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The Discontinuous Nonlinear Dirichlet Boundary
Value Problem with p-Laplacian

C. Allalou, A. Abbassi*, A. Kassidi

Abstract. This paper is dedicated to the class of locally bounded weakly upper semi-
continuous set-valued operators of generalized (S+) type in the weighted Sobolev space.
The aim of this work is to transform this Dirichlet boundary value problem related to the
p-Laplacian with discontinuous nonlinearity into a new one governed by a Hammerstein
equation. Then, we establish the existence of weak solutions of the state problem by
using the topological degree theory.
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1. Introduction

Let Ω be a bounded open set of RN (N ≥ 1)with Lipschitz boundary if N ≥ 2
and let p be a real number such that 2 < p <∞ and w = {wi(x), 0 ≤ i ≤ N} be
a vector of weight functions on Ω, i.e. each wi(x) is a measurable a.e. positive on
Ω. Let W 1,p

0 (Ω, w) be the weighted Sobolev space associated with the vector w.
The p-Laplacian problem appear naturally in a number of fields such as

physics, climatological model [10], bimaterial problems in which there are two
environments with different resistance constants [20], image processing [17, 29].
It is also applied to polymer rheology, regular variation in thermodynamics, fit-
ting of experimental data, blood flow phenomena, aerodynamics, electro ana-
lytical chemistry, electro-dynamics of complex medium, viscoelasticity, electrical
circuits, biology, control theory, Bode analysis of feedback amplifiers, capacitor
theory, non-Newtonian fluids, electrorheological fluids, the flow of a fluid through
a porous medium [13, 21, 24, 27]. Furthermore, in [23], a theoretical point of view
of the p-Laplacian game is studied.
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Motivated by the works mentioned above, in this paper we prove existence of
weak solutions to the following discontinuous nonlinearity boundary value prob-
lem for a p-Laplacian equation{

−∆pu+ u ∈ −
[
ψ(x, u), ψ(x, u)

]
in Ω,

u = 0 on ∂Ω,
(1)

where ∆pu = div
(
a(x,∇u)

)
= div

(
|∇u|p−2∇u

)
. We shall suppose that the fol-

lowing degenerate ellipticity condition is satisfied for all ξ ∈ RN and almost every
x ∈ Ω :

a(x, ξ) · ξ ≥ %
N∑
i=1

wi|ξi|p, (2)

such that % is a positive constant. The function ψ : Ω × R → R is a possibly
discontinuous function in the sense that

ψ(x, s) = lim inf
η→s

ψ(x, η) = lim
δ→0+

inf
|η−s|<δ

ψ(x, η),

ψ(x, s) = lim sup
η→s

ψ(x, η) = lim
δ→0+

sup
|η−s|<δ

ψ(x, η).

Suppose that ψ : Ω× R→ R is a real-valued function such that

(H1) ψ and ψ are super-positionally measurable, that is, ψ(·, u(·)) and ψ(·, u(·))
are measurable on Ω for any measurable function u : Ω→ R;

(H2) ψ satisfies the growth condition:

|ψ(x, s)| ≤ b(x) + c σ(x) |s|p/p′ ,

for almost all x ∈ Ω and all s ∈ R, where b ∈ Lp′(Ω, σ∗), and c is a positive
constant.

In the case
[
ψ(x, u), ψ(x, u)

]
=
{

1
}

, the p-Laplacian problem (1) models elastic-
plastic torsion problems that arise in solid mechanics [14]. In particular, the case
p = 2 indicates the perfectly elastic torsion model. In addition, the limit case
p→∞ refers to the perfectly plastic torsion model [14].

In this paper, we propose a topological degree theory developed by Kim in [16]
for a class of locally bounded weakly upper semi-continuous set-valued operators
of generalized (S+) type in real reflexive separable Banach spaces, based on the
Berkovits-Tienari degree [5]. The topological degree theory was first introduced
by Leray-Schauder [18] in their study of the nonlinear equations for compact
perturbations of the identity in infinite-dimensional Banach spaces. Browder [6]
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constructed a topological degree for operators of class (S+) in reflexive Banach
spaces by the Galerkin method, see also [22, 25, 26]. Among many examples, we
refer the reader to the classical works [9, 28] for more details.

On the other hand, S. Liu [19] by using Morse theory, has established the exis-
tence of weak solutions to the equation −4pu = f(x, u) with Dirichlet boundary
conditions. It should be mentioned that the results in this paper generalise the
p-Laplacian results obtained in [2, 16] to the strongly nonlinear case using the
topological degree.

The layout of the paper is as follows. In the next section, we give some
preliminaries and the definition of weighted Sobolev spaces and we recall some
classes of mappings of generalized (S+) type and the topological degree. In the
third section, we discuss the p-Laplace operator and technical lemmas. Finally
we show some existence results of weak solutions of problem (1).

2. Preliminaries

In order to discuss problem (1), we need some theories on topological de-
gree and on spaces W 1,p(Ω, w) which we call weighted Lebesgue−Sobolev spaces.
Firstly we state some classes of mappings and topological degree, secondly we
give basic properties of spaces W 1,p(Ω, w) which will be used later.

2.1. Classes of mappings and topological degree

Let X be a real separable reflexive Banach space with dual X∗ and with
continuous dual pairing 〈 · , · 〉 between X∗ and X in this order, and given a
nonempty subset Ω of X, let Ω and ∂Ω denote the closure and the boundary of
Ω in X, respectively. The symbol → (⇀) stands for strong (weak) convergence.

Definition 1. Let Y be another real Banach space. A set-valued operator F :
Ω ⊂ X → 2Y is said to be

1. bounded, if F maps bounded sets into bounded sets;

2. locally bounded, if for each u ∈ Ω there exists a neighborhood U of u such

that the set F (U) =
⋃
u∈U

Fu is bounded;

3. upper semicontinuous (u.s.c.), if the set F−1(A) = {u ∈ Ω|Fu ∩ A 6= ∅} is
closed in X for each closed set A in Y;

4. weakly upper semicontinuous (w.u.s.c.), if F−1(A) is closed in X for each
weakly closed set A in Y;
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5. compact, if it is upper semicontinuous and the image of any bounded set is
relatively compact.

Definition 2. A set-valued operator F : Ω ⊂ X → 2X
∗\∅ is said to be

1. of class (S+), if for any sequence (un) in Ω and any sequence (hn) in X∗

with hn ∈ Fun such that un ⇀ u in X and

lim sup
n→∞

〈hn, un − u〉 ≤ 0,

we have un → u in X;

2. quasimonotone, if for any sequence (un) in Ω and any sequence (wn) in X∗

with wn ∈ Fun such that un ⇀ u in X, we have

lim inf
n→∞

〈wn, un − u〉 ≥ 0.

Definition 3. Let T : Ω1 ⊂ X → X∗ be a bounded operator such that Ω ⊂ Ω1.
A set-valued operator F : Ω ⊂ X → 2X\∅ is said to be:

1. of class (S+)T , if for any sequence (un) in Ω and any sequence (hn) in X
with hn ∈ Fun such that un ⇀ u in X, Tun ⇀ y in X∗ and

lim sup
n→∞

〈hn, Tun − y〉 ≤ 0,

we have un → u in X;

2. T -quasimonotone, written F ∈ (QM)T , if for any sequence (un) in Ω and
any sequence (hn) in X with hn ∈ Fun such that un ⇀ u in X, Tun ⇀ y
in X∗, we have

lim inf
n→∞

〈hn, Tun − y〉 ≥ 0.

Remark 1. ([16]) Notice that if F : Ω ⊂ X → 2X\∅ is locally bounded and of
class (S+)T , where Ω is closed in X and T : Ω→ X∗ is bounded and continuous,
then F is T -quasimonotone. Moreover, the collection of operators of class (S+)T
is stable under (QM)T -perturbations.

Let O be the collection of all bounded open sets in X. For any Ω ⊂ X, we
consider the following classes of operators:

F1(Ω) := {F : Ω→ X∗|F is bounded, demicontinuous and satifies condition (S+)},
FT,B(Ω) := {F : Ω→ 2X |F is bounded, w.u.s.c. and satifies condition (S+)T },
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FT (Ω) := {F : Ω→ 2X |F is locally bounded, w.u.s.c. and satifies condition (S+)T },
FB(X) := {F ∈ FT,B(G)| G ∈ O, T ∈ F1(G)}.
F(X) := {F ∈ FT (G)| G ∈ O, T ∈ F1(G)}.

Throughout the paper T ∈ F1(G) is called an essential inner map to F.

Lemma 1. ([16, Lemma 1.4]) Let T ∈ F1(G) be continuous and S : DS ⊂ X∗ →
2X be locally bounded and weakly upper semicontinuous such that T (G) ⊂ Ds,
where G is a bounded open set in a real reflexive Banach space X. Then the
following statements are true :

1. If S is quasimonotone, then I +ST ∈ FT (G), where I denotes the identity
operator.

2. If S is of class (S+), then ST ∈ FT (G).

Definition 4. ([16]) For a bounded operator T : G ⊂ X → X∗, a homotopy
H : [0, 1] × G → 2X is said to be of class (S+)T , if for any sequence (tk, uk) in
[0, 1]×G and any sequence (ak) in X with ak ∈ H(tk, uk) such that

uk ⇀ u ∈ X, tk → t ∈ [0, 1], Tuk ⇀ y in X∗ and lim sup
k→∞

〈ak, Tuk − y〉 ≤ 0,

we have uk → u in X.

The following result says that every affine homotopy with a common essential
inner map T is of class (S+)T .

Lemma 2. ([16]) Let G be a bounded open subset of a real reflexive Banach space
X and let T : G → X∗ be bounded and continuous. If F, S are bounded and of
class (S+)T , then an affine homotopy H : [0, 1]×G→ 2X defined by

H(t, u) := (1− t)Fu+ tSu, for (t, u) ∈ [0, 1]×G,

is of class (S+)T .

Now, we introduce the topological degree for the class F(X) (for more details
see [16]).

Theorem 1. There exists a unique degree function

d :
{

(F, G, g)|G ∈ O, T ∈ F1(G), F ∈ FT (G), g 6∈ F (∂G)
}
−→ Z

that satisfies the following properties:
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1. ( Normalization) For any g ∈ G, we have d(I, G, g) = 1.

2. ( Additivity) Let F ∈ FT (G). If G1 and G2 are two disjoint open subsets
of G such that g 6∈ F (G\(G1 ∪G2)), then we have

d(F, G, g) = d(F, G1, g) + d(F, G2, g).

3. ( Homotopy invariance) If H : [0, 1]×G→ X is a bounded admissible affine
homotopy with a common continuous essential inner map and g: [0, 1]→ X
is a continuous path in X such that g(t) 6∈ H(t, ∂G) for all t ∈ [0, 1], then
the value of d(H(t, ·), G, g(t)) is constant for all t ∈ [0, 1].

4. ( Existence) if d(F, G, g) 6= 0, then the equation g ∈ Fu has a solution in
G.

2.2. The weighted Sobolev space

Let Ω be a bounded open set of RN (N ≥ 1), p be a real number such that
1 < p < ∞ and ω = {ωi(x), 0 ≤ i ≤ N} be a vector of weight functions, i.e.,
every component ωi(x) is a measurable function which is positive a.e. in Ω. Fur-
ther, we suppose for any 0 ≤ i ≤ N in all our considerations that

wi ∈ L1
loc(Ω), (3)

w
−1
p−1

i ∈ L1
loc(Ω). (4)

The weighted Sobolev space, denoted by W 1,p(Ω, w), is defined as follows:

W 1,p(Ω, w) =

{
u ∈ Lp(Ω, w0) and ∂iu ∈ Lp(Ω, wi), i = 1, ..., N

}
,

Note that the derivatives ∂iu :=
∂u

∂xi
are understood in the sense of distributions.

This is a Banach space under the norm

‖u‖1,p,w =

[∫
Ω
|u(x)|pw0(x) dx+

N∑
i=1

∫
Ω
|∂iu(x)|pwi(x) dx

]1/p

. (5)

The condition (3) implies that C∞0 (Ω) is a subspace of W 1,p(Ω, w) and conse-
quently, we can introduce the subspace

X = W 1,p
0 (Ω, w)
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of W 1,p(Ω, w) as the closure of C∞0 (Ω) with respect to the norm (5). Moreover,
condition (4) implies that W 1,p(Ω, w) as well as W 1,p

0 (Ω, w) are reflexive Banach
spaces.
We recall that the dual space of weighted Sobolev spaces W 1,p

0 (Ω, w) is equivalent

to W−1,p′(Ω, w∗), where w∗ = {w∗i = w1−p′
i , i = 0, . . . , N} and where p′ is the

conjugate of p, i.e. p′ = p
p−1 (for more details we refer to [1, 3, 4]).

Let us define the norm on X equivalent to the norm (5) by

‖|u|‖X =
( N∑
i=1

∫
Ω
|∂iu(x)|pwi(x) dx

)1/p
. (6)

We can find a weight function σ on Ω and a parameter q, 1 < q <∞, such that

σ∗ := σ1−q′ ∈ L1(Ω) and σ−2/(p−2) ∈ L1(Ω) (7)

with q′ = q
q−1 , such that the Hardy inequality

(∫
Ω
|u(x)|qσ dx

)1/q
≤ c
( N∑
i=1

∫
Ω
|∂iu(x)|pwi(x) dx

)1/p
(8)

holds for every u ∈ X with a constant c > 0 independent of u, otherwise the
imbedding

X ↪→↪→ Lq(Ω, σ), (9)

expressed by the inequality (8) is compact. Note that (X, ‖| · |‖X) is a uniformly
convex (and thus reflexive) Banach space.

Remark 2. Suppose that w0(x) ≡ 1 and the integrability condition holds, i.e.
there exists ν ∈]Np ,+∞[∩] 1

p−1 ,+∞[ such that

w−νi ∈ L1(Ω), for all i = 1.....N. (10)

Note that the assumptions (10) is stronger than (4). Then,

‖|u|‖ =
( N∑
i=1

∫
Ω
|∂iu|pwi(x) dx

)1/p
(11)

is a norm defined on W 1,p
0 (Ω, w) and it is equivalent to (5) and the imbedding

W 1,p
0 (Ω, w) ↪→ Lq(Ω), (12)

is compact for all 1 ≤ q ≤ p∗1 if pν < N(ν + 1) and for all q ≥ 1 if pν ≥ N(ν + 1)
where p1 = pν/ν + 1 and p∗1 is the Sobolev conjugate of p1 (see [11, pp.30-31] ).
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3. Properties of p-Laplace operator and Technical Lemmas

In this section, we give the definition of a weak solution for problem (1), and
we discuss the p-Laplace operator 4pu := div(|∇u|p−2∇u).
Let us consider the following functional:

Lu =

∫
Ω

1

p
|∇u|pdx, u ∈ X := W 1,p

0 (Ω, w).

In view of [8], we have K ∈ C1(X,R) and the p-Laplace operator is the derivative
operator of L in the weak sense. We denote K = L′ : X → X∗. Then

〈Ku, v〉 =

∫
Ω
|∇u|p−2∇u∇v dx ∀v, u ∈ X.

Lemma 3. i) K : X → X∗ is a continuous, bounded and strictly monotone
operator;

ii) K is a mapping of type (S+);

iii) K : X → X∗ is a homeomorphism.

Proof. i) It is obvious that K is continuous and bounded. For all ξ, η ∈ RN ,
we obtain the following inequality (see [15]) from which we can get the strict
monotonicity of L:

(|ξ|p−2ξ − |η|p−2η)(ξ − η) ≥ (
1

2
)p|ξ − η|p, p ≥ 2. (13)

ii) From (i), if un ⇀ u and lim sup
n→∞

〈Kun −Ku , un − u〉 ≤ 0, then

lim
n→∞

〈Kun , un − u〉 = lim
n→∞

〈Kun −Ku , un − u〉 = 0.

In view of (13), ∇un converges in measure to ∇u in Ω, so we get a subsequence
denoted again by ∇un satisfying ∇un(x)→ ∇u(x), a.e. x ∈ Ω.
Since un ⇀ u in X = W 1,p

0 (Ω, w), then (un)n is bounded. Therefore the sequence

(|∇un|p−2∇un)n is bounded in
N∏
i=1

Lp
′
(Ω, w∗i ) and |∇un|p−2∇un → |∇u|p−2∇u

a.e. in Ω. According to Lemma 2.1 in [3] we have

|∇un|p−2∇un ⇀ |∇u|p−2∇u in

N∏
i=1

Lp
′
(Ω, w∗i ) and a.e. in Ω.
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We set yn = |∇un|p and y = |∇u|p. As in [12, Lemma 5], we can write

yn → y in L1(Ω).

By (2) we have

γ
N∑
i=1

wi|∂iun|p ≤ |∇un|p.

Let zn =

N∑
i=1

wi|∂iun|p, z =

N∑
i=1

wi|∂iu|p, yn =
yn
γ

and y =
y

γ
. Then, by Fatou’s

theorem we obtain ∫
Ω

2ydx ≤ lim inf
n→∞

∫
Ω
y + yn − |zn − z|dx,

i.e. 0 ≤ − lim sup
n→∞

∫
Ω
|zn − z|dx. Then

0 ≤ lim inf
n→∞

∫
Ω
|zn − z|dx ≤ lim sup

n→∞

∫
Ω
|zn − z|dx ≤ 0,

this implies,

∇un → ∇u in

N∏
i=1

Lp(Ω, wi).

Hence un → u in W 1,p
0 (Ω, w), i.e. K is of type (S+).

iii) By the strict monotonicity, K is an injection. Since

lim
‖|u|‖→∞

〈K u, u〉
‖|u|‖

= lim
‖|u|‖→∞

∫
Ω
|∇u|p dx

‖|u|‖
=∞,

K is coercive, thus K is a surjection in view of Minty−Browder theorem (see [28,
Theorem 26A]) Hence K has an inverse mapping K−1 : X∗ → X. Therefore, the
continuity of K−1 is sufficient to ensure K to be a homeomorphism.
If fn, f ∈ X∗, fn → f , let un = K−1 fn, u = K−1 f . Then K un = fn, K u = f.
So (un)n is bounded in X. Without loss of generality, we can assume that un ⇀
u0. Since fn → f , then

lim
n→∞

〈Kun −Ku0, un − u0〉 = lim
n→∞

〈fn, un − u0〉 = 0. (14)

Since K is of type (S+), un → u0, we conclude that un → u, so K−1 is continuous.
J
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Proposition 1. ([7], Proposition 1) For each fixed x ∈ Ω, the functions ψ(x, s)
and ψ(x, s) are u.s.c functions on RN .

Lemma 4. Let W 1,p
0 (Ω, ω) be the Sobolev space. Then the following statements

hold:

(a) The operator A : W 1,p
0 (Ω, ω)→W−1,p′(Ω, ω∗) defined by

〈Au, v〉 = −
∫

Ω
uvdx for u, v ∈W 1,p

0 (Ω, ω)

is compact.

(b) Under assumptions (H1) and (H2), the set-valued operator N : W 1,p
0 (Ω, ω)→

2W
−1,p′ (Ω,ω∗) defined by

Nu =
{
z ∈W−1,p′(Ω, ω∗) | ∃h ∈ Lp′(Ω, σ∗);

ψ(x, u(x)) ≤ h(x) ≤ ψ(x, u(x)) a.e. x ∈ Ω

and 〈z, v〉 =

∫
Ω
hvdx, ∀v ∈W 1,p

0 (Ω, ω)
}

is bounded, u.s.c and compact.

Proof. (a) Since p ≥ 2, we have p′ ≤ 2 ≤ p. Then the embedding
i : Lp(Ω, σ)→ Lp

′
(Ω, σ∗) is continuous.

Since the embedding I : W 1,p
0 (Ω, ω) → Lp(Ω, σ) is compact, it is known that

the adjoint operator I∗ : Lp
′
(Ω, σ∗)→W−1,p′(Ω, ω∗) is also compact. Therefore,

A = I∗ o i o I is compact.

(b) Let φ : Lp(Ω, σ)→ 2L
p′ (Ω,σ∗) be the set-valued operator given by

φu =
{
h ∈ Lp′(Ω, σ∗)|; ψ(x, u(x)) ≤ h(x) ≤ ψ(x, u(x)) a.e. x ∈ Ω

}
.

For each u ∈W 1,p
0 (Ω, σ), by using the growth condition (H2) we obtain

max
{
|ψ(x, s)| ; |ψ(x, s)|

}
≤ b(x) + c σ(x) |s|p/p′ .
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According to the Hardy inequality, it follows that

‖ψ(x, u(x))‖p
′

p′,σ∗ ≤
∫

Ω
|ψ(x, u(x))|p′σ∗dx

≤ 2p
′
(∫

Ω
|b(x)|p′σ∗(x)dx+ cp

′
∫

Ω
|u(x)|pσp′(x)σ∗(x)dx

)
≤ 2p

′
(∫

Ω
|b(x)|p′σ∗(x)dx+ cp

′
∫

Ω
|u(x)|pσ(x)dx

)
≤ 2p

′
(∫

Ω
|b(x)|p′σ∗(x)dx+ C ′

N∑
i=1

∫
Ω
|∂iu|pwi(x)dx

)
.

A similar inequality holds for ψ(x, s), so φ is bounded on W 1,p
0 (Ω, w).

Now we are going to show that φ is u.s.c of φ, i.e.,

∀ε > 0, ∃δ > 0, ‖u− u0‖p,σ < δ ⇒ φu ⊂ φu0 +Bε,

where Bε is the ε-ball in Lp
′
(Ω, σ∗).

To this end, given u0 ∈ Lp(Ω, σ), we consider the point sets

Em,ε =
⋂
t∈R

Gt,

with

Gt =
{
x ∈ Ω; |t− u0(x)| < 1

m
⇒ [ψ(x, t), ψ(x, t)]

⊂
]
ψ(x, u0(x)− ε

R
, ψ(x, u0(x)) +

ε

R

[ }
,

m being an integer and R being a constant to be determined.
It is obvious that

E1,ε ⊂ E2,ε ⊂ · · ·

By virtue of Proposition 1,
∞⋃
m=1

Em,ε = Ω,

thus there is an integer m0 such that

m(Em0,ε) > m(Ω)− ε

R
. (15)

But for all ε > 0, there is η = η(ε) > 0, such that m(T ) < η implies

2p
′
∫
T

2|b(x)|p′σ∗(x) + c′(2p + 1)|u0(x)|pσ(x)dx <
(ε

3

)p′
, (16)
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due to b ∈ Lp′(Ω, σ∗) and u0 ∈ Lp(Ω, σ).
Now, let

0 < δ < min
{ 1

m0

(η
2

)1/p
,
1

2

( ε

6C

)p′/p}
, (17)

R > max
{2ε

η
, 3C1/p′

σ

}
. (18)

Suppose that ‖u−u0‖p,σ < δ and consider the set E = {x ∈ Ω \ |u(x)−u0(x)| ≥
1

m0
}. We have

m(E) < (m0δ)
p <

η

2
(19)

If x ∈ Em0,ε\E, then, for each h ∈ φu,

|u(x)− u0(x)| < 1

m0

and
h(x) ∈

]
ψ(x, u0(x))− ε

R
, ψ(x, u0(x)) +

ε

R

[
.

Let

G+ =
{
x ∈ Ω; h(x) > ψ(x, u0(x))

}
,

G− =
{
x ∈ Ω; h(x) < ψ(x, u0(x))

}
,

G0 =
{
x ∈ Ω; h(x) ∈

[
ψ(x, u0(x)), ψ(x, u0(x))

]}
and

y(x) =


ψ(x, u0(x)), for x ∈ G+;
h(x) , for x ∈ G0;
ψ(x, u0(x)), for x ∈ G−.

Then y ∈ φu0 and

|y(x)− w(x)| < ε

R
for all x ∈ Em0,ε\E. (20)

Thanks to (18) and (20), we have∫
Em0,ε\E

|y(x)− h(x)|p′σ∗(x)dx <
( ε
R

)p′
Cσ <

(ε
3

)p′
. (21)

Let V be the coset in Ω of Em0,ε\E. Then V = (Ω\Em0,ε) ∪ (Em0,ε ∩ E) and

m(V ) ≤ m(Ω\Em0,ε) +m(Em0,ε ∩ E) <
ε

R
+m(E) < η,
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in view of (15), (18) and (19) . Combining (H2) and (16) with (17), we have∫
V
|y(x)− h(x)|p′σ∗(x)dx ≤

∫
V
|y(x)|p′σ∗(x) + |h(x)|p′σ∗(x)dx

≤ 2p
′
(∫

V
|b(x)|p′σ∗(x) + cp

′ |u0(x)|pσp′(x)σ∗(x)

+ |b(x)|p′σ∗(x) + cp
′ |u(x)|pσp′(x)σ∗(x)dx

)
≤ 2p

′
(∫

V
2|b(x)|p′σ∗(x) + cp

′
(2p + 1)|u0(x)|pσ(x)

+ 2p cp
′ |u(x)− u0(x)|pσ(x)dx

)
(22)

≤ 2p
′
∫
V

2|b(x)|p′σ∗(x) + cp
′
(2p + 1)|u0(x)|pσ(x)dx

+ 2p+p
′
cp
′
∫
V
|u(x)− u0(x)|pσ(x)dx

≤
(ε

3

)p′
+ 2p+p

′
cp
′
δp ≤ 2

(ε
3

)p′
≤ εp′ .

Combining (21) with (22), we see that ‖y − h‖p′,σ∗ < ε.
Therefore φ is u.s.c.
Hence I∗oφoI is obviously bounded, u.s.c and compact. J

4. Notions of solutions and existence results

In this section, we give the definition of a weak solution for problem (1) and
we present existence results for the strongly nonlinear problem (1) based on the
degree theory in Section 2.

Definition 5. We say that u ∈W 1,p
0 (Ω, w) is a weak solution of the problem (1),

if there exists a point z ∈ Nu such that∫
Ω
|∇|p−2∇u · ∇vdx+

∫
Ω
uvdx+ 〈z, v〉 = 0 for all v ∈W 1,p

0 (Ω, w).

Theorem 2. Assume (2), (7), (H1) and (H2). There exists a weak solution u
in W 1,p

0 (Ω, w) of the elliptic problem related to the p−Laplacian (1).

Proof. Let K,A : W 1,p
0 (Ω, w) → W−1,p′(Ω, w∗) and N : W 1,p

0 (Ω, w) →
2W

−1,p′ (Ω,w∗) be defined in Lemmas 3 and 4, respectively. Then u ∈ W 1,p
0 (Ω, w)

is a weak solution of (1) if and only if

Lu ∈ −Su, (23)
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where S := A+N : W 1,p
0 (Ω, w)→ 2W

−1,p′ (Ω,w∗).
Thanks to Lemma 4, the operator S is bounded, u.s.c and quasimonotone. Fur-
thermore, in light of the properties of the operator K given in Lemma 3 and by
using the Minty-Browder Theorem (see [28, Theorem 26 A]), the inverse opera-
tor T := K−1 : W−1,p′(Ω, w∗)→W 1,p

0 (Ω, w) is bounded, continuous and satisfies
condition (S+).
Consequently, equation (23) is equivalent to

u = Tv and v ∈ −STv. (24)

To solve equations (24), we will apply the degree theory introduced in Section 2.
To do this, we first prove that the set

B :=
{
v ∈ W−1,p′(Ω, w∗) | v ∈ −tSoTv for some t ∈ [0, 1]

}
is bounded. Indeed, let v ∈ B , that is, v + ta = 0 for some t ∈ [0, 1], where
a ∈ STv. Setting u := Tv, we write a = Au+ z ∈ Su, where z ∈ Nu, that is,

〈z, u〉 =

∫
Ω
h(x)u(x)dx,

for some h ∈ Lp′(Ω, σ∗) with ψ(x, u(x)) ≤ h(x) ≤ ψ(x, u(x)) for almost all x ∈ Ω.
According to (2), (7), (8) and (H2), the Hölder inequality, the Young inequality,
we have

‖|Tv|‖p = ‖|u|‖p =

N∑
i=1

∫
Ω
|∂iu|pwi dx

≤ 1

%

N∑
i=1

∫
Ω
|∂iu|pdx =

1

%
〈Ku, u〉 =

1

%
〈v, Tv〉

≤ t

%
|〈a, Tv〉| = t

%

∣∣∣ ∫
Ω

(u+ h)u dx
∣∣∣

≤ t

%

∫
Ω
|u|2dx+

t

%

∫
Ω
|hu|σ

1−p′
p′ σ

p′−1
p′ dx

≤ C1

∫
Ω
|u|2σ

2
pσ
− 2

pdx+ C2

(∫
Ω
|h|p′σ1−p′dx

) 1
p′

+ C3

(∫
Ω
|u|pσdx

) 1
p

≤ C1

(∫
Ω
|u|pσdx

) 2
p
(∫

Ω
σ
−2
p−2dx

) p−2
p

+ C2

(∫
Ω
|b(x)|p′σ∗(x) + cp

′ |u|pσdx
) 1

p′

+ C3

(∫
Ω
|u|pσdx

) 1
p
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≤ C ′
(∫

Ω
|u|pσdx

) 2
p

+ C2

(∫
Ω
|b(x)|p′σ∗(x)dx

) 1
p′

+ C ′′
(∫

Ω
|u|pσdx

) 1
p′

+ C3

(∫
Ω
|u|pσdx

) 1
p

≤ Const
(( N∑

i=1

∫
Ω
|∂iu|pwidx

) 2
p

+
( N∑
i=1

∫
Ω
|∂iu|pwidx

) 1
p′

+
( N∑
i=1

∫
Ω
|∂iu|pwidx

) 1
p
)

≤ Const
(
‖|Tv|‖2 + ‖|Tv|‖p/p′ + ‖|Tv|‖

)
.

As a result, {Tv | v ∈ B} is bounded.
Since the operator S is bounded, it is obvious from (24) that the set B is bounded
in W−1,p′(Ω, w∗) . Consequently, we can now choose a positive constant R such
that

‖v‖W−1,p′ (Ω,w∗) < R for all v ∈ B.

It follows that

v ∈ −tSTv for all v ∈ ∂BR(0) and all t ∈ [0, 1].

From Lemma 1 we have

I + ST ∈ FT (BR(0)) and I = KT ∈ FT (BR(0)).

Consider an affine homotopy H : [0, 1]×BR(0)→ 2W
−1,p′ (Ω,w∗) given by

H(t, v) := (1− t)Iv + t(I + ST )v for (t, v) ∈ [0, 1]×BR(0).

From the homotopy invariance and normalization property of the degree d stated
in Theorem 1, we obtain

d(I + SoT, BR(0), 0) = d(I, BR(0), 0) = 1.

Hence there exists a point v ∈ BR(0) such that

v ∈ −STv.

Finally, we conclude that u = Tv is a weak solution of (1). This completes the
proof. J
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