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On the Regularization Cauchy Problem for Matrix
Factorizations of the Helmholtz Equation in a
Multidimensional Bounded Domain

D.A. Juraev, Y.S. Gasimov∗

Abstract. In this paper, the problem of continuation of the solution of the ill-posed
Cauchy problem for matrix factorizations of the Helmholtz equation in a multidimen-
sional bounded domain is considered. It is assumed that the solution to the problem
exists and is continuously differentiable in a closed domain with exactly given Cauchy
data. For this case, an explicit formula for the continuation of the solution is established,
as well as a regularization formula for the case where, under the indicated conditions,
instead of Cauchy data their continuous approximations with a given error in uniform
metric are given. A stability estimate for the solution of the Cauchy problem in the
classical sense is obtained.
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lution, fundamental solution.
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1. Introduction

This paper studies the construction of exact and approximate solutions to
the ill-posed Cauchy problem for matrix factorizations of the Helmholtz equa-
tion. Such problems naturally arise in mathematical physics and in various fields
of natural science (for example, in electro-geological exploration, in cardiology,
in electrodynamics, etc.). In general, the theory of ill-posed problems for sys-
tems of elliptic equations has been sufficiently formed thanks to the works of
A.N. Tikhonov, V.K. Ivanov, M.M. Lavrent’ev, N.N. Tarkhanov and many other
mathematicians. Among them, the most important for applications are the so-
called conditionally well-posed problems, characterized by stability in the pres-
ence of additional information about the nature of the problem data. One of the
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most effective ways to study such problems is to construct regularizing operators.
For example, this can be the Carleman-type formulas (as in complex analysis) or
iterative processes (the Kozlov-Maz’ya-Fomin algorithm, etc.).

This work is dedicated to the main problem for partial differential equations,
which is the Cauchy problem. There are classes of equations for which this
problem behaves well - the so-called hyperbolic equations. The main attention
is paid to the regularization formulas for solutions of the Cauchy problem. The
question of the existence of a solution to this problem is not considered - it is
assumed a priori. At the same time, it should be noted that any regularization
formula leads to an approximate solution of the Cauchy problem for all data,
even if there is no solution in the usual classical sense. Moreover, for explicit
regularization formulas, one can indicate in what sense the approximate solution
turns out to be optimal. From this point of view, exact regularization formulas
are very useful for real numerical calculations. There is a good reason to hope
that numerous practical applications of regularization formulas are still ahead.

This problem belongs to the class of ill-posed problems, i.e., it is unstable.
It is known that the Cauchy problem for elliptic equations is ill-posed because it
is unstable for relatively small changes in the data, i.e., incorrect (Hadamard’s
example, see, for instance [21], p. 39). There is a sizable literature on the
subject (see, e.g., [22], [3, 34], [24], [25] and [4]. N.N. Tarkhanov [30] has found
a criterion for the solvability of a larger class of boundary value problems for
elliptic systems. In unstable problems, the image of the operator is not closed,
therefore, the solvability condition can not be written in terms of continuous
linear functionals. So, in the Cauchy problem for elliptic equations with data on
part of the boundary of the domain the solution is usually unique, the problem is
solvable for everywhere dense set of data, but this set is not closed. Consequently,
the theory of solvability of such problems is much more difficult and deeper than
theory of solvability of Fredholm equations. The first results in this direction
appeared only in the mid-1980s in the works of L.A. Aizenberg, A.M. Kytmanov,
N.N. Tarkhanov (see, for instance, [31]).

The uniqueness of the solution follows from Holmgren’s general theorem (see
[4]). The conditional stability of the problem follows from the work of A.N.
Tikhonov (see [4]), if we restrict the class of possible solutions to a compactum.

We note that when solving applied problems, one should find the approximate

values of U(x) and
∂U(x)

∂xj
, x ∈ G, j = 1, ...,m.

In this paper we construct a family of vector-functions U(x, fδ) = Uσ(δ)(x)

and
∂U(x, fδ)

∂xj
=
∂Uσ(δ)(x)

∂xj
, j = 1, ...,m depending on a parameter σ, and prove

that under certain conditions and a special choice of the parameter σ = σ(δ),
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at δ → 0, the family Uσ(δ)(x) and
∂Uσ(δ)(x)

∂xj
converges in the usual sense to a

solution U(x) and its derivative
∂U(x)

∂xj
, x ∈ G at the point x ∈ G.

Following A.N. Tikhonov (see [4]), a family of vector-valued functions Uσ(δ)(x)

and
∂Uσ(δ)(x)

∂xj
is called a regularized solution of the problem. A regularized

solution determines a stable method of approximate solution of the problem.
Formulas that allow finding a solution to an elliptic equation in the case where

the Cauchy data are known only on a part of the boundary of the domain are
called Carleman type formulas. In [34], Carleman established a formula giving a
solution to the Cauchy-Riemann equations in a domain of special form. Develop-
ing his idea, G.M. Goluzin and V.I. Krylov [17] derived a formula for determining
the values of analytic functions from data known only on a portion of the bound-
ary for arbitrary domains. A multidimensional analogue of Carleman’s formula
for analytic functions of several variables was constructed in [22]. A formula
of Carleman type, in which the fundamental solution of a differential operator
with special properties (the Carleman function) is used, was obtained by M.M.
Lavrent’ev (see, for instance, [23, 24]). Using this method, Sh. Ya. Yarmukhame-
dov (see, for instance, [35, 36, 37, 38]) constructed the Carleman functions for
the Laplace and Helmholtz operators with n(x, y) ≡ 1 for spatial domains of
a special form, when the part of the boundary of the domain where the data
are unknown is a conical surface or a hypersurface {x3 = 0}. In [31] an integral
formula is proved for the systems of equations of elliptic type of the first order
with constant coefficients in a bounded domain. Using the methodology of works
[35, 36, 37, 38]), Ikehata [26] considered the probe method and Carleman func-
tions for the Laplace and Helmholtz equations in the three-dimensional domain.
Using exponentially growing solutions, Ikehata [27] obtained a formula for solving
the Helmholtz equation with a variable coefficient for regions in space where the
unknown data are located on a section of the hypersurface {x · s = t}. Carleman
type formulas for various elliptic equations and systems were also obtained in
[1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 26, 27, 28, 29, 30, 31].
In [16] the Cauchy problem for the Helmholtz equation was considered in an
arbitrary bounded plane domain with Cauchy data, known only on the bound-
ary. The solvability criterion for the Cauchy problem for the Laplace equation
in the space Rm was considered by Shlapunov in [1]. In [18], the problem for the
Helmholtz equation was investigated and the results of numerical experiments
were presented.

The construction of the Carleman matrix for elliptic systems was carried out
by: Sh. Yarmukhamedov, N.N. Tarkhanov, A.A. Shlapunov, I.E. Niyozov, D.A.
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Juraev and others (see, for instance, [35, 36, 37, 38], [1, 2], [19, 20] and [5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15]). The system considered in this paper was introduced by
N.N. Tarkhanov. For this system, he studied correct boundary value problems
and found an analogue of the Cauchy integral formula in a bounded domain (see,
for instance, [31]).

In many well-posed problems for the systems of equations of elliptic type of
the first order with constant coefficients that factorize the Helmholtz operator,
it is not possible to calculate the values of the vector function on the entire
boundary. Therefore, the problem of reconstructing the solution of the systems
of first order equations of elliptic type with constant coefficients, factorizing the
Helmholtz operator (see, for instance, [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]), is one
of the topical problems in the theory of differential equations.

For the last decades, interest in classical ill-posed problems of mathematical
physics has remained. This direction in the study of the properties of solutions of
the Cauchy problem for the Laplace equation was started in [23, 24], [35, 36, 37,
38] and subsequently developed in [16], [17], [28, 29, 30, 31], [26, 27], [19, 20, 33],
[1, 2] and [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

In this paper, we present an explicit formula for the approximate solution of
the Cauchy problem for the matrix factorizations of the Helmholtz equation in
a multidimensional bounded domain. The odd dimensional case requires special
consideration in contrast to even dimensions in many mathematical problems.
The odd-dimensional case will be further considered in future works of the au-
thors. Our formula for an approximate solution also includes the construction
of a family of fundamental solutions for the Helmholtz operator in a multidi-
mensional bounded domain. This family is parametrized by some entire function
K(w), the choice of which depends on the dimension of the space. This motivates
a separate study of regularization formulas in odd dimensional spatial domains.

Let Rm (m = 2k + 1, k ≥ 1) be the m−dimensional real Euclidean space,

x = (x1, ..., xm) ∈ Rm, y = (y1, ..., ym) ∈ Rm,

x′ = (x1, ..., xm−1) ∈ Rm−1, y′ = (y1, ..., ym−1) ∈ Rm−1.

We introduce the following notation:

r = |y − x| , α =
∣∣y′ − x′∣∣ , w = i

√
u2 + α2 + ym, u ≥ 0,

∂

∂x
=

(
∂

∂x1
, ...,

∂

∂xm

)T
,
∂

∂x
= ξT , ξT =

 ξ1
...
ξm

 − transposed vectorx,

U(x) = (U1(x), ... , Un(x))T , u0 = (1, ... , 1) ∈ Rn, n = 2m, m ≥ 3,
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E(z) =

∥∥∥∥∥∥
z1 ... 0
.......
0 ...zn

∥∥∥∥∥∥− diagonal matrix, z = (z1, ... , zn) ∈ Rn.

Let G ⊂ Rm be a bounded simply-connected domain with piecewise smooth
boundary consisting of the plane T : ym = 0 and a smooth surface S, lying in the
half-space ym > 0, i.e., ∂G = S

⋃
T .

Let D(ξT ) be an (n × n)−dimensional matrix with elements consisting of a
set of linear functions with constant coefficients in the complex plane for which
the following condition is satisfied:

D∗(ξT )D(ξT ) = E((|ξ|2 + λ2)u0),

where D∗(ξT ) is the Hermitian conjugate matrix D(ξT ), λ is a real number.

We consider in G a system of differential equations

D

(
∂

∂x

)
U(x) = 0, (1)

where D

(
∂

∂x

)
is a matrix of first-order differential operators.

We denote by A(G) the class of vector functions in G continuous on G =
G
⋃
∂G and satisfying system (1).

2. Construction of the Carleman matrix and the Cauchy problem

2.1. General

Formulation of the problem. Suppose U(y) ∈ A(G) and

U(y)|S = f(y), y ∈ S. (2)

Here, f(y) is a given continuous vector-function on S. It is required to restore
the vector function U(y) in the domain G, based on its values f(y) on S.

If U(y) ∈ A(G), then the following Cauchy-type integral formula is valid:

U(x) =

∫
∂G

N(y, x;λ)U(y)dsy, x ∈ G, (3)

where

N(y, x;λ) =

(
E
(
ϕm(λr)u0

)
D∗
(
∂

∂y

))
D(tT ).
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Here t = (t1, ... , tm) is the outer unit normal drawn at the point y, the surface
∂G, ϕm(λr) is a fundamental solution of the Helmholtz equation in Rm (m =
2k + 1, k ≥ 1), defined by the following formula (see [32]):

ϕm(λr) = Pmλ
(m−2)/2

H
(1)
(m−2)/2(λr)

r(m−2)/2
,

Pm =
1

2i(2π)(m−2)/2
, m = 2k + 1, k ≥ 1.

(4)

We denote by K(w) an entire function taking real values for real w (w =
u+ iv, u, v−real numbers) and satisfying the following conditions:

K(u) 6= 0, sup
v≥1

∣∣vpK(p)(w)
∣∣ = B(u, p) <∞,

−∞ < u <∞, p = 0, 1, ..., m.

(5)

We define the function Φ(y, x;λ) for y 6= x by the following equality:

Φ(y, x;λ) =
1

cmK(xm)

∂k−1

∂sk−1

∞∫
0

Im

[
K(w)

w − xm

]
cos(λu)√
u2 + α2

du,

m = 2k + 1, k ≥ 1,

(6)

where cm = (−1)k2−k(2k− 1)!(m− 2)πωm; ωm is an area of a unit sphere in the
space Rm.

In the formula (6), choosing

K(w) = exp(σw), K(xm) = exp(σxm), σ > 0, (7)

we get

Φσ(y, x;λ) =
e−σxm

cm

∂k−1

∂sk−1

∞∫
0

Im

[
exp(σw)

w − xm

]
cos(λu)√
u2 + α2

du. (8)

The formula (3) is true if we substitute ϕm(λr) with the function

Φσ(y, x;λ) = ϕm(λr) + gσ(y, x;λ), (9)

where gσ(y, x) is the regular solution of the Helmholtz equation with respect to
the variable y, including the point y = x.
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Then the integral formula becomes:

U(x) =

∫
∂G

Nσ(y, x;λ)U(y)dsy, x ∈ G, (10)

where

Nσ(y, x;λ) =

(
E
(
Φσ(y, x;λ)u0

)
D∗
(
∂

∂y

))
D(tT ).

3. The continuation formula and regularization according to
M.M. Lavrent’ev

Theorem 1. Let U(y) ∈ A(G) and the inequality

|U(y)| ≤M, y ∈ T, (11)

hold. If

Uσ(x) =

∫
S

Nσ(y, x;λ)U(y)dsy, x ∈ G, (12)

then the following estimates are true:

|U(x)− Uσ(x)| ≤MC(x)σk+1e−σxm , σ > 1, x ∈ G. (13)

∣∣∣∣∂U(x)

∂xj
− ∂Uσ(x)

∂xj

∣∣∣∣ ≤ C(x)σk+1Me−σxm , σ > 1, x ∈ G, j = 1, ..,m. (14)

Here and below, the functions bounded on compact subsets of the domain G
are denoted by C(x).

Proof. Let us first estimate the inequality (13). Using the integral formula
(10) and the equality (12), we obtain

U(x) =

∫
S

Nσ(y, x;λ)U(y)dsy +

∫
T

Nσ(y, x;λ)U(y)dsy =

= Uσ(x) +

∫
T

Nσ(y, x;λ)U(y)dsy, x ∈ G.
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Taking into account the inequality (11), we have

|U(x)− Uσ(x)| ≤

∣∣∣∣∣∣
∫
T

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣ ≤
≤
∫
T

|Nσ(y, x;λ)| |U(y)| dsy ≤M
∫
T

|Nσ(y, x;λ)| dsy, x ∈ G.

(15)

Now let’s estimate the integrals

∫
T

|Φσ(y, x;λ)| dsy,
∫
T

∣∣∣∣∂Φσ(y, x;λ)

∂yj

∣∣∣∣ dsy, (j =

1, 2, ...,m− 1) and

∫
T

∣∣∣∣∂Φσ(y, x;λ)

∂ym

∣∣∣∣ dsy on the part T of the plane ym = 0.

Separating the imaginary part of (8), we obtain

Φσ(y, x;λ) =
eσ(ym−xm)

cm

 ∂k−1
∂sk−1

∞∫
0

−cosσ
√
u2 + α2

u2 + r2
cos(λu)du+

+
∂k−1

∂sk−1

∞∫
0

(ym − xm) sinσ
√
u2 + α2

u2 + r2
cos(λu)√
u2 + α2

du

 , xm > 0.

(16)

Taking into account the equality (16), we have∫
T

|Φσ(y, x;λ)| dsy ≤ C(x)σk+1Me−σxm , σ > 1, x ∈ G, (17)

To estimate the second integral, we use the equality

∂Φσ(y, x;λ)

∂yj
=
∂Φσ(y, x;λ)

∂s

∂s

∂yj
= 2(yj − xj)

∂Φσ(y, x;λ)

∂s
,

s = α2, j = 1, 2, ...,m− 1.

(18)

Using the equalities (16) and (18), we obtain∫
T

∣∣∣∣∂Φσ(y, x;λ)

∂yj

∣∣∣∣ dsy ≤ C(x)σk+1Me−σxm , σ > 1, x ∈ G,

j = 1, 2, ...,m− 1.

(19)
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Now, we estimate the integral

∫
T

∣∣∣∣∂Φσ(y, x;λ)

∂ym

∣∣∣∣ dsy.
Taking into account the equality (16), we obtain∫

T

∣∣∣∣∂Φσ(y, x;λ)

∂ym

∣∣∣∣ dsy ≤ C(x)σk+1Me−σxm , σ > 1, x ∈ G, (20)

From the inequalities (17), (19) and (20), we obtain an estimate (13).
Now let us prove the inequality (14). To do this, we take the derivatives of

equalities (10) and (12) with respect to xj , j = 1, ...,m. Then we obtain the
following:

∂U(x)

∂xj
=

∫
S

∂Nσ(y, x;λ)

∂xj
U(y)dsy +

∫
T

∂Nσ(y, x;λ)

∂xj
U(y)dsy,

∂Uσ(x)

∂xj
=

∫
S

∂Nσ(y, x;λ)

∂xj
U(y)dsy, x ∈ G, j = 1, ...,m.

(21)

Taking into account (21) and the inequality (11), we have

∣∣∣∣∂U(x)

∂xj
− ∂σU(x)

∂xj

∣∣∣∣ ≤
∣∣∣∣∣∣
∫
T

∂Nσ(y, x;λ)

∂xj
U(y)dsy

∣∣∣∣∣∣ ≤
≤
∫
T

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ |U(y)| dsy ≤M
∫
T

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ dsy,
x ∈ G, j = 1, ...,m.

(22)

Now let’s estimate the integrals

∫
T

∣∣∣∣∂Φσ(y, x;λ)

∂xj

∣∣∣∣ dsy (j = 1, 2, ...,m− 1) and∫
T

∣∣∣∣∂Φσ(y, x;λ)

∂xm

∣∣∣∣ dsy on the part T of the plane ym = 0.

To estimate the first integral, we use the equality

∂Φσ(y, x;λ)

∂xj
=
∂Φσ(y, x;λ)

∂s

∂s

∂xj
= −2(yj − xj)

∂Φσ(y, x;λ)

∂s
,

s = α2, j = 1, 2, ...,m− 1.

(23)
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Using the equalities (16) and (23), we obtain∫
T

∣∣∣∣∂Φσ(y, x;λ)

∂xj

∣∣∣∣ dsy ≤ C(x)σk+1Me−σxm , σ > 1, x ∈ G,

j = 1, 2, ...,m− 1.

(24)

Now, we estimate the integral

∫
T

∣∣∣∣∂Φσ(y, x;λ)

∂xm

∣∣∣∣ dsy.
Taking into account the equality (16), we obtain∫

T

∣∣∣∣∂Φσ(y, x;λ)

∂xm

∣∣∣∣ dsy ≤ C(x)σk+1Me−σxm , σ > 1, x ∈ G, (25)

From the inequalities (22), (24) and (25), we obtain an estimate (14).

Theorem 1 is proved. J

Corollary 1. For every x ∈ G, the following equalities are true:

lim
σ→∞

Uσ(x) = U(x), lim
σ→∞

∂Uσ(x)

∂xj
=
∂U(x)

∂xj
, j = 1, ...,m.

We denote by Gε the set

Gε =

{
(x1, ..., xm) ∈ G, a > xm ≥ ε, a = max

T
ψ(x′), 0 < ε < a

}
.

It is easy to see that the set Gε ⊂ G is compact.

Corollary 2. If x ∈ Gε, then the families of functions {Uσ(x)} and

{
∂Uσ(x)

∂xj

}
converge uniformly as σ →∞, i.e.

Uσ(x)⇒ U(x),
∂Uσ(x)

∂xj
⇒

∂U(x)

∂xj
, j = 1, ...,m.

It should be noted that the set Eε = G\Gε serves as a boundary layer for
this problem as in the theory of singular perturbations, where there is no uniform
convergence.
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4. Estimation of the stability of the solution to the Cauchy
problem

Suppose that the surface S (or the curve for m = 2) is given by the equation

ym = ψ(y′), y′ ∈ Rm−1,

where ψ(y′) is a single-valued function satisfying the Lyapunov conditions.
We put

a = max
T

ψ(y′), b = max
T

√
1 + ψ′2(y′).

Theorem 2. Let U(y) ∈ A(G) satisfy the condition (11) and on a smooth surface
S the inequality

|U(y)| ≤ δ, 0 < δ < Me−σa (26)

hold on the smooth surface S. Then the following estimates are true:

|U(x)| ≤ C(x)σk+1M1−xm
a δ

xm
a , σ > 1, x ∈ G. (27)∣∣∣∣∂U(x)

∂xj

∣∣∣∣ ≤ C(x)σk+1M1−xm
a δ

xm
a , σ > 1, x ∈ G,

j = 1, ..,m.
(28)

Proof. Let us first estimate the inequality (27). Using the integral formula
(10), we have

U(x) =

∫
S

Nσ(y, x;λ)U(y)dsy +

∫
T

Nσ(y, x;λ))U(y)dsy, x ∈ G. (29)

We also have

|U(x)| ≤

∣∣∣∣∣∣
∫
S

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
T

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣ , x ∈ G. (30)

Using the inequality (26), we estimate the first integral in (30).∣∣∣∣∣∣
∫
S

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣ ≤
∫
S

|Nσ(y, x;λ)| |U(y)| dsy ≤

≤ δ
∫
S

|Nσ(y, x;λ)| dsy, x ∈ G.

(31)
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To do this, we estimate the integrals

∫
S

|Φσ(y, x;λ)| dsy,
∫
S

∣∣∣∣∂Φσ(y, x;λ)

∂yj

∣∣∣∣ dsy,
(j = 1, 2, ...,m− 1) and

∫
S

∣∣∣∣∂Φσ(y, x;λ)

∂ym

∣∣∣∣ dsy on S.

By (16), we have∫
S

|Φσ(y, x;λ)| dsy ≤ C(x)σk+1eσ(a−xm), σ > 1, x ∈ G. (32)

To estimate the second integral, using (16) and (18), we obtain∫
S

∣∣∣∣∂Φσ(y, x;λ)

∂yj

∣∣∣∣ dsy ≤ C(x)σk+1eσ(a−xm), σ > 1, x ∈ G,

j = 1, ...,m− 1.

(33)

To estimate the integral

∫
S

∣∣∣∣∂Φσ(y, x;λ)

∂ym

∣∣∣∣ dsy, using (16), we obtain

∫
S

∣∣∣∣∂Φσ(y, x;λ)

∂ym

∣∣∣∣ dsy ≤ C(x)σk+1eσ(a−xm), σ > 1, x ∈ G. (34)

From (32)-(34), we obtain∣∣∣∣∣∣
∫
S

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣ ≤ C(λ, x)σk+1δ eσ(a−xm), σ > 1, x ∈ G. (35)

The following is known:∣∣∣∣∣∣
∫
T

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣ ≤ C(x)σk+1Me−σxm , σ > 1, x ∈ G. (36)

Now taking into account (35)-(36), we have

|U(x)| ≤ C(x)σk+1

2
(δeσa +M)e−σxm , σ > 1, x ∈ G. (37)

Choosing σ from the equality

σ =
1

a
ln
M

δ
, (38)



154 D.A. Juraev, Y.S. Gasimov

we obtain the estimate (27).
Now let us prove the inequality (28). To do this, we find the partial deriva-

tive from the integral formula (10) with respect to the variable xj , j = 1, ...,m−1:

∂U(x)

∂xj
=

∫
S

∂Nσ(y, x;λ)

∂xj
U(y)dsy +

∫
T

∂Nσ(y, x;λ)

∂xj
U(y)dsy +

+
∂Uσ(x)

∂xj
+

∫
T

∂Nσ(y, x;λ)

∂xj
U(y)dsy, x ∈ G, j = 1, ...,m.

(39)

Here
∂Uσ(x)

∂xj
=

∫
S

∂Nσ(y, x;λ)

∂xj
U(y)dsy. (40)

We have∣∣∣∣∂U(x)

∂xj

∣∣∣∣ ≤
∣∣∣∣∣∣
∫
S

∂Nσ(y, x;λ)

∂xj
U(y)dsy

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
T

∂Nσ(y, x;λ)

∂xj
U(y)dsy

∣∣∣∣∣∣ ≤

≤
∣∣∣∣∂Uσ(x)

∂xj

∣∣∣∣+

∣∣∣∣∣∣
∫
T

∂Nσ(y, x;λ)

∂xj
U(y)dsy

∣∣∣∣∣∣ , x ∈ G, j = 1, ...,m.

(41)

Using (26), we estimate the first integral in (27):∣∣∣∣∣∣
∫
S

∂Nσ(y, x;λ)

∂xj
U(y)dsy

∣∣∣∣∣∣ ≤
∫
S

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ |U(y)| dsy ≤

≤ δ
∫
S

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ dsy, x ∈ G, j = 1, ...,m.

(42)

Now let’s estimate the integrals

∫
S

∣∣∣∣∂Φσ(y, x;λ)

∂xj

∣∣∣∣ dsy, (j = 1, 2, ...,m−1) and∫
S

∣∣∣∣∂Φσ(y, x;λ)

∂xm

∣∣∣∣ dsy on S.

By the equalities (16) and (23), we obtain∫
S

∣∣∣∣∂Φσ(y, x;λ)

∂xj

∣∣∣∣ dsy ≤ C(x)σk+1eσ(a−xm), σ > 1, x ∈ G,

j = 1, 2, ...,m− 1.

(43)
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Now, we estimate the integral

∫
S

∣∣∣∣∂Φσ(y, x;λ)

∂xm

∣∣∣∣ dsy.
Taking into account the equality (16), we obtain∫

S

∣∣∣∣∂Φσ(y, x;λ)

∂xm

∣∣∣∣ dsy ≤ C(x)σk+1eσ(a−xm), σ > 1, x ∈ G, (44)

From (43)-(44), we obtain∣∣∣∣∣∣
∫
S

∂Nσ(y, x;λ)

∂xj
U(y)

∣∣∣∣∣∣ ≤ C(x)σk+1δ eσ(a−xm), σ > 1, x ∈ G,

j = 1, ...,m.

(45)

The following is known:∣∣∣∣∣∣
∫
T

∂Nσ(y, x;λ)

∂xj
U(y)dsy

∣∣∣∣∣∣ ≤ C(x)σk+1Me−σxm , σ > 1, x ∈ G,

j = 1, ...,m.

(46)

Now taking into account (45)-(46), we have∣∣∣∣∂U(x)

∂xj

∣∣∣∣ ≤ C(x)σk+1

2
(δeσa +M)e−σxm , σ > 1, x ∈ G,

j = 1, ...,m.

(47)

Choosing σ from the equality (38), we obtain the estimate (28).

Theorem 2 is proved. J

Let U(y) ∈ A(G) and instead of U(y) on S taken with its approximation
fδ(y), respectively, with an error 0 < δ < Me−σa,

max
S
|U(y)− fδ(y)| ≤ δ. (48)

We put

Uσ(δ)(x) =

∫
S

Nσ(y, x;λ)fδ(y)dsy, x ∈ G. (49)

Theorem 3. Let U(y) ∈ A(G) satisfy the condition (11) on the part of the plane
ym = 0
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Then the following estimates are true:∣∣U(x)− Uσ(δ)(x)
∣∣ ≤ C(x)σk+1M1−xm

a δ
xm
a , σ > 1, x ∈ G. (50)∣∣∣∣∂U(x)

∂xj
−
∂Uσ(δ)(x)

∂xj

∣∣∣∣ ≤ C(x)σk+1M1−xm
a δ

xm
a , σ > 1, x ∈ G,

j = 1, ...,m.

(51)

Proof. From the integral formulas (10) and (49), we have

U(x)− Uσ(δ)(x) =

∫
∂G

Nσ(y, x;λ)U(y)dsy −
∫
S

Nσ(y, x;λ)fδ(y)dsy =

=

∫
S

Nσ(y, x;λ)U(y)dsy +

∫
T

Nσ(y, x;λ)U(y)dsy −
∫
S

Nσ(y, x;λ)fδ(y)dsy =

=

∫
S

Nσ(y, x;λ) {U(y)− fδ(y)} dsy +

∫
T

Nσ(y, x;λ)U(y)dsy.

and

∂U(x)

∂xj
−
∂Uσ(δ)(x)

∂xj
=

∫
∂G

∂Nσ(y, x;λ)

∂xj
U(y)dsy −

∫
S

∂Nσ(y, x;λ)

∂xj
fδ(y)dsy =

=

∫
S

∂Nσ(y, x;λ)

∂xj
U(y)dsy +

∫
T

∂Nσ(y, x;λ)

∂xj
U(y)dsy −

∫
S

∂Nσ(y, x;λ)

∂xj
fδ(y)dsy =

=

∫
S

∂Nσ(y, x;λ)

∂xj
{U(y)− fδ(y)} dsy +

∫
T

∂Nσ(y, x;λ)

∂xj
U(y)dsy, j = 1, ...,m.

Using conditions (11) and (48), we estimate

∣∣U(x)− Uσ(δ)(x)
∣∣ =

∣∣∣∣∣∣
∫
S

Nσ(y, x;λ) {U(y)− fδ(y)} dsy

∣∣∣∣∣∣+

+

∣∣∣∣∣∣
∫
T

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣ ≤
∫
S

|Nσ(y, x;λ)| |{U(y)− fδ(y)}| dsy+

+

∫
T

|Nσ(y, x;λ)| |U(y)| dsy ≤ δ
∫
S
|Nσ(y, x;λ)| dsy +M

∫
T

|Nσ(y, x;λ)| dsy
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and

∣∣∣∣∂U(x)

∂xj
−
∂Uσ(δ)(x)

∂xj

∣∣∣∣ =

∣∣∣∣∣∣
∫
S

∂Nσ(y, x;λ)

∂xj
{U(y)− fδ(y)} dsy

∣∣∣∣∣∣+

+

∣∣∣∣∣∣
∫
T

∂Nσ(y, x;λ)

∂xj
U(y)dsy

∣∣∣∣∣∣ ≤
∫
S

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ |{U(y)− fδ(y)} | dsy+

+

∫
T

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ |U(y)| dsy ≤ δ
∫
S

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ dsy+
+M

∫
T

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ dsy, j = 1, ...,m.

Now, repeating the proofs of Theorems 2 and 3, we obtain

∣∣U(x)− Uσ(δ)(x)
∣∣ ≤ C(x)σk+1

2
(δeσa +M)e−σxm ,

∣∣∣∣∂U(x)

∂xj
−
Uσ(δ)(x)

∂xj

∣∣∣∣ ≤ C(x)σk+1

2
(δeσa +M)e−σxm , j = 1, ...,m.

From here, choosing σ from the equality (38), we obtain the estimates (50)
and (51).

Theorem 3 is proved. J

Corollary 3. For every x ∈ G, the following equalities are true:

lim
δ→0

Uσ(δ)(x) = U(x), lim
δ→0

∂Uσ(δ)(x)

∂xj
=
∂U(x)

∂xj
, j = 1, ...,m.

Corollary 4. If x ∈ Gε, then the families of functions
{
Uσ(δ)(x)

}
and

{
∂Uσ(δ)(x)

∂xj

}
converge uniformly as δ → 0, i.e.

Uσ(δ)(x)⇒ U(x),
∂Uσ(δ)(x)

∂xj
⇒

∂U(x)

∂xj
, j = 1, ...,m.
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5. Conclusion

The following results have been obtained in this article.

Using the Carleman function, a formula is obtained for the continuation of
the solution of linear elliptic system of the first order with constant coefficients in
a spatial bounded domain Rm (m = 2k + 1, k ≥ 1). The resulting formula is an
analogue of the classical formula of B. Riemann, W. Voltaire and J. Hadamard,
which they constructed to solve the Cauchy problem in the theory of hyperbolic
equations. An estimate of stability of the solution of the Cauchy problem in the
classical sense for matrix factorizations of the Helmholtz equation is given. The
problem is considered when, instead of the exact data of the Cauchy problem,
their approximations with a given deviation in the uniform metric are given and
under the assumption that the solution of the Cauchy problem is bounded on the
part T of the boundary of the domain G. An explicit regularization formula is
obtained.

Thus, the functionals Uσ(δ)(x) and
∂Uσ(δ)(x)

∂xj
define the regularization of the

solution of the problem (1), (2).
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