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D. Bród ∗, A. Szynal-Liana

Abstract. We define a two-parameter generalization of Jacobsthal hybrid numbers. We
give Binet formula, the generating functions and some identities for these numbers.
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1. Introduction

In 2018, ([8]) Özdemir introduced a new generalization of complex, hyperbolic
and dual numbers – hybrid numbers.

Let K denote the set of hybrid numbers Z of the form

Z = a + bi + cε + dh, (1)

where a, b, c, d ∈ R and i, ε, h are operators such that

i2 = −1, ε2 = 0, h2 = 1 (2)

and

ih = −hi = ε + i. (3)

Let Z1 = a1 + b1i+ c1ε+d1h and Z2 = a2 + b2i+ c2ε+d2h be any two hybrid
numbers. We define equality, addition, subtraction and multiplication by scalar
s ∈ R in the following way:
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Z1 = Z2 only if a1 = a2, b1 = b2, c1 = c2, d1 = d2,
Z1 + Z2 = (a1 + a2) + (b1 + b2)i + (c1 + c2)ε + (d1 + d2)h,
Z1 − Z2 = (a1 − a2) + (b1 − b2)i + (c1 − c2)ε + (d1 − d2)h,
sZ1 = sa1 + sb1i + sc1ε + sd1h.

The hybrid numbers multiplication is defined using (2) and (3). Note that
using the formulas (2) and (3) we can find the product of any two hybrid units.
The Table 1 presents products of i, ε, and h.

Table 1: The hybrid number multiplication.

· i ε h

i −1 1− h ε + i
ε h + 1 0 −ε
h −ε− i ε 1

Using the rules given in the Table 1 the multiplication of hybrid numbers can
be carried out similar to the multiplication of algebraic expressions.

Addition operation on the hybrid numbers is both commutative and associa-
tive. Zero 0 = 0 + 0i + 0ε + 0h is the null element. With respect to the addition
operation, the inverse element of Z is −Z = −a− bi− cε−dh. The multiplication
is not commutative, but associative. Moreover, (K,+, ·) is a non-commutative
ring (with identity element 1 = 1 + 0i + 0ε + 0h), see [8].

The conjugate of a hybrid number Z is defined by

Z = a + bi + cε + dh = a− bi− cε− dh. (4)

The real number

C(Z) = ZZ = ZZ = a2 + (b− c)2 − c2 − d2 = a2 + b2 − 2bc− d2 (5)

is called the character of the hybrid number Z. Hybrid numbers are classified as
spacelike, timelike and lightlike according to its character. We say that a hybrid
number Z is spacelike, timelike or lightlike if C(Z) < 0, C(Z) > 0 or C(Z) = 0,
respectively. For the basics on hybrid numbers, see [8].

A special kind of hybrid numbers, namely Horadam hybrid numbers, were
introduced in [9]. Interesting results of Jacobsthal hybrid numbers (which are a
subset of Horadam hybrid numbers) obtained recently can be found in [9, 12].
In [7], Kızılateş defined the q−hybrid Fibonacci numbers and q−hybrid Lucas
numbers. The Jacobsthal hybrid numbers are a special case of the q−hybrid
Fibonacci numbers. Note that these numbers were defined using notations related
to q−calculus. The theory of the quantum (q−) calculus has been studied in
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physics, electrochemistry, biology, mathematics etc. In this paper, we introduce
and study a two-parameter generalization of the Jacobsthal hybrid numbers –
the (s, p)-Jacobsthal hybrid numbers.

2. The (s, p)-Jacobsthal numbers

Let n ≥ 0 be an integer. The Jacobsthal sequence {Jn} is defined by the
second order linear recurrence

Jn = Jn−1 + 2Jn−2 for n ≥ 2 (6)

with initial terms J0 = 0, J1 = 1. The direct formula for the nth Jacobsthal
number has the form Jn = 2n−(−1)n

3 , named as the Binet formula for the Jacob-
sthal numbers. The first ten terms of the sequence are 0, 1, 1, 3, 5, 11, 21, 43,
85, 171. There are many generalizations of the sequence in the literature. The
second order recurrence (6) has been generalized in two ways: first by preserving
the initial conditions and second by preserving the recurrence relation. We recall
some of such generalizations:

1) k-Jacobsthal sequence {jk,n} [6], jk,n+1 = kjk,n + 2jk,n−1 for k ≥ 1 and
n ≥ 1 with jk,0 = 0, jk,1 = 1,

2) k-Jacobsthal sequence {Jk,n} [4], Jk,n+1 = Jk,n + kJk,n−1 for k ≥ 1 and
n ≥ 1 with Jk,0 = 0, Jk,1 = 1,

3) generalized Jacobsthal p-sequence {Jp} [3], for any p ∈ Z+ and n > p + 1
Jp(n) = Jp(n−1)+2Jp(n−p−1) with Jp(1) = Jp(2) = . . . = Jp(p+1) = 1,

4) Jacobsthal r-sequence {J(r, n)} [2], for r ≥ 0 J(r, n) = 2rJ(r, n−1)+(2r +
4r)J(r, n− 2) for n ≥ 2 with J(r, 0) = 1, J(r, 1) = 1 + 2r+1,

5) (s, t)-Jacobsthal sequence {ĵn(s, t)} [14], ĵn(s, t) = sĵn−1(s, t) + 2tĵn−2(s, t)
for n ≥ 2 with ĵ0(s, t) = 0 and ĵ1(s, t) = 1, for real numbers s, t, s > 0,
t 6= 0 and s2 + 8t > 0,

6) Jacobsthal sequence {J(d, t, n)} [10], J(d, t, n) = J(d, t, n−1)+tJ(d, t, n−d)
for n ≥ d with J(d, t, 0) = 1, J(d, t, n) = 1 for n = 1, . . . , d, t ≥ 1, d ≥ 2.

In [1], a two-parameter generalization of the Jacobsthal numbers was investi-
gated. We recall this generalization and some properties of these numbers.

Let n ≥ 0, s ≥ 0, p ≥ 0 be integers, and the sequence {Jn(s, p)} be defined
by the following recurrence

Jn(s, p) = 2s+pJn−1(s, p) + (22s+p + 2s+2p)Jn−2(s, p) for n ≥ 2 (7)
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with initial conditions J0(s, p) = 1, J1(s, p) = 2s + 2p + 2s+p.
It is easily seen that for s = p = 0 we have Jn(0, 0) = Jn+2.
By (7) we obtain

J0(s, p) = 1
J1(s, p) = 2s + 2p + 2s+p

J2(s, p) = 22s+p+1 + 2s+2p+1 + 22s+2p

J3(s, p) = 23s+2p+1 + 22s+3p+1 + 23s+3p + 23s+p

+22s+2p+1 + 23s+2p + 22s+3p + 2s+3p.

Theorem 1. [1] (Binet formula) Let n ≥ 0, s ≥ 0, p ≥ 0 be integers. Then the
nth (s, p)-Jacobsthal number is given by

Jn(s, p) = c1r
n
1 + c2r

n
2 , (8)

where

r1 = 2s+p−1 + 1
2

√
4s+p + 2s+p+2(2s + 2p),

r2 = 2s+p−1 − 1
2

√
4s+p + 2s+p+2(2s + 2p),

c1 =
2s + 2p + 2s+p − 2s+p−1 + 1

2

√
4s+p + 2s+p+2(2s + 2p)√

4s+p + 2s+p+2(2s + 2p)
,

c2 =
−2s − 2p − 2s+p + 2s+p−1 + 1

2

√
4s+p + 2s+p+2(2s + 2p)√

4s+p + 2s+p+2(2s + 2p)
.

Theorem 2. [1] The generating function of the sequence {Jn(s, p)} has the fol-
lowing form

f(x) =
1 + (2s + 2p)x

1− 2s+px− (22s+p + 2s+2p)x2
.

Theorem 3. [1] Let n ≥ 1, s ≥ 0, p ≥ 0 be integers. Then

n−1∑
l=0

Jl(s, p) =
Jn(s, p) + (22s+p + 2s+2p)Jn−1(s, p)− 1− 2s − 2p

2s+p(1 + 2s + 2p)− 1
.

Application of the Jacobsthal sequence to curves was presented in [5]. More-
over, the Jacobsthal sequence has an application in the theory of graphs. Let G
be a finite, undirected, simple graph with vertex set V (G) and edge set E(G). A
set S ⊂ V (G) is an independent set of G if for any two distinct vertices x, y ∈ S
the relation xy 6∈ E(G) holds. Moreover, a subset of V (G) containing only one
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vertex and the empty set are independent sets of G. The number of independent
sets of a graph G is denoted by NI(G).

Consider a graph G (Figure 1).
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Figure 1.

In [11] it was proved that
NI(G) = Jn+2.

Other applications of generalizations of the Jacobsthal numbers in the graph
theory can be found in [1, 2].

3. The (s, p)-Jacobsthal hybrid numbers

Let n ≥ 0 be an integer. We define the nth (s, p)-Jacobsthal hybrid number
JHs,p

n by the following relation:

JHs,p
n = Jn(s, p) + iJn+1(s, p) + εJn+2(s, p) + hJn+3(s, p), (9)

where Jn(s, p) is given by (7).
Note that for s = p = 0 we obtain JH0,0

n = JHn+2, where JHn denotes nth
Jacobsthal hybrid number defined in [12].

By some elementary calculations we find the following recurrence relation for
the (s, p)-Jacobsthal hybrid numbers.

Theorem 4. Let n ≥ 0, s ≥ 0, p ≥ 0 be integers. Then

2s+pJHs,p
n+1 + (22s+p + 2s+2p)JHs,p

n = JHs,p
n+2.

Proof.

2s+pJHs,p
n+1 + (22s+p + 2s+2p)JHs,p

n =

= 2s+p(Jn+1(s, p) + iJn+2(s, p) + εJn+3(s, p) + hJn+4(s, p))

+ (22s+p + 2s+2p)(Jn(s, p) + iJn+1(s, p) + εJn+2(s, p) + hJn+3(s, p))

= Jn+2(s, p) + iJn+3(s, p) + εJn+4(s, p) + hJn+5(s, p) = JHs,p
n+2.

J
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Theorem 5. Let n ≥ 0, s ≥ 0, p ≥ 0 be integers. Then

C(JHs,p
n ) = (1− 26s+4p − 24s+6p − 25s+5p+1)J2

n(s, p)
−
(
22s+p+1 + 2s+2p+1)(1 + 23s+3p + 23s+2p + 22s+3p

)
Jn(s, p)Jn+1(s, p)

+(1− 2s+p+1 − (22s+2p + 22s+p + 2s+2p)2)J2
n+1(s, p).

Proof. By formula (7) we have

Jn+3(s, p) = (22s+2p + 2s+2p + 22s+p)Jn+1(s, p)

+ 2s+p(22s+p + 2s+2p)Jn(s, p),

Jn+2(s, p) = 2s+pJn+1(s, p) + (2s+2p + 22s+p)Jn(s, p).

Hence

C(JHs,p
n ) = J2

n(s, p) + J2
n+1(s, p)− 2Jn+1(s, p)(2s+pJn+1(s, p)

+ (2s+2p + 22s+p)Jn(s, p))

− [(22s+2p + 2s+2p + 22s+p)Jn+1(s, p) + 2s+p(22s+p + 2s+2p)Jn(s, p)]2.

After simple calculations we get

C(JHs,p
n ) = (1− 22s+2p(22s+p + 2s+2p)2)J2

n(s, p)
−
(
22s+p+1 + 2s+2p+1)(1 + 2s+p(22s+2p + 22s+p + 2s+2p)

)
Jn(s, p)Jn+1(s, p)

+(1− 2s+p+1 − (22s+2p + (22s+p + 2s+2p)2)J2
n+1(s, p)

= (1− 26s+4p − 24s+6p − 25s+5p+1)J2
n(s, p)

−
(
22s+p+1 + 2s+2p+1)(1 + 23s+3p + 23s+2p + 22s+3p

)
Jn(s, p)Jn+1(s, p)

+(1− 2s+p+1 − (22s+2p + 22s+p + 2s+2p)2)J2
n+1(s, p).

J

Remark 1. For s = p = 0 we obtain the result from [12] – the character of the
Jacobsthal hybrid number JHn:

C(JH0,0
n ) = C(JHn+2) = −3J2

n+2 − 10J2
n+3 − 16Jn+2Jn+3.

Theorem 6. Let n ≥ 0, s ≥ 0, p ≥ 0 be integers. Then

(i) JHs,p
n + JHs,p

n = 2Jn(s, p),

(ii) (JHs,p
n )2 = 2Jn(s, p)JHs,p

n − C(JHs,p
n ).
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Proof. (i) By formula (4) we get

JHs,p
n + JHs,p

n = Jn(s, p) + iJn+1(s, p) + εJn+2(s, p) + hJn+3(s, p)

+ Jn(s, p)− iJn+1(s, p)− εJn+2(s, p)− hJn+3(s, p) = 2Jn(s, p).

(ii)

(JHs,p
n )2 = J2

n(s, p)− J2
n+1(s, p) + J2

n+3(s, p)

+ 2iJn(s, p)Jn+1(s, p) + 2εJn(s, p)Jn+2(s, p) + 2hJn(s, p)Jn+3(s, p)

+ (iε + εi)Jn+1(s, p)Jn+2(s, p) + (ih + hi)Jn+1(s, p)Jn+3(s, p)

+ (εh + hε)Jn+2(s, p)Jn+3(s, p)

= J2
n(s, p)− J2

n+1(s, p) + J2
n+3(s, p) + 2Jn+1(s, p)Jn+2(s, p)

+ 2(iJn(s, p)Jn+1(s, p) + εJn(s, p)Jn+2(s, p) + hJn(s, p)Jn+3(s, p))

= 2Jn(s, p)JHs,p
n − (J2

n(s, p) + J2
n+1(s, p)

− 2Jn+1(s, p)Jn+2(s, p) + J2
n+3(s, p))

= 2Jn(s, p)JHs,p
n − C(JHs,p

n ).

J

Theorem 7. Let n ≥ 0, s ≥ 0, p ≥ 0 be integers. Then

JHs,p
n − iJHs,p

n+1 − εJHs,p
n+2 − hJHs,p

n+3 =
= Jn(s, p) + Jn+2(s, p)− 2Jn+3(s, p)− Jn+6(s, p).

Proof. By the definition of the (s, p)-Jacobsthal hybrid numbers we get

JHs,p
n − iJHs,p

n+1 − εJHs,p
n+2 − hJHs,p

n+3 =

= Jn(s, p) + iJn+1(s, p) + εJn+2(s, p) + hJn+3(s, p)

− i(Jn+1(s, p) + iJn+2(s, p) + εJn+3(s, p) + hJn+4(s, p))

− ε(Jn+2(s, p) + iJn+3(s, p) + εJn+4(s, p) + hJn+5(s, p))

− h(Jn+3(s, p) + iJn+4(s, p) + εJn+5(s, p) + hJn+6(s, p))

= Jn(s, p) + Jn+2(s, p)− (1− h)Jn+3(s, p)

+ (ε + i)Jn+4(s, p)− (h + 1)Jn+3(s, p)− (ε + i)Jn+4(s, p)− Jn+6(s, p)

= Jn(s, p) + Jn+2(s, p)− 2Jn+3(s, p)− Jn+6(s, p).

J
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Theorem 8. (Binet formula) Let n ≥ 0, s ≥ 0, p ≥ 0 be integers. Then

JHs,p
n = c1r̂1r

n
1 + c2r̂2r

n
2 ,

where

r1 = 2s+p−1 + 1
2

√
4s+p + 2s+p+2(2s + 2p),

r2 = 2s+p−1 − 1
2

√
4s+p + 2s+p+2(2s + 2p),

c1 =
2s + 2p + 2s+p − 2s+p−1 + 1

2

√
4s+p + 2s+p+2(2s + 2p)√

4s+p + 2s+p+2(2s + 2p)
,

c2 =
−2s − 2p − 2s+p + 2s+p−1 + 1

2

√
4s+p + 2s+p+2(2s + 2p)√

4s+p + 2s+p+2(2s + 2p)
,

r̂1 = 1 + ir1 + εr21 + hr31,
r̂2 = 1 + ir2 + εr22 + hr32.

Proof. By Theorem 1 we get

JHs,p
n = Jn(s, p) + iJn+1(s, p) + εJn+2(s, p) + hJn+3(s, p)

= c1r
n
1 + c2r

n
2 + i

(
c1r

n+1
1 + c2r

n+1
2

)
+ ε

(
c1r

n+2
1 + c2r

n+2
2

)
+ h

(
c1r

n+3
1 + c2r

n+3
2

)
= c1r

n
1 (1 + ir1 + εr21 + hr31) + c2r

n
2 (1 + ir2 + εr22 + hr32)

= c1r̂1r
n
1 + c2r̂2r

n
2 ,

which ends the proof. J

The next theorem presents a summation formula for the (s, p)-Jacobsthal
hybrid numbers.

Theorem 9. Let n ≥ 0, s ≥ 0, p ≥ 0 be integers. Then

n∑
l=0

JHs,p
l =

JHs,p
n+1 + (22s+p + 2s+2p)JHs,p

n − (1 + 2s + 2p)(1 + i + ε + h)

2s+p(1 + 2s + 2p)− 1
−i− ε(1 + 2s + 2p + 2s+p)
−h(1 + 2s + 2p + 2s+p + 22s+p+1 + 2s+2p+1 + 22s+2p).
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Proof. By the definition of the (s, p)-Jacobsthal hybrid numbers we have

n∑
l=0

JHs,p
l = JHs,p

0 + JHs,p
1 + . . . + JHs,p

n

= J0(s, p) + iJ1(s, p) + εJ2(s, p) + hJ3(s, p)
+J1(s, p) + iJ2(s, p) + εJ3(s, p) + hJ4(s, p) + . . .
+Jn(s, p) + iJn+1(s, p) + εJn+2(s, p) + hJn+3(s, p)

= J0(s, p) + J1(s, p) + . . . + Jn(s, p)
+i (J1(s, p) + J2(s, p) + . . . + Jn+1(s, p) + J0(s, p)− J0(s, p))
+ε(J2(s, p) + J3(s, p) + . . . + Jn+2(s, p) + J0(s, p) + J1(s, p)
−J0(s, p)− J1(s, p))
+h(J3(s, p) + J4(s, p) + . . . + Jn+3(s, p) + J0(s, p) + J1(s, p)
+J2(s, p)− J0(s, p)− J1(s, p)− J2(s, p)).

Using Theorem 3, we obtain

n∑
l=0

JHs,p
l = 1

2s+p(1+2s+2p)−1 [Jn+1(s, p) + (22s+p + 2s+2p)Jn(s, p)− 1− 2s − 2p

+i(Jn+2(s, p) + (22s+p + 2s+2p)Jn+1(s, p)− 1− 2s − 2p)
+ε(Jn+3(s, p) + (22s+p + 2s+2p)Jn+2(s, p)− 1− 2s − 2p)
+h(Jn+4(s, p) + (22s+p + 2s+2p)Jn+3(s, p)− 1− 2s − 2p))]
−(iJ0(s, p) + ε(J0(s, p) + J1(s, p)) + h(J0(s, p) + J1(s, p) + J2(s, p)))

= 1
2s+p(1+2s+2p)−1 [Jn+1(s, p) + iJn+2(s, p) + εJn+3(s, p) + hJn+4(s, p)

+(22s+p + 2s+2p)(Jn(s, p) + iJn+1(s, p) + εJn+2(s, p) + hJn+3(s, p))
−(1 + 2s + 2p)(1 + i + ε + h)]
−i− ε(1 + 2s + 2p + 2s+p)
−h(1 + 2s + 2p + 2s+p + 22s+p+1 + 2s+2p+1 + 22s+2p)

=
JHs,p

n+1 + (22s+p + 2s+2p)JHs,p
n − (1 + 2s + 2p)(1 + i + ε + h)

2s+p(1 + 2s + 2p)− 1
−i− ε(1 + 2s + 2p + 2s+p)
−h(1 + 2s + 2p + 2s+p + 22s+p+1 + 2s+2p+1 + 22s+2p).

J

In particular, we obtain the following formula for the Jacobsthal hybrid num-
bers.

Corollary 1. Let n ≥ 1 be an integer. Then

n∑
l=0

JHl =
JHn+2 − JH1

2
.
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Proof. By Theorem 9, for s = p = 0 we have

n∑
l=0

JH0,0
l =

JH0,0
n+1 + 2JH0,0

n − 3(1 + i + ε + h)

2
− (i + 4ε + 9h)

=
JH0,0

n+2 − (3 + 5i + 11ε + 21h)

2
.

Using the fact that Jn(0, 0) = Jn+2 and JH0 = i + ε+ 3h, JH1 = 1 + i + ε+ 5h,
we get

n∑
l=0

JHl =
JHn+2 − (3 + 5i + 11ε + 21h)

2
+ JH0 + JH1

=
JHn+2 − (3 + 5i + 11ε + 21h) + 2(1 + 2i + 4ε + 8h)

2

=
JHn+2 − (1 + i + 3ε + 5h)

2
=

JHn+2 − JH1

2
,

which ends the proof. J

Now, we state the followig theorem on the ordinary generating function for
the (s, p)-Jacobsthal hybrid numbers.

Theorem 10. The generating function for the (s, p)-Jacobsthal hybrid sequence
{JHs,p

n } has the following form

G(x) =
JHs,p

0 + (JHs,p
1 − 2s+pJHs,p

0 )x

1− 2s+px− (22s+p + 2s+2p)x2
.

Proof. Assuming that the generating function of the (s, p)-Jacobsthal hybrid

sequence {JHs,p
n } has the form G(x) =

∞∑
n=0

JHs,p
n xn, we obtain

(1− 2s+px− (22s+p + 2s+2p)x2)G(x) =

= (1− 2s+px− (22s+p + 2s+2p)x2) · (JHs,p
0 + JHs,p

1 x + JHs,p
2 x2 + . . .)

= JHs,p
0 + JHs,p

1 x + JHs,p
2 x2 + . . .

− 2s+pJHs,p
0 x− 2s+pJHs,p

1 x2 − 2s+pJHs,p
2 x3 − . . .

− (22s+p + 2s+2p)JHs,p
0 x2 − (22s+p + 2s+2p)JHs,p

1 x3

− (22s+p + 2s+2p)JHs,p
2 x4 − . . .

= JHs,p
0 + (JHs,p

1 − 2s+pJHs,p
0 )x,

since JHs,p
n = 2s+pJHs,p

n−1 + (22s+p + 2s+2p)JHs,p
n−2 and the coefficients of xn for

n ≥ 2 are equal to zero. J
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4. Concluding remarks

In [13], it was shown that if the corresponding sequences are increasing, then
the hybrid numbers based on these sequences are spacelike. Hence the sequence
{JHs,p

n } is spacelike. It seems interesting to study, which of the other hybrid
numbers with generalized Jacobsthal coefficients are spacelike.
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[1] D. Bród, On a two-parameter generalization of Jacobsthal numbers and its
graph interpretation, Ann. Univ. Mariae Curie-Sk lodowska Sect. A, 2018,
LXXII(2), 21–28.
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