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Applying the Fourier Method to Solve One Class
of Third Order Differential Equations in Banach
Spaces

M.I. Ismailov*, S.I. Jafarova

Abstract. Mixed problem for one class of third order differential equations with non-
. . S . . 2+22 1422
linear operator on the right-hand side is considered in the Banach space Bp)p,{i P
. L. o2+ R 4%
1 <p< 400, ap =max{p—2;0}. The concept of generalized solution in B, 7 »
is introduced, and the existence and uniqueness theorems for generalized solution of

considered problem are proved. Note that for p > 2 this problem has been treated in
([1, 2]). The results obtained in this work are the generalizations of previously known
corresponding results for p > 2.
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1. Introduction

Many problems of physics, elasticity theory, mechanics and mathematical
physics are reduced to various mixed problems with initial and boundary condi-
tions. Fourier method, Riemann method, Laplace transform method and various
iteration methods are used to solve such problems (see [3-17]). In oceanology,
when treating the interaction between solitary waves in elastic rods, wave prop-
agation in stratified liquids and many other problems, one has to consider the
mixed problems of the form

U (t, ) — QU (t, ) = F(u)(t, x) (1)
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with the initial and boundary conditions

u(O, ‘T) = go(:v)7ut(0, li) = 7!)(90), (2)
u(t, ™) = u(t, 0) = 0, (3)

where 0<« is a fixed number, and F' is in general nonlinear operator. Note
that the mixed problems for various cases of equation (1) with the conditions
close to (2) and (3) have been considered in [1, 2, 18-28]. In [1], the classical,
almost everywhere and generalized solutions of the problem (1)-(3) have been
studied in the space B;QIT by using Fourier method. The authors in [1] reduce
the problem to the countable system of nonlinear integro-differential equations,
which, in turn, is reduced to finding the fixed point of some nonlinear operator
in the corresponding space.

In this work, the generalized solution of the mixed problem (1)-(3) is studied

in the Banach space B

ppT "L ap =max{p—2;0},1 < p < +oo. Theconcept

of generalized solution of (1)-(3) belonging to the Banach space B, 7 pT 7o

introduced and the conditions for its existence and uniqueness are found using the
method of [1]. The obtained results imply in particular the validity of previously
known corresponding facts for p = 2 and p > 2.

2. Preliminaries

Let 1 < p < +00 and ¢, p be conjugate numbers. Denote by Lp,|p_2|(0, ) a
Banach space of functions f(z) € L,(0,7) with the norm

1
oo P
||f||pr|p72|(O77'r) = (Z nlp=2! |fn|p> )
n=1

where f, = %foﬂ f(x)sinnaxdz. In case where f, = %foﬂ f(x) cosnzdr, the
corresponding space will be denoted by L, , (0, 7). Consider the space Ly([0, T7,
Ly, 1p—2/(0,7)), a Banach space of functions f(t,z) € Ly(D), D = [0,T] x [0, 7]
with the norm

Hf”Lp([o,T},Lmp 2/(0,7)) (Z”'p 2/ |pdt>

Denote by [, o, a Banach space of sequences {f,}, cy with the norm

[hduenl,. = (Z \fn!p>
n=1

S =
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Let W ((0,T), Ly, (0, 7)) be aset of functions f(¢, x) such that H

tTrL
B L (0,m)

L, (0,T) for every 0 < m < n, and ng’gf’“ g;’“T be a Banach space of functions

u(t,x) of the form
= Z U (t) sinnz,
n=1

considered on the rectangle D, such that u,(t) € C*)([0,T]), with the norm

k o ) Bi /3%
HUHBQO O41 Z (Z (n%o?%}%‘ug)(t)D ) P

=0 \n=1

where 0 < «;, 1 < 53,1 =0,..,k, k > 0 is an integer.
For more information on the properties of the spaces BES,’E?,’.Z;ESTa we refer
the readers to [1].

3. Solvability of the problem (1)-(3)

2+°2 1422
Let a, = max {p — 2;0} and consider the space B, , 1
2p 1420
The following remark is true on the relationship between the spaces Bp » T P

21 |
and B2,2,T'
22 1422
Remark 1. The space Bmﬂﬁ P is continuously embedded in the space 32 o

and
||UHB§:217T < Mp ||UH 2+QTP71+"‘TP >

p:p,T
o\ B2
where M, = max{1; (%) Y
2+a’" 1422 1422
In fact, for p > 2 we have B = Bp qu7 and consequently, M, =
2 p27_p2 -‘rap 1+a7p 2,1
<F) (see [2], Remark 2.1). Let p < 2. Then B, 7 = B, 1 and for

u(t, x )EBpTwehave

1
o) 2\ 2 o] 2
_ Z 2 / <
”uHBgéT ( / <n orilf?%‘“”( )|) > + ( <n01£t2}%‘u”(t)‘> ) -

n=

= /. A Y ,
Zl<n Oglgglun()I) + 2(%@33;]%@)\) = llull gz1
n=

N

IN

n—=
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. . . 2+P 14+
Let’s state some properties of the functions belonging to Bp » T P

Otp Otp
Remark 2. For u(t,x) € B i , the following properties are true:
1) u(t, ), ut(t, ), uz(t,x) € C( )
2) Uy (t, ), uie (t, ) € C([0,T); Ly(0,7)) and ugy(t, ) = — > o0 n’u,(t) sinn,
U (t, ) = > 00 nul, (t) cosne.

In fact, in case p > 2 the above statement follows from Remark 1 of ([2]).
Let p < 2. Then o, = 0 and u(t,z) € B;; . As u(t,z) € B22T7 from
the results of ([1], Remark 1.1) it follows that u(t,z),u¢(t, ), ug(t,z) € C(D)
and there exist g, (t, ), uw(t,x) € C([0,T]; L2(0,7)) such that wug,(t,x) =
— 300 nPup(t) sinne, u(t,z) = Yoo nul,(t) cosnz. Further, for vt € [0,T]
the convergence of the series 07 | (n? |u,(t)|)” and Y0 (n|ul,(¢)|)? implies by
Riesz theorem ([29], XII. Theorem 2.8) that

1
o0 P
(Z(n? \un<t>|>p> ,

([t x>\qd:c)3 >
([ |utx<t,x>|qu); < (im »u:xt)y)?’) g

IN

Hence, in view of p < ¢, we obtain

D 00
™ p(a—p) ™ q pla—p)
A |umm(ta x)‘p dl’ S m™ P <A ’U/zm(t, .T)‘q d.’B) S m P Z(TLQ Hu”||0([0,T}))p7

n=1

p (e’
ﬂ (g—p) ” q (¢—p)
/ et D) P dz <7 7 ( / \uwa,x)\wx)q <a Sl go.m)P-
0 0 ’

n=1

Thus, Uy, (t, ), wem(t, ) € C([0,T]; Ly(0,m)).
Let’s give a definition for the generalized solution of the problem (1)-(3) in
2+22,14 22
P p
p.p,T
Definition 1. Generalized solution of the problem (1)-(3) is defined as a function
u(t,x) € BppT P which satisfies the condition (2) and the integral identity

T rm
/0 /0 {ug(t, x)ve(t, ©) — gy (t, z)ve(t, x) + F(u)(t, z)v(t, x)} dedt—
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—« /7r o'/ (2)v(0, z)dz + /Ww(:v)v(o,x)dx =0 (4)
0 0

for every function v(t,z) such that v(t,z) € WL([0,T]; Ly(0,7)), v(T,z) =0 for
a.e. x € [0,m].

Let - 9 [7
Op = / o(z) sinnxdx, ¥, = / Y (x) sin nzdz.
0 ™ Jo

™

Introduce the function

oo
w(t,z) = Z wy (t) sinne,
n=1

an?

where wy, (t) = @, + - (1 — e‘o‘”Qt) Un.

The following lemma is true:
Lemma 1. Assume that o(z) € C1([0,n]) AWZ(0,m), {nzgon}nGN € lpay,,
¢(0) = o(m) =0, Y(z) € C([0, 7)) VW, (0,7), {n¥n},en € lpa,, P(0) =1(m) =

h _ oo : 2+a7p’1+%0
0. Then w(t,z) = ;7 wn(t)sinnz € B, 7
Proof. Tt is clear that wallogr) < lon| + 5k [n] and Hwé ooz = ¥
Consequently, as {HQQO”}neN AnUn}en € lpa,, We obtain
HwH 2+a7p,1+a7p =
p,p,T
1 1
o0 942 P\ P o 1+ y P\ r
=2 (n ’ 022}%'“’7*”') +( 2 <n ’ Og%)wn@)\) <
n=1 n=1
94 2p 1 Py 1yep p\?
< (Z <n M (¢n| +Om2|7w[}n|>) ) + (Z <n M |wn|) ) <
n=1 n=1

- b e b s :
< (Z n2ptop |s0n|p> + a <Z now ’¢n|p) + (Z nPtor |wn|p> <
n=1 n=1 n=1

s P % 1+a (& %
< | 2on (P leal)”) + > on(mlgal) ) < +oo.
n=1 @ n=1
The lemma is proved. «

The next lemma states that the coefficients of the Fourier series of generalized
solution satisfy a system of integral equations.
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Lemma 2. If u(t,z) is a generalized solution of the problem (1)-(3) and
F(u) € Ly([0,T], Ly, 1p—2/(0,)), then the coefficients u,(t) of the series u(t,z) =
oo L un(t)sinna satisfy the following countable system of nonlinear integral
equations:

= 1 —an?t 1 ' —an?(t—7)
un(t) = gn+ — (1—e )wn—i-anz/an(u,T)(l—e )dr, (5)

where Fy,(u,t)’s are the Fourier coefficients of the function u(t,z).

Proof. Similar to the case p = 2 (see [1], Lemma 1.1), we substitute in (4)
arbitrary function v(t, z) of the form

2(t—T)simmc, 0<t<r,0<z<nm
Vrn(t,x) = ™
’ O,7<t<T,0<x<m
n € N, 7 € [0,T], and obtain the system (5). The lemma is proved. «

Consider in the space Ly([0,T7], Ly, |,—2/(0, 7)) the operator P defined by the
formula

P(f)(t,x) =
— an? J, I T e Tsinnx, ([0, T, Ly 9 (0, 7)),

where f,(t) = 2 [ f(t,2) sinnzdz.

o

Theorem below establishes the boundedness of the operator P.

Theorem 1. Let the operator P be defined in the space Lp([0,T], Ly |,—2/(0,7))

2+°2 1422
byl tth.e formula (6). Then P : Ly([0,T],L, ), 2/(0,m) = B, 7 7, and the
relation
||P(f)HBg+‘*7P,1+°‘7P < LI L0, 0 0.7)) (7)

p:p,T
111
aTaq P
holds, where L = 4212
q

ap ap
2+p,1+p

Proof. For every Yu(t,z) € B we have

p:p, T

1
N 2+ 1 ' —an?(t—1 P\?
”P“)’B%“p”’“?:@{” i | ) e ))dT}) "

p,p,T n=1
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—om (t— T)d <

+<7;{ pr{ga:mpx/fn 7‘}) <

< 1 inap / | (7P drmax /t(l _ e—an2(t—7))QdT
~a " 0,17 \Jo

0 T ¢ H
+ap —an?q(t—7 a
+ (E n? /0 | fu(T)P dt%%( (/0 emomd )d7-> )

n=1

Q3
N———
3 =

_l_

hSA

IN

T% oo N T P
§a<;n”/0 \fn(7)|pd7> +

o0 N T 1 % 24 P
pta P _eman’qt)a | <
+ nZ::ln p/o £ ()] dt(om2q) %1%(1 eertit) ) <

T% e T 1 > T v
é(Zn% / |fn<7>\pdf> et l(iin%’“—f’ / fn(T)Ipdt>
> =1 0 aiq1 \n—1 0

11 1
Taga —|—ap P
< — nlP= 2'/ ol dT) =1L ( nlP— 2/ )P d’/‘) .

aqq ( Z

The theorem is proved. «

S =

B =

IN

Theorem below proves the uniqueness of generalized solution of the problem

(1)- (3).

Theorem 2. Let the following conditions be satisﬁed

1) F(u) € Ly([0,T], L v 2(0, 7)), Vu(t,z) € B B
ap ap
2) Vu(t,x),v(t,x) € BppT M and t e [O,T]:
1)) = PO, yo0m < eOlu=vl sy (8)
Pypst

where ¢(t) € L,(0,T).

Then the problem (1)-(3) cannot have more than one generalized solution.

Proof. Assume the contrary, i.e. assume that the problem (1)-(3) has at
least two different generalized solutions u(t,z) and v(t,x). Let {uy(t)},cn and
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{vn(t)},en be the sequences of coefficients of the functions u(t,z) and v(t,z),
respectively. By Lemma 2 and (6) we obtain

u(t,z) —v(t,z) = P(F(u) — F(v))(t, z).
Then, due to (7) and (8), for V¢ € [0;T] we have

p _ p
e = vll" oy ap = IPE () = PO, o e <

DDt DDt

t
<2 [P = FOEOI, , yom bt <

t
< / (7 u(r, ) = v(r P, ap e T
0 Botp P

p,p,T

Applying Gronwall-Bellman inequality, we hence obtain [u — v||” ,, , = 0. From

22
q’q
D,p,t

this equality it follows that u(¢,z) = v(t,z). The theorem is proved. «

Next theorem establishes the existence and uniqueness of generalized solution
of the problem (1)-(3).

Theorem 3. Let the following conditions be satisfied:
1) p(x) € CO([0,7]) AW (0,7), {n°pn} e € lpay #(0) = () = 0,9(x) €
C([0, 7)) AW, (0, 7), {n¥bn} e € lp.ay, 1 (0) = (m) = 0.

2 ﬂ,l op 2 O‘J’l op
2)F: B 2 7 5 L([0,T], Ly 9(0.7)), Yu € B 277 and t €
[0,T7:
PGt a0 < 00+ 50 ] gy o)

DDt

where a(t),b(t) € L,(0,T);

3) Yu(t,z),v(t,x) € K (HuH prop  op < R) and t € [0,T]:
B P’ I3

p,p,T

1) (t, ) = F)(E )L, p0m < @ llu =2l 5o, e, (10)

p,p,t

P,|p—2|

where
c(t) € Ly(0,T), RP = Aexp [; BP(t)dt,

2
A =21 ||lw|P o + L HaHip(O,T), B(t) = Lob(t), Lo =24L.

«
P
2+2P 14

p,p,T
Then the problem (1)-(3) has a unique generalized solution.
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+22 1422
Proof. Define the operator () in the space prpj’i ? by the formula

Q(u)(t,z) = w(t,x) + P(F(u))(t, ).

.. ) 2+°2 1422 24221422
From condition 2) and Theorem 1 it follows that Q@ : B, , 7.~ * = B, ¢ "

Using the inequality |a + b" < 2P~ L(|al’ + |b|"), by (7) and (9) we obtain

QI ,, o |y ap <27 (HUJHPH% o TIPE@NDIT,, ap H%) <
B P’ P B P’ P B P’ P

p,p,t p,p,t PPt

t
-1
<o <\|w||’;2+app,l+app+fzp /0 IF@E L o dt) <

p,p,t

t
<o <uwu”2+ap,l+ap #2711 [@) 00 [l m’dT> )
B P P 0 B P P

p,p,t D,p,T

t t
=l oy + I [ P I [ VO, o, dr <
B, P P 0 0 B P P

p,p,t p,p,T

t
<4 +/ B [l op .. o dr. (11)
0 p D
P,p,T
242,142

o T as follows:

Let’s construct the sequence {uy},-, C
uo(t,z) = 0, ug(t,x) = Qug—1)(t, ),k =1,2,.., ..

By (11), for every ¢ € [0,T] we obtain

t
||u1Hp2+an’l+an = HQ(UU)HPH%;?’H% <AL A+A/ BP(t)dr
p.p,t By p,t 0
t
luall? , ep 1o = QI 0y oy < At / BY(r) [l oy, ap dr <
B p’ p B p’ P 0 B p’ p
P,p,t P,p,t D,PsT

< A+/Ot BP(T)(A—i—A/OT B (s)ds)dr =

:A+A/Oth(T)dT+A/Ot BP(7) /0 BP(s)dsdr =
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t td ([T BP(s)ds)>
:A(1+/0 Bp(T)dT-i-/O i (Jg 32( )ds) dr) =

(fot Bp(T)dT> ?

:A(1+/0 BP(r)dr + . ).

Repeating this reasoning, we obtain

fg BP(T)dT>k

t
l|ug||? <Al +/0 BP(r)dT + ...+ ( x ),k € N.

ap 149p
24+ 51+
p;p;t

Hence,

T
(s o < Aexp/ BP(t)dt = RP,
0

24521452
p,p,T
ie. up(t,z) e K, ke N

Now let’ that th {urtpen C Bpy
ow let’s prove that the sequence {ug .o T

its limit is the required generalized solution of the problem (1)-(3). For this, let’s
estimate ||upr — ug|l ,.ep ., ep for every n,k =1,2,.... Taking into account (7)
P’ p

is convergent and

p,p,T

and (10), we have

= |P(F(untr—-1) — F(up—1))|" _

«@ «@ «@ «
2+ 14+ 2+ 1+
p,p,t p,p,t

[ i

t
<2 [ 1P e)(7) = POl o dt <

t
D D _ p
< /0 ) s =l

p,p,T

Then

t
fanst = e ep ST [P0 ftnimt =l g, 4 <
B 0 B P P

p,p,t b,p,T

t T
<1 / &(7) (Lp / () im bz — wpll” oy ds> dr <
0 0 B P’ i3

p,p,s

ltntk—2 — up—2l” dr <

r 2
<2 /t % (fo Cp(s)ds)
- 2

0

op . op
2+2 143
P,p,T
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< ka /t % (fO ( )dS)
0

it = w0l ey, p 7 <

p,p,T

k!

k
t
cP(s)ds (fo Cp(T)dT)
<Dl g [ BSOSO
"o Jo p T D .
p,p,t p,p,t
Thus,
) LPkRp Hchk OT)
||un+k:_ukH 2+%71+QTP = Lk

p,p,T

242,148
So the sequence {uy},cy is fundamental in B 7 Let u(t,x) be a
24721422 )
limit of the sequence {uy},cy in B, 7 . Obviously, u(t,z) € K. Consider

the sequence {Q(ug)}pcy. From wupy = Q(uk) it follows that the sequence

{Q(ur)} ey converges to the function u(t, z) in Bt . On the other hand,

DsPs T
from

<

4 = IPE ) = F@) g g
p, T p,p, T

1QCuk) = QU s

< L F(uk) — F(U)||Lp([0,T],Lp,|p,2‘(o,n)) <L HCHLP(O,T) [ — ull 2+92 14+ %2
p,p, T

@p @p
A+==

2
it follows that @Q(uy) converges to Q(u) in B 3 as k — oo. Thus, u = Q(u)

ppT
and

o
= Z up (t) sin nz,
n=1

where uy,(t) = @, + an2 (1 _ e—ocn"’t) b + Cm2 fo <1 _ e—an (t—7)> dr.
Let’s show that u(t,z) is a sought-for function. ObVlously, condition (3) is
fulfilled for u(t,x). Further, we have

00 00
x) = Zun(O) sinnz = Z pnsinnz = p(z),
n=1

n=1

= Zu{l(o) sinnx = Z"L/Jn sinnx = ¢($),
n=1

n=1
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i.e. u(t,z) satisfies the condition (2). It remains to show that the identity (4) is
true for u(t,z). Let for Vm € N

m

Um(t,z) = Z un (t) sinnz,

n=1

T pm
Im = /0 /0 {um e (t, 2)ve(t, @) — Q ga (t, )0e(t, ) + F(u)(t, 2)v(t, )} dedt—

—« /7r o (z)v(0, z)dz + /7r Y(z)v(0,x)dx. (12)
0 0
We have

T pm T pm M
/ / umt(t,:r)vt(t,x)dxdt:/ / Zué(t)sinnwvt(sv,t)dxdt:
o Jo o Jo 3
= Z/ / t)ve(t, z)dt) sin nxdx =
m i T
=> / (ul (t)o(t, z)|E — / ul/ (t)v(t, z)dt) sin nzdr =
n=10 0
T m T ppx M
—/ ansinnxv((),x)dx—/ / Zué/(t)sinnxv(x,t)d:cdt.
0 n=1 0 0 n=1

T m
/ / U,z (t, )0t (t, ) dxdt = / / Zn Un (t)v(t, z) sin nedxdt =
o Jo

m

_ Z“Q (/Oﬂ(un(t)v(tﬁﬂ)’oT _ /OT ul, ()o(t, x)dt) sinnxdx) =

n=1

/ Zn ©n sinnzv(0, x dm—i—/ / ZnQU/ v(t, z) sin nzdxdt.

By substituting these relationships into (12), we obtain

T T m
= u(t,r)) — ul! (t) sinnx + an?u/ (t) sin nz)Yo(t, 2)dx
= ( [Pt = S/ @ sinme -+ anul (1) sinna) (e, 2)a )dt+

n=1
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+ /(]ﬂ(w(x) —Z Yy sinnx)v(0, z)dr — o /W(cp//(x) +Z n2p, sinnz)v(0, z)dr =

0 n=1

m
=1

n=1
T ™
= /0 (/0 {F(u(t,x)) — ZFn(u, t) sinnx u(t, x)dm) dt+

n

+/0 (Y(x) — Z p sinnx)v(0, x)dr — a/o (! (z) + Z n2py, sinnz)v(0, z)dx.

n=1 n=1

Finally, using Holder’s inequality, we obtain

[ | < (|F(@)(t,2) =Y Folu,t)sinna lo(t, ),y +
n=1 Lp(D)
+[(z) = > Y sinna 10(0, 2) |1, 0.0y +
n=1 LP(OJF)

+ ||/ () + Z n?p, sin nx

n=1

HU(O7 I) ||Lq (0,m) -
Ly(0,m)

Hence it follows that J,,, — 0 as m — oo, i.e. the identity (4) is true. The unique-
ness of generalized solution follows from Theorem 1. The theorem is proved. «
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