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Existence of Global Attractors for the Coupled
System of Suspension Bridge Equations

A.B. Aliev*, Y.M. Farhadova

Abstract. In this paper we study the mathematical model of the bridge problem where
the roadbed and the tensioning cable have a common point. The correctness of the
considered problem is proved and in the linear case the exponential energy decay of the
system is shown.
In the case of non-focused non-linear source terms we show the existence of an absorbing
set and the asymptotic compactness of the nonlinear semigroup generated by the cor-
responding dynamic system. By using these results we show that the same nonlinear
semigroup has a global minimal attractor.
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1. Introduction

In [1] Lazer and McKenna studied the problem of nonlinear oscillation in a
suspension bridge. They presented a one-dimensional mathematical model for
the bridge that takes account of the fact that the coupling provided by the stays
connecting the main cable to the deck of the road bed is fundamentally nonlinear,
that is, they gave rise to some system of semi linear hyperbolic equations (see
[2, 3]), where the first equation describes the vibration of the roadbed in the
vertical plain and the second equation describes that of the main cable from
which the roadbed is suspended by the tie cables. More recently, there has been
a growing interest in this area.

For the mathematical model of suspension bridge we refer the readers to
[4, 5, 6, 7, 8, 9, 10] and references therein, where the existence and asymptotic
behavior of solutions have been studied.
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In some bridge models, the roadbed and the cable have a common point. The
mathematical model of these problems has not been studied. In the previous
studies, the cases have been considered where the roadbed and cable do not have
the common point. In recent studies, the existence of global minimal attractors
of dynamic systems created by these problems has been considered [3, 4, 5, 6, 7,
8, 9, 10].

Note that, the existence of global minimal attractor of the dynamic system,
created by the bridge problem, has been studied by several authors (see [11],
[14, 15, 16, 17, 18], and the references therein).

In this paper, we consider the corresponding mixed problem in the case where
the roadbed and tensioning cable have one common point. The existence and
uniqueness of the solution is investigated by modelling this problem as the Cauchy
problem for an operator coefficient equation in some space. Then, it is shown that
the energy function approaches zero exponentially in the case of linear dissipation.
Using this, the existence of absorbing set of a corresponding dynamic system, in
the case of non-focused non-linear source functions, has been shown and the
assertion about asymptotic compactness has been proved. We also show that the
corresponding dynamic system possesses a global minimal attractor.

2. Statement of the problem. Existence and uniqueness of the
solution

We consider the following mathematical model for the oscillations of the
bridge the roadbed of which has one common point with the cable:{

utt + uxxxx + (u− v)+ = f1(x, u, v),
vtt − vxx − (u− v)+ = f2(x, u, v),

(1)

where u(x, t) is a state function of the roadbed and v(x, t) is that of the main
cable.

Here 0 ≤ x ≤ l, t > 0, z+ = max{z, 0}. f1(·) and f2(·) are real-valued
functions defined on [0, l]×R2.

As the cable and the roadbed are fixed at the endpoints, the following bound-
ary conditions must hold:

u(0, t) = ux(0, t) = u(l, t) = ux(l, t) = v(0, t) = v(l, t) = 0. (2)

Suppose that at some point ξ ∈ (0, l), the tension cable and the roadbed have
a common point, i.e.

u(ξ − 0, t) = u(ξ + 0, t) = v(ξ − 0, t) = v(ξ + 0, t). (3)
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According to the physical meaning, assume that ξ is not the bend point of
the roadbed, i.e.

uxx(ξ − 0, t) = uxx(ξ + 0, t) = 0. (4)

We also assume that the equiliubrium condition is satisfied at the point ξ.
Mathematically, this means that the following equality holds:

uxxx(ξ − 0, t)− uxxx(ξ + 0, t)− vx(ξ − 0, t) + vx(ξ + 0, t) = 0. (5)

We also impose the following initial conditions:

u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ (0, l) (6)

v(x, 0) = v0(x), v′(x, 0) = v1(x), x ∈ (0, l) (7)

The mixed problem (1)-(7) represents the mathematical model of the suspen-
sion bridge in the case where tensioning cable and roadbed have one common
point.

Firstly, we will investigate the existence and uniqueness of solutions to prob-
lem (1)-(7).

In the case where aerodynamic forces are linear, the exponential decay of the
solution of the corresponding homogeneous problem is investigated.

Then, in the case of non-focused non-linear source functions, the existence of
absorbing set of a corresponding dynamic system is investigated.

Finally, the existence of global minimal attractor of the same problem is shown
by using the general theory of existence of the attractor in dynamic systems.

3. Existence and uniqueness of the solution

In order to investigate the problem (1)-(7), we introduce the following nota-
tions:

Hk(a, b) =
{
v : v, v′, ..., v(k) ∈ L2(a, b)

}
0H

1(0, ξ) =
{
v : v ∈ H1(0, ξ), v(0) = 0

}
00H

2(0, ξ) =
{
v : v ∈ H2(0, ξ), v(0) = v′(0) = 0

}
H1

0 (ξ, l) =
{
v : v ∈ H1(ξ, l), v(l) = 0

}
H2

00(ξ, l) =
{
v : v ∈ H2(ξ, l), v(l) = v′(l) = 0

}
Let’s define the following Hilbert space:

H = {w : w∗ = (u11, u12, u21, u22, u31, u32, u41, u42), u11 ∈00 H2(0, ξ),
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u12 ∈ L2(0, ξ), u21 ∈ H2
00(ξ, l), u22 ∈ L2(ξ, l), u31 ∈0 H1(0, ξ), u32 ∈ L2(0, ξ),

u41 ∈ H1
0 (ξ, l), u42 ∈ L2(ξ, l), u11(ξ) = u21(ξ) = u31(ξ) = u41(ξ)}.

The scalar product in the space H is defined as follows:

< w, z >=

ξ∫
0

u11xxz11xxdx+

ξ∫
0

u12z12dx+

l∫
ξ

u21xxz21xxdx+

l∫
ξ

u22z22dx+

+

ξ∫
0

u31xz31xdx+

ξ∫
0

u32z32dx+

l∫
ξ

u41xz41xdx+

l∫
ξ

u42z42dx;

where w = (u11, u12, u21, u22, u31, u32, u41, u42)
∗ ∈ H and

z = (z11, z12, z21, z22, z31, z32, z41, z42)
t ∈ H.

We will denote the norm in the space H as ‖ · ‖H.
Let’s define the linear operator A in the space H:

A =



0 1 0 0 0 0 0 0
−∂4 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 −∂4 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 ∂2 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 ∂2 0


,

D(A) =
{
w : w = (u11, u12, u21, u22, u31, u32, u41, u42), u11 ∈00 H4(0, ξ),

u12 ∈00 H2(0, ξ), u21 ∈ H4
00(ξ, l), u22 ∈ H2

00(ξ, l),

u31 ∈0 H2(0, ξ), u32 ∈0 H1(0, ξ), u41 ∈ H2
0 (ξ, l), u42 ∈ H1

0 (ξ, l),

u11xxx(ξ)− u21xxx(ξ)− u31x(ξ) + u41x(ξ) = 0, u11xx(ξ) = u21xx(ξ) = 0} .

The set H1 = D(A) is a Banach space with respect to the norm

‖w‖H1 = ‖Aw‖H + ‖w‖H.

Let’s define the following non-linear operator acting in the space H:
F (w) = F1(w) + F2(w), with

F1(w) = (0,−(u11 − u31)+, 0,−(u21 − u41)+0,−(u31 − u11)+0,−(u41 − u21)+)∗
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F2(w) = (0, f1(x, u11, u31), 0, f1(x, u21, u41), 0, f2(x, u11, u31), 0, f2(x, u21, u41))
∗

The problem (1)-(7) is written in the form

w′ = Aw + F (w), (8)

w(0) = w0, (9)

where w = w(t) = (u11, u12, u21, u22, u31, u32, u41, u42)
∗, w′ = dw(t)

dt ,
w0 = (u110, u120, u210, u220, u310, u320, u410, u420),

u11 = u(x, t), u12 = ut(x, t), 0 < x < ξ,

u21 = u(x, t), u22 = ut(x, t), ξ < x < l,

u31 = v(x, t), u32 = vt(x, t), 0 < x < ξ,

u41 = v(x, t), u42 = vt(x, t), ξ < x < l,

u110 = u0(x), u120 = u1(x), 0 < x < ξ,

u210 = u0(x), u220 = u1(x), ξ < x < l,

u310 = v0(x), u320 = v1(x), 0 < x < ξ,

u410 = v0(x), u420 = v1(x), ξ < x < l.

Lemma 1. A is a maximal dissipative operator.

Lemma 2. Suppose that the functions f1(·), f2(·) are mapping from [0, l] × R2

to R and satisfy local Lipschitz conditions. Then the nonlinear operator w →
F (w) : H → H satisfies local Lipschitz condition (see [12]).

By virtue of Lemmas 1 and 2, we have the following result about the existence
of local solutions:

Theorem 1. Suppose that f1(·), f2(·) are the functions mapping from [0, l]×R2

to R and satisfying local Lipschitz conditions. Then for any
w0 = (u110, u120, u210, u220, u310, u320, u410, u420) ∈ H there exists T ′ > 0, such
that the problem (8), (9) has a unique solution
w(·) = (u11(·), u12(·), u21(·), u22(·), u31(·), u32(·), u41(·), u42(·)) ∈ C([0, T ′];H). If
w0 ∈ D(A), then w(·) ∈ C([0, T ′];H1) ∩ C1([0, T ′];H).

In either case, the following alternative is true: If [0, Tmax) is the maximum
interval on which the local solution exists, then

1) Tmax = +∞ or
2) limt→Tmax ‖w(·)‖H = +∞.
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According to this theorem, if a priori estimate

‖w(t)‖H ≤ C, 0 ≤ t < Tmax

is true for the solution of the problem (8)-(9), then Tmax = +∞, i.e., in this case,
solution established by Theorem 1 is a global solution.

Theorem 2. Let’s suppose that all the conditions of Theorem 1 hold. Moreover,
assume that there is a function F (x, u, v) defined on [0, L] × R2 which satisfies
the following conditions:

F ′u(x, u, v) = f1(x, u, v),

F ′v(x, u, v) = f2(x, u, v),

F (x, u, v) ≤ c1(u
2 + v2) + c2,

where c1 and c2 are some positive constants. Then for any w0 ∈ H, the problem
(8), (9) has a unique solution w(·) ∈ C([0; +∞);H).

It follows from Theorem 2 that the problem (8)-(9) creates a dynamical system
in the space H. Let’s denote a semigroup corresponding to this dynamical system
by Wt = W (t).

If Ut = U(t) = e−At is the C0 semigroup generated by the linear operator A,
then

Wt(w0) = Utw0 +

t∫
0

Ut−sF (w(s))ds. (10)

Let’s introduce some concepts that characterize the asymptotics of a dynam-
ical system corresponding to the semigroup Wt.

Definition 1. Suppose that W (t) is a nonlinear semigroup generated by the prob-
lem (27), (14)–(19). A subset B0 of H is called an absorbing set in H if, for any
bounded subset B of H, there exists some t0 = t(B) such that U(t)B ⊂ B0, for
all t ≥ t0

Definition 2. Suppose that {Wt}t≥0 is a semigroup in some metric space (X, d)
and X has a minimal set U ⊂ X invariant for the corresponding dynamical system
such that for any bounded set B ⊂ X, the following condition holds:

lim
t→∞

sup
v∈B

inf
u∈U

d(S(t)v, u) = 0.

Then it’s said that the semigroup {Wt}t≥0 has a minimal global attractor U.
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4. Influence of linear aerodynamic resistance without external
forces

The mathematical model of the influence of linear aerodynamic resistance
without external forces has the following form:{

utt + uxxxx + (u− v)+ + ut = 0,
vtt − vxx − (u− v)+ + vt = 0

(11)

Let us consider the system (11) with the boundary conditions (2), interaction
conditions (3) - (5) and initial conditions (6), (7).

We introduce the following functional corresponding to the solution of the
problem (2)-(7), (11)

E0(t) =
1

2

l∫
0

u2t (t, x)dx+
1

2

l∫
0

u2xx(t, x)dx+
1

2

l∫
0

v2t (t, x)dx+
1

2

l∫
0

v2x(t, x)dx.

Theorem 3. There exist numbers M > 0 and α > 0 such that for the energy
functional E0(t) of the problem (2)-(7), (11), the estimate

E0(t) ≤Me−αtE0(0) (12)

is true.

Before proving Theorem 3, consider the following problem:{
utt + uxxxx + (u− v)+ + ut = g1(t, x),
vtt − vxx − (u− v)+ + vt = g2(t, x).

(13)

u(0, t) = ux(0, t) = u(l, t) = ux(l, t) = v(0, t) = v(l, t) = 0, (14)

u(ξ − 0, t) = u(ξ + 0, t) = v(ξ − 0, t) = v(ξ + 0, t). (15)

uxx(ξ − 0, t) = uxx(ξ + 0, t) = 0. (16)

uxxx(ξ − 0, t)− uxxx(ξ + 0, t)− vx(ξ − 0, t) + vx(ξ + 0, t) = 0. (17)

u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ (0, l) (18)

v(x, 0) = v0(x), v′(x, 0) = v1(x), x ∈ (0, l). (19)

Let’s define the following functionals other than E0(t), according to the solu-
tion of this problem:

E1(t) =
1

2

l∫
0

u2t (t, x)dx+
1

2

l∫
0

u2xx(t, x)dx+
1

2

l∫
0

v2t (t, x)dx+
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+η

l∫
0

ut(t, x)u(t, x)dx+ η

l∫
0

vt(t, x)v(t, x)dx+

+
1

2

l∫
0

v2x(t, x)dx+
1

2

l∫
0

|(u(t, x)− v(t, x))+|2dx;

E2(t) = (1− η)

l∫
0

u2t (t, x)dx+ (1− η)

l∫
0

v2t (t, x)dx+

+η

l∫
0

u2xx(t, x)dx+ η

l∫
0

v2x(t, x)dx+ η

l∫
0

(u(t, x)− v(t, x))2dx+

+η

l∫
0

ut(t, x)u(t, x)dx+ η

l∫
0

vt(t, x)v(t, x)dx.

Lemma 3. If the functions u ∈ H2 and v ∈ H1 satisfy the conditions (14)-(17),
then there exist constants c1 > 0, c2 > 0, such that

‖v‖L2(0,l) ≤ λ1‖vx‖L2(0,l), (20)

‖u‖L2(0,l) ≤ λ2‖uxx‖L2(0,l). (21)

Lemma 4. There exists a number η0 > 0 such that for any 0 < η ≤ η0

µ1E1(t) ≤ E0(t) ≤ µ−11 E1(t), t > 0, (22)

µ2E2(t) ≤ E0(t) ≤ µ−12 E2(t), t > 0 (23)

where µ1 > 0 and µ2 > 0 are the constants depending on η.

Lemma 5. For the functionals E1(t) and E2(t) of the problem (13)-(19), the
following identity is valid:

d

dt
E1(t) + E2(t) =

l∫
0

g1(t, x)ut(t, x)dxdt+

l∫
0

g2(t, x)vt(t, x)dx+

+η

l∫
0

g1(t, x)u(t, x)dxdt+ η

l∫
0

g2(t, x)v(t, x)dx. (24)
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According to Lemma 4 and Lemma 5, we get

d

dt
E1(t) + µ1µ2E1(t) ≤

l∫
0

f1(t, x)ut(t, x)dxdt+

l∫
0

f2(t, x)vt(t, x)dx+

+η

l∫
0

f1(t, x)u(t, x)dxdt+ η

l∫
0

f2(t, x)v(t, x)dx. (25)

In particular, if f1(t, x) = f2(t, x) = 0, then we obtain the following inequality:

E1(t) ≤ E1(0)e−µ1µ2t, t > 0. (26)

Finally, if we use Lemma 4, we get Theorem 3.

5. The existence of an absorbing set in the case of a non-linear
non-focused source

In this section we study the existence of an absorbing set of the dynamic sys-
tem related to the following system with non-linear non-focused source function
under the conditions (14)-(19).{

utt + uxxxx + (u− v)+ + ut + |u|p|v|p+2u = h1(x),
vtt − vxx − (u− v)+ + vt + |u|p+2|v|pv = h2(x).

(27)

Here
p ≥ 0, (28)

h1(·), h2(·) ∈ L2(0, l). (29)

According to Theorem 3, the problem (27), (14) - (19) is correct in H, when
the conditions (28), (29) are satisfied. Let us denote the semigroup generated by
this problem by W (t), as in (10).

Theorem 4. Suppose that conditions (28), (29) are satisfied. Then the semigroup
Wt generated by the problem (27), (14) - (19) has a bounded absorbing set in the
space H.

Proof. Since g1(t, x) = −|u|p|v|p+2u+h1(x), g2(t.x) = −|u|p+2|v|pv+h2(x) in
(27), we obtain the following inequality to solve the problem (27), (14) - (19) by
applying the Holder inequality in (25):

d

dt
E1(t) + µ1µ2E1(t) ≤ −

1

p+ 1

d

dt

l∫
0

|uv|p+1dx− 2η

l∫
0

|uv|p+1dx+
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+

 l∫
0

|h1(x)|2dx

1/2 l∫
0

|ut(t, x)|2dx

1/2

+

+

 l∫
0

|h2(x)|2dx

1/2 l∫
0

|(vt(t, x)|2dx

1/2

+

+η

 l∫
0

|h1(x)|2dx

1/2 l∫
0

|u(t, x)|2dx

1/2

+

+η

 l∫
0

|h2(x)|2dx

1/2 l∫
0

|(v(t, x)|2dx

1/2

.

Applying the Young inequality to each of the terms on the right, we obtain

d

dt

E1(t)− ε

 l∫
0

|ut|2dx+

l∫
0

|vt|2dx

+
1

p+ 1

l∫
0

|uv|p+1dx

+

+µ1µ2E1(t) + 2η

l∫
0

|uv|p+1dx− ε

 l∫
0

|u|2dx+

l∫
0

|v|2dx

 ≤
≤ 2η2

ε

l∫
0

|h1(x)|2dx+
2η2

ε

l∫
0

|h2(x)|2dx. (30)

In the inequality (30), we take 0 < ε < min{ 1
2c1
, 1
2c2
}. Then we get the

following inequality:
d

dt
E1ε(t) + E2ε(t) ≤ γ, (31)

where

E1ε(t) = [1/2− ε]
l∫

0

u2t (t, x)dx+ [1/2− ε]
l∫

0

u2xx(t, x)dx+ 1/2

l∫
0

v2t (t, x)dx+

+η

l∫
0

ut(t, x)u(t, x)dx+ η

l∫
0

vt(t, x)v(t, x)dx+
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+1/2

l∫
0

v2x(t, x)dx+ 1/2

l∫
0

|(u(t, x)− v(t, x)+|2dx;

E2ε(t) = (1− η)

l∫
0

u2t (t, x)dx+ (1− η)

l∫
0

v2t (t, x)dx+

+[η − εc1]
l∫

0

u2xx(t, x)dx+ [η − εc2]
l∫

0

v2x(t, x)dx+ η

l∫
0

(u(t, x)− v(t, x))2dx+

+η

l∫
0

ut(t, x)u(t, x)dx+ η

l∫
0

vt(t, x)v(t, x)dx.

γ =
2η2

ε

l∫
0

|h1(x)|2dx+
2η2

ε

l∫
0

|h2(x)|2dx.

J

Lemma 6. Suppose that conditions (28), (29) are fulfilled. Then there exist
numbers µ3 > 0, µ4 > 0, such that

µ3E1ε(t) ≤ E0(t) ≤ µ−13 E1ε(t), t > 0,

µ4E2ε(t) ≤ E0(t) ≤ µ−14 E2ε(t), t > 0.

According to Lemma 6 and (31), there exists c3 > 0 such that

E2ε(t) ≥ c3E1ε(t).

Based on this inequality, from (31) we get

d

dt
E1ε(t) + c3E1ε(t) ≤ γ.

Here, taking into account Lemma 6, we get:

E0(t) ≤
γµ3
c3

+

(
E0(0)− γ

c3µ3

)
e−c3t, t > 0. (32)

If we take r = γµ3
c3

+ 1, it follows from (32) that B0 = {w : ‖w‖H ≤ r + 1} is
the absorbing set.



116 A.B. Aliev, Y.M. Farhadova

6. Asymptotic compactness and existence of a minimal global
attractor in the case of a nonlinear non-focused source

Suppose that B ⊂ H and w0 ∈ B. We introduce the notation

Vt(B) = {y : y = Vt(w0), w0 ∈ B}, where Vt(w0) =
t∫
0

Ut−sG(w(s))ds,

G(w(·)) =



0
−|u11(·)|p|u31(·)|p+2u11(·) + h11(·)

0
−|u21(·)|p|u41(·)|p+2u21(·) + h21(·)

0
−|u11(·)|p+2|u31(·)|pu31(·) + h12(·)

0
−|u21(·)|p+2|u41(·)|pu41(·) + h41(·)


h11(x) = h1(x), 0 ≤ x ≤ ξ; h21(x) = h1(x), ξ ≤ x ≤ l;

h12(x) = h2(x), 0 ≤ x ≤ ξ; h22(x) = h2(x), ξ ≤ x ≤ l;

Theorem 5. Suppose that conditions (28), (29) are satisfied. Then
⋃
t≥0

Vt(B) is

precompact in H for any bounded set B ⊂ H.

Proof. For any bounded set B ⊂ H, there is tB > 0 such that Wt(B) ⊂ B0 for
t ≥ tB. It follows from here that if for any t, w(t) is the solution of the problem
(27), (14) - (19), then ‖w(t)‖H ≤ c(r0), t ≥ 0. In this case, since uk1t = uk2, k =
1, 2, 3, 4, the following estimates are true:

‖uk1t(t, ·‖L2(0,ξ) ≤ c(r0), k = 1, 3,

‖uk1t(t, ·‖L2(ξ,l) ≤ c(r0), k = 2, 4.

Using these estimates, we get

‖fju(u11(t, ·), u31(t, ·))u11t(t, ·)‖L2(0,ξ) ≤

≤ sup
0≤x≤ξ

fju(u11(t, x), u31(t, x)) · ‖u11t(t, ·‖L2(0,ξ) ≤

≤ c(‖u11(t, ·)‖00H2(0,ξ), ‖u31(t, ·)‖0H1(0,ξ))‖u11t(t, ·‖L2(0,ξ) ≤ cj . (33)

Here, f1(u, v) = |u(·)|p|v(·)|p+2u(·) + h1(·), f2(u, v) = |u(·)|p+2|v(·)|pv(·) +
h2(·).
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Similarly, we have

‖fjv(u11(t, ·), u31(t, ·))u31t(t, ·)‖L2(0,ξ) ≤ cj , j = 1, 2, (34)

‖fju(u21(t, ·), u41(t, ·))u21t(t, ·)‖L2(ξ,l) ≤ cj , j = 1, 2, (35)

‖fjv(u21(t, ·), u41(t, ·))u41t(t, ·)‖L2(ξ,l) ≤ cj , j = 1, 2. (36)

According to the definition of F (w) and the a priori estimate (33)-(36), we
obtain

‖(G(w))′‖H ≤ c(‖w0‖H). (37)

It’s obvious that the function y =
t∫
0

Ut−sF (w(s))ds is the solution of the

problem

y′ = Ay +G(w), (38)

y(0) = 0. (39)

If we denote z = y′, then

z = Ut(w0) +

t∫
0

Ut−s(G(w(s)))′ds.

From the estimates (22), (37), we derive

‖y′‖H = ‖z‖H ≤Me−ωt‖w0‖H +
M

ω
(1− e−ωt)c(‖w0‖H) ≤ c(B), t ≥ 0. (40)

Considering (40) in (38), we get

‖Ay‖H ≤ c(B), t ≥ 0. (41)

Since the space H1 is compactly embedded in H, it follows from (41) that

{y(t), t ≥ 0, w 0 ∈ B} =
⋃
t≥0

Vt(B) is a compact set. J

Now, let’s show the existence of the minimal global attractor. The main result
of this paper is the following:

Theorem 6. Suppose that conditions (28) and (29) are satisfied. Then the semi-
group Wt generated by the problem (27), (14) - (19) has a global minimum at-
tractor, so that it is connected, invariant in H, and bounded set in H1.
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Proof. According to Theorem 6, Wt is continuous, point-dissipative and
asymptotic compact semigroup. Then, according to the results in the papers
[11, 15], Wt has a minimal global attractor U ⊂ H.

Let’s show that U is bounded in the set H1. Since U is an invariant for the
semigroup Wt, for any y ∈ U there is yk ∈ U and tk → +∞, such that Wtkyk = y.

From here we get
Utkyk + Vtkyk = y. (42)

Based on the inequality ‖Ut‖ ≤Me−ωt, from the relation (42) we obtain

Vtkyk → y, k →∞, (43)

in H.
From the inequality (41) we derive ‖Vtkyk(t)‖H1 ≤ c. Thus, there is a X ∈ H1

such that
Vtkyk → X weakly in H1. (44)

It follows from (43) and (44) that y = χ and ‖y(t)‖H1 ≤ c. In other words,
the set U is bounded in H1. J

Conclusion: It is clear that H1 is compactly embedded in H, so U is a
compact set in H.

7. Proof of Lemmas

Proof of Lemma 1. Let w = (u11, u12, u21, u22, u31, u32, u41, u42)
∗ ∈ D(A).

Then by taking into account the boundary conditions (2), we get the following
equality:

〈Aw,w〉 =

ξ∫
0

∂2u12 · ∂2u11dx− ∂3u11(ξ) · u12(ξ) + ∂2u11(ξ) · ∂2u12(ξ)−

−∂2u21(ξ) · ∂2u22(ξ)−
l∫

ξ

∂2u21 · ∂2u22dx+

ξ∫
0

∂u32 · ∂u31dx−

−∂u41(ξ) · ∂u42(ξ)−
l∫

ξ

∂u41 · ∂u42dx.

Taking into account the continuity and interaction conditions (3)-(5), we get

< Aw,w >= 0.
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Thus, we proved that A is a dissipative operator.
Now let’s show that A is a maximal operator. For this purpose, we must show

that the image of A coincides with H.
Let h = (h11, h12, h21, h22, h31, h32, h41, h42) ∈ H. Then the equation

Aw = h, (45)

is equivalent to the following boundary problem:

u12 = h11
∂4u11 = h12
u22 = h21
−∂4u21 = h22
u32 = h31
∂2u31 = h32
u42 = h41
∂2u41 = h42



u11(0) = ∂u11(0) = u12(0) = u12(0) = 0
u21(l) = ∂u21(l) = u22(l) = u22(l) = 0
u31(0) = u32(0) = 0
u41(l) = ∂u42(l) = 0
u′′′11(ξ)− u′′′21(ξ)− u′31(ξ) + u′41(ξ) = 0
u′′11(ξ) = u′′21(ξ) = 0.

(46)

Let’s show that this problem has a solution

w = (u11, u12, u21, u22, u31, u32, u41, u42) ∈ D(A).

It’s clear from the expressions obtained for w that

‖Aw‖H ≥ m‖w‖H. (47)

Here m > 0 is a positive number which doesn’t depend on A.
From the existence of the solution of the problem (46) and estimate (47), it

follows that the linearly closed operator A has a bounded inverse. Thus, λ = 0
belongs to the resolvent set. Since the resolvent set is open and A is dissipative,
it follows that any λ > 0 belongs to the resolvent set [13, 19]. J

Proof of Lemma 2. Since |θ2+ − θ1+ | ≤ |θ2 − θ1| for any θ1, θ2, we get

‖F1(w2)− F1(w1)‖H ≤ ‖w2 − w1‖H.

Suppose Br is a ball of radius r in space H and

wk = (uk11, u
k
12, u

k
21, u

k
22, u

k
31, u

k
32, u

k
41, u

k
42) ∈ Br, k = 1, 2.

Then
‖f1(x, u211, u231)− f1(x, u111, u131)‖2L2(0,ξ)

≤

≤
ξ∫

0

|c(u111, u211, u111, u211)|2
[
|u211 − u111|2 + |u231 − u131|2

]
dx ≤
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≤ sup
0≤x≤ξ

|c(u111, u211, u111, u211)|2
ξ∫

0

[|u211 − u111|2 + |u231 − u131|2]dx ≤

≤ c2
(
‖u111‖0H2(0,ξ), ‖u211‖0H2(0,ξ)‖u131‖0H1(0,ξ), ‖u231‖0H2(0,ξ)

)
×

×
ξ∫

0

[
|u211 − u111|2 + |u231 − u131|2

]
dx ≤ c2(r)‖w2 − w1‖2. (48)

Similarly, we have

‖f2(x, u211, u231)− f2(x, u111, u131)‖2L2(0,ξ)
≤ c2(r)‖w2 − w1‖2, (49)

‖fj(x, u221, u241)− fj(x, u121, u141)‖2L2(ξ,l)
≤ c2(r)‖w2 − w1‖2, j = 1, 2. (50)

According to (48)-(50), we have

‖F (w2)− F (w1)‖H ≤ c(r)‖w2 − w1‖H.

J
Proof of Lemma 3. Since u11(0) = u′11(0) = 0, we obtain

‖u11‖L2(0,ξ) ≤ c11‖u11x‖L2(0,ξ) ≤ c̃11‖u11xx‖L2(0,ξ). (51)

Similarly, since u21(l) = u′21(l) = 0, we have

‖u21‖L2(ξ,l) ≤ c21‖u21x‖L2(ξ,l) ≤ c̃21‖u21xx‖L2(ξ,l). (52)

In the same way, we get the following inequalities:

‖u31‖L2(0,ξ) ≤ c31‖vx‖L2(0,ξ),

‖u41‖L2(ξ,l) ≤ c41‖vx‖L2(ξ,l).

It follows from (51) and (52) that

‖u‖L2(0,l) ≤ c4‖uxx‖L2(0,l),

‖v‖L2(0,l) ≤ c5‖vx‖L2(0,l).

J
Proof of Lemma 4. Using Holder’s and Young’s inequalities, from Lemma

3 we obtain∣∣∣∣∣∣
l∫

0

us(τ, x)u(τ, x)dx

∣∣∣∣∣∣ ≤ ε/2
l∫

0

|us(τ, x)|2dx+
λ2
2ε

l∫
0

|uxx(τ, x)|2dx. (53)
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Similarly we get∣∣∣∣∣∣
l∫

0

vs(τ, x)v(τ, x)dx

∣∣∣∣∣∣ ≤ ε

2

l∫
0

|vs(τ, x)|2dx+
λ1
2ε

l∫
0

|vx(τ, x)|2dx. (54)

1

2

l∫
0

|(u(t, x)− v(t, x)+|2dx ≤
l∫

0

|u(t, x)|2dx+

l∫
0

|v(t, x)|2dx ≤

≤ λ2

l∫
0

|uxx(t, x)|2dx+ λ1

l∫
0

|vx(t, x)|2dx. (55)

E1(t) ≤ max
{

1 + 2εη, 1 + (1 + λ1)
η

ε
, 1 + (1 + λ2)

η

ε

}
E0(t). (56)

η and ε are chosen so that the conditions η <

√
min

{
1
λ1
, 1
λ2

}
, ε < 1

η are

satisfied.
In this case, from the definition of E1(t) and ε · η < 1, ηλ1ε < 1, we get

E1(t) ≥ min

{
1− 2εη, 1− ηλ1

ε
, 1− ηλ2

ε

}
E0(t). (57)

So if we take µ1 as follows, we obtain the inequality (22).

µ1 = min

{
1− 2εη, 1− ηλ1

ε
, 1− ηλ2

ε
,

1

1 + 2εη
,

1

(1 + λ1)
η
ε

,
1

1 + (1 + λ2)
η
ε

}
.

The inequality (23) can be proved in the same way. J
Proof of Lemma 5. Multiplying first equation of the system (13) by ut(t, x),

second equation by vt(t, x), integrating over the domain and summing up we get:

d

dt

1

2

l∫
0

|ut(t, x)|2dx+
1

2

l∫
0

|vt(t, x)|2dx+
1

2

l∫
0

|uxx(t, x)|2dx+

+
1

2

l∫
0

|vx(t, x)|2dx

+

l∫
0

|ut(t, x)|2dx+

l∫
0

|vt(t, x)|2dx =

=

l∫
0

g1(t, x) · ut(t, x)dx+

l∫
0

g2(t, x) · vt(t, x)dx. (58)
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Multiplying first equation of the system (13) by u(t, x), second equation by
v(t, x), integrating over the domain and summing up we get:

d

dt


l∫

0

ut(t, x) · u(t, x)dx+

l∫
0

vt(t, x) · v(t, x)dx

−

−


l∫

0

|ut(t, x)|2dx+

l∫
0

|vt(t, x)|2dx

+

l∫
0

|uxx(t, x)|2dx+

l∫
0

|vx(t, x)|2dx+

+

l∫
0

ut(t, x) · u(t, x)dx+

l∫
0

vt(t, x) · v(t, x)dx =

=

l∫
0

g1(t, x) · u(t, x)dx+

l∫
0

g2(t, x) · v(t, x)dx. (59)

Multiplying both sides of the equality (59) by the parameter η and adding it
to the equality (57), leads to the identity (24). J

The proof of Lemma 6 is the same as that of Lemma 4.
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