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The Logarithm of the Modulus of an Entire
Function as a Minorant for a Subharmonic
Function outside a Small Exceptional Set

B.N. Khabibullin

Abstract. Let u Z —oo be a subharmonic function on the complex plane C. In 2016,
we obtained a result on the existence of an entire function f # 0 satisfying the estimate
log|f] < B, on C, where the functions B, are integral averages of u for rapidly shrinking
disks as it approaches infinity. We give another equivalent version of this result with
log | f] < u outside a very small exceptional set if u is of finite order.
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1. Introduction

1.1. Definitions and notations. Preliminary result

We consider the set R of real numbers mainly as the real axis in the complex
plane C, and RT := {z € R: z > 0} is the positive semiaxis in C. Besides,
R := RU{+to0} is the extended real line with the natural order —oco < z < 400 for
everyz € R, R" = RYU{+oc}, 27 := sup{z,0} for each z € R. For an extended
real function f: S — R, its positive part is the function f¥: s iy (f(s))+

For 2 € C and r € RT, we denote by D(z,7) := {2/ € C: |2/ — 2] < r}
the open disk centered at z and of radius r, where D(z,0) is the empty set &,

D(r) := D(0,r), D(z,r) := {2/ € C: |2/ — z| < r} is a closed disk centered at
z and of radius r, D(r) := D(0,7), and the circle D(z,7) := D(z,7)\ D(z,7)
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centered at z and of radius v, dD(r) := dD(0,r). For a function v: D(z,7) — R,
we define the integral averages on circles and disks as

27 )
Culzr) 1= o / o(z + rei®) do, Cor) = Cy(0,7),  (1C)
T Jo
2 T
Bu(z,7) := 7"2/ Co(z, t)t dt, B:*(r) := By(0,7); (1B)
0
M,(z,7) == sup v(2), M4 (r) := M, (0, 1), (1IM)
2'€8D(z,r)
where M, (z,7) = sup o(2') if v is subharmonic on C [1, Definition 2.6.7], [2].
2'€D(z,r)

The following result [3, Corollary 2] of 2016 found several useful applications
[4, Lemma 5.1], [5], [6, Proposition 2|, [7], [8, Lemma 6.3], [9], [10, 7.1] for entire
functions on the complex plane:

Theorem 1 ([3, Corollary 2], see also [4, Lemma 5.1]). Let u # —o0o be a subhar-

monic function on C, and ¢ € R™ be a number with the corresponding function

1
_ < 1. (2)
zec (14 |z|)¢

Then there is an entire function fy 0 on C such that
log‘fq(z)’ < Bu(z,Q(z)) < Cu(z,Q(z)) < Mu(z,Q(z)) for each z € C. (3)

In this article, we obtain another equivalent version of Theorem 1 for subhar-
monic functions of finite order. This version may be useful in situations that we
are not discussing here.

Q: z

1.2. Main result for minorants outside an exceptional set

For an extended real function m: RT — R, we define [11], [12], [8, 2.1, (2.1t)]

log(l + m+(r))

ord[m] := lim sup eR", (4)
r——+00 10g7”
the order of growth of m; for p € RT,
+ _
type,[m] := limsup m(r) € R+, (5)
r—+00 rP

the type of growth of m at the order p. Thus, it is easy to see that

order[m] = inf{p € R" : type,[m] < +oo}, inf@ :=+oc. (6)
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If w is a subharmonic function on C, then

order[u] (12D order[M3],  type,[u] (1D type,[M;], (7)

and, under the condition type,[u] < 400, the following 27-periodic function

s
ind,[u](s) := limsup u(re”) eR, seR, (8)
r—+o0 rP
is called the indicator of the growth of u at the order p [12, 3.2].
For a ray or a circle on C, we denote by mes the linear Lebesgue measure on
this ray or the measure of length on this circle.

Theorem 2. Let u # —oo be a subharmonic function on the complex plane, and

order[B:] (15) +o00. Then the conclusion (3) of Theorem 1 with arbitrary positive
numbers ¢ € RT is equivalent to the following statement:

For any positive ¢ € RT, there are an entire function fy 0 and a no-more-
than countable set of disks D(zx,tx), k =1,2,..., such that

log’fq(zﬂ <wu(z) for each z € C\ E,, where (91)
1
Ey=U D), swpte<l, 3 = O(5;) as R—+oc.  (9E)
k |zx|>R

(7
If ord[u] < +o0, then the statements of Theorem 1 or the statements (9) of this
Theorem 2 can be supplemented by the following restrictions:

(4),(6),(7)
ord[log|fl] < ordu], (100)
(5),(7) .
type,, [log|fq|} < type,[u] for eachp € R, (10t)
®)
indy[log | fql] < indy[u] for each q € RY. (101)

Besides, for any ray L C C, we have
mes<L\ (E,U D(R))> - 0(%) as R — +o0, (11)

and also

mes(Eq ﬂ@ﬁ(R)) = O(%) as R — 400. (12)

Theorem 2 will be proved in Sec. 3 after some preparations.
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2. Preparatory results
2.1. On exceptional sets
For a Borel measure i on C, we set
u(z,t) == p(D(z,t)), =z€C,teR". (13)
For a function d: C —+ R™, S ¢ C and r: C — R, we define

SY = | D(zd(») cC,

z€S
Ve 2 — Sup{r(z’): S D(z,d,(z))} €eR,
z €
and denote the indicator function of the set S by

1 ifzes§,
1g: z+—
0 ifz¢gs.

Lemma 1 (cf. [13, Normal Points Lemma|, [14, § 4. Normal points, Lemma]).
Let r: C — R" be a Borel function such that

d = 2sup{r(z): z € C} < +o0, (14)

and p be a Borel positive measure on C with

7(2)
E,, = {zG(C: / 'u(?t)dt>1}C(C. (15)
0

Then there exists a no-more-than countable set of disks D(z,tr), k = 1,2,...,
such that

2 € Eyy, tp <r(zk), EurC UD(Zk,tk),
i (16)
sup #{k: z e D(zk,tk)} < 2020,
zeC
i. e., the multiplicity of this covering {D(zy, tx) }k=1,2,.. of set E,, is not greater
than 2020, and, for every p-measurable subset S C |J, D(z, tk),

1

_— t < Vrdp < Ve dp. 17

0% 2 ’“—/Suf “—/Suf a (17)
SOD (zi ) 20
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Proof. By definition (15), there is a number
€ (0,7(2)) such that 0<t, <r(z)u(z,t.) for each z € Ey . (18)
Thus, the system D = {D(z, tz)}zeE of these disks has a property

(14)
E;H'CU (z,t.), 0<t,<r(z) < R.

zeE

By the Besicovitch Covering Theorem [15, 2.8.14], [16], [17], [18, I.1, Remarks],
[19], [20] in the Landkof version [21, Lemma 3.2], we can select some no-more-than
countable subsystem in D of disks D(zy, tx) € D,k =1,2,..., ty := t,,, such that
properties (16) are fulfilled. Consider a p-measurable subset S C J, D (2, tx).
In view of (18) it is easy to see that

18)

U{D(zk,tk): SO Dz, 1) # g} U D(z,d) = S (19)
z€S
Hence, in view of (18) and (16), we obtain
(18)
o otki= >ty < > (zk),u(z tr)
SND(zy,tr) #D SND(zy,,tr) £ SND(zy,,tr)#
(18)
- Y [ e < Z oy
SND (zp,t5)#e ¥ PZhotk) SAD (zp tx) £ P Zsth)
(19) r
= Z /S 4 1D Zlmtk \/ dN

SOD Zk,tk

= LUd Z 1D(Zk,tk) r\/'f‘ d,LL

SND (zty)#2

(16) (14)
< 2020 / rVrdp < 2020 / Ve dp.
Sud Sud

Thus, we obtain (17). This completes the proof of Lemma 1. «

Lemma 2. Let {D(zj,tj)}jEJ be a system of disks in C, d := 2sup¢ ;t; < +o0.
Then, for each z € C, there is a positive number r < d such that

U D(z.tj)()9D(z,r) = 2. (20)

jeJ
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Proof. Consider a disk D(z,d), where, without loss of generality, we can
assume that z = 0. Then, by condition d := 2sup;¢ ;t; < 400, the union

U (D(zj,tj)e*iar%) Mo, d (21)
Jje€J
of radial projections (D(z;,t;)e " ZJ') N[0,d] of D(z;,t;) onto the radius [0, d]
is not empty, i.e. there is a point r € [0,d] outside (21), which gives (20) for

z=0.
Lemma 2 is proved. «

Lemma 2 has the following consequence:
Lemma 3. Let {D(zk,tk)}k:m,_. be a system of disks satisfying (9E) with a

strictly positive number ¢ € RT\{0}, and ¢’ < q be a positive number. Then there
exists a number Ry € RY such that for any z € C with |z| > Ry there is a positive

number r < (1 + ]z])fq/ such that (20) holds for J ={1,2,...}.

Proof. By condition (9E), there is a constant C' € R such that

Z tr < ¢ for each z € C with |z| > 3, (22)
(1+z])9
D(zk,tk\D(|2]-2)#2
and, for |z| > 3,
if D(2k,tk) \ D(2,2) # @, then D(zy,t,)\D(|2| —2) # 2. (23)

For 0 < ¢’ < ¢, we choose Ry > 3 so that

/ 1
C(l+ 1z < 5 for all |z| > R, > 3. (24)
It follows from (22)—(24) that
C (24) 1 1
Z tkgm S im fOI' eacthCWith |Z‘ ZRq,
D (2t \D(2,2)#2
and 1 1
sup ty < ————— for each z € C with |z| > R,. (25)
Dz ti\D(2,2)£@ 2 (1 + [2])9 !

For an arbitrary fized point z € C with |z| > R,, we consider

J = {k‘ D(zk,tk)\D(z,2) 7'5 @}, D := {D(Zk’tk)}keJ'
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By Lemma 2, with these J and D there is a circle D(z,r) such that

(

25)
0<r <

1+1]z)"" <1, | D(z.tx)[)0D(z,7) = 2.
keJ

But, in view of (23), if k ¢ J, then, as before, D(z,tx) (0D (z,7) = @.
Lemma 3 is proved. «

2.2. The order and the upper density for measures on C

For a Borel positive measure p on C, a function

T a3 w1(0,7) (26)

reRrt
is called the radial counting function of u, the quantity

ord[u] WL g (]

is called the order of measure p, and, for p € R*, the quantity

(5) "
type, (1] := type, [1] (27)

is called the upper density of measure u at the order p.
If u # —o0 is a subharmonic function on C with the Riesz measure

A, = —Au, (28)

where the Laplace operator /\ acts in the sense of the theory of distributions or
generalized functions [1], [2], then, by the Poisson - Jensen formula [1, 4.5], [2]

u(z) = Cyu(z,r) — /07‘ Au(:’t) dt, zeC, (29)

in a disk D(z,r) in the form [4, 3, (3.3)]

and by (1B) together with

Lemma 4 ([22], [23, Theorem 3]). If u is a subharmonic function on C, then
B(z,t) < C(z,t) < B(z,+/et) for each z € C and for each t € RT.



The Logarithm of the Modulus of an Entire Function 99
we can easily obtain

Lemma 5. Let u # —oo be a subharmonic function on C with Riesz measure
(28). Then, for each r > 1,

Bu(r) — Cu(1) < Culr) — Cu(1) < /1 A“t(t) dt < Cu(r) < Bu(ver).  (30)

In particular, we have the equalities
ord[A,] = ord[C,] = ord[B.],
and the equivalences
[type,[Ay] < +00] <= [type,[Cu] < +00] <= [type,[B.] < +o]

for each strictly positive p € RT\{0}.

3. The proof of Theorem 2

3.1. From Theorem 1 to (9)

Let ¢ € RT. By Lemma 5, we have

ay, = ord[A,] (30) ord[C,] < +o0. (31)
We choose
q;:au—i—q/+323. (32)

and an entire function f; from Theorem 1 with properties (2)-(3). Then, for
entire function e~!f, # 0, we obtain

logle™" £,(2)] < Cu(2Q(2)) — 1

Q()
(2:9) u(z) + / A“(:’t) dt —1 for each z € C\(—00)y, (33)
0

where (—00), 1= {z € C: u(z) = —oo} is a minus-infinity G5 polar set [1, 3.5],
and 1-dimensional Hausdorff measure of (—o0),, is zero [2, 5.4]. Therefore, this
set (—o0), can be covered by a system of disks as in (9E) with ¢’ instead of q.
By Lemma 1 with

(14) 15),(9E
r (2:) Q, d<2 pu (:22) Ay, Ey (:li) UD(Zk,tk) ( )D( ) E,r, (34)

k
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we have, in view of (33),

(33),(15)
log‘eflfq(z)‘ < u(z), foreachz€ C\(E;U(—00)y). (35)

If S:= E,\D(R) and R > 4, then, by (17),

1 (17) / vd (34) / 1
[ tr < r dAu < dAu z
2020 = o k-2 (1+ (2] = 2))° )

|z |>R
+oo 1 (32) +oo Arad
z/ A < / ui(t)_ldt
Rr2 (t—1)1 Rr2 (t—1)

(6),(31) too pautl
< const/ —dt 2 O(R™*379) as R — 400,
r-2 (t—1)171

where const € RT is independent of R, and R*«+3-4 2 R~¢'. The latter together

with (35) gives the statements (9) of Theorem 2.

3.2. From (9) to Theorem 1

Let ¢* € RT. Suppose that the statements (9) of Theorem 2 are fulfilled with
q > ¢ > ¢ > 0. By Lemma 3 there exists a number R, € RT such that for

any z € C with |z| > R, there is a positive number r, < (1+ \z|)_q, such that
E;N0D(z,r,) = @. Hence, by (9I), we obtain

log{fq(z + rzeis)\ < u(z+r.e®) for each s € R (36)
and for any z € C with |z| > R,. Therefore,

b
(1+ =)

Hence there exist a sufficiently small number a > 0 and a sufficiently large number
Ry > R, such that

(36) )
IOg‘fq(z)‘ < Clog|fq|(7"z) < Cu(re) < C(2'7 > if |2] > Ry.

log|af,(2)| < C(z, if [2| > Rg~.

1
T

The function log |af,| is bounded from above on D(R4+), and the function

() <G v )
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is continuous [24, Theorem 1.14]. Therefore, there exists a sufficiently small
number b > 0 such that

log{abfq(z)‘ < C(z, 1

ve(l +[2))7

Hence, for fy« := abf, # 0, by Lemma 4, we obtain (3) with ¢* € R instead
of ¢ in (2). Further, equalities (100) and (10t) for orders and types are obvious
consequences of (3) even for ¢ = 0. Similarly, we obtain equality (10i), since
indicators (8) of the growth of log | f,| and u are continuous. Relations (11)—(12)
are obvious particular cases of (9E).

) for all z € C.
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