn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
.
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[20] M. Staš, On the crossing numbers of join products of five graphs of order six
with the discrete graph, Opuscula Math., 40(3), 2020, 383-397.
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