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The Logarithm of the Modulus of an Entire
Function as a Minorant for a Subharmonic
Function outside a Small Exceptional Set

B.N. Khabibullin

Abstract. Let u 6≡ −∞ be a subharmonic function on the complex plane C. In 2016,
we obtained a result on the existence of an entire function f 6= 0 satisfying the estimate
log |f | ≤ Bu on C, where the functions Bu are integral averages of u for rapidly shrinking
disks as it approaches infinity. We give another equivalent version of this result with
log |f | ≤ u outside a very small exceptional set if u is of finite order.
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1. Introduction

1.1. Definitions and notations. Preliminary result

We consider the set R of real numbers mainly as the real axis in the complex
plane C, and R+ := {x ∈ R : x ≥ 0} is the positive semiaxis in C. Besides,
R := R∪{±∞} is the extended real line with the natural order −∞ ≤ x ≤ +∞ for

every x ∈ R, R+
:= R+∪{+∞}, x+ := sup{x, 0} for each x ∈ R. For an extended

real function f : S → R, its positive part is the function f+ : s 7−→
s ∈ S

(
f(s)

)+
.

For z ∈ C and r ∈ R+, we denote by D(z, r) := {z′ ∈ C : |z′ − z| < r}
the open disk centered at z and of radius r, where D(z, 0) is the empty set ∅,
D(r) := D(0, r), D(z, r) := {z′ ∈ C : |z′ − z| ≤ r} is a closed disk centered at
z and of radius r, D(r) := D(0, r), and the circle ∂D(z, r) := D(z, r)\D(z, r)
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centered at z and of radius r, ∂D(r) := ∂D(0, r). For a function v : D(z, r)→ R,
we define the integral averages on circles and disks as

Cv(z, r) :=
1

2π

∫ 2π

0
v(z + reiθ) dθ, Crad

v (r) := Cv(0, r), (1C)

Bv(z, r) :=
2

r2

∫ r

0
Cv(z, t)tdt, Brad

v (r) := Bv(0, r); (1B)

Mv(z, r) := sup
z′∈∂D(z,r)

v(z′), Mrad
v (r) := Mv(0, r), (1M)

where Mv(z, r) = sup
z′∈D(z,r)

v(z′) if v is subharmonic on C [1, Definition 2.6.7], [2].

The following result [3, Corollary 2] of 2016 found several useful applications
[4, Lemma 5.1], [5], [6, Proposition 2], [7], [8, Lemma 6.3], [9], [10, 7.1] for entire
functions on the complex plane:

Theorem 1 ([3, Corollary 2], see also [4, Lemma 5.1]). Let u 6≡ −∞ be a subhar-
monic function on C, and q ∈ R+ be a number with the corresponding function

Q : z 7−→
z ∈ C

1

(1 + |z|)q
≤ 1. (2)

Then there is an entire function fq 6≡ 0 on C such that

log
∣∣fq(z)∣∣ ≤ Bu

(
z,Q(z)

)
≤ Cu

(
z,Q(z)

)
≤ Mu

(
z,Q(z)

)
for each z ∈ C. (3)

In this article, we obtain another equivalent version of Theorem 1 for subhar-
monic functions of finite order. This version may be useful in situations that we
are not discussing here.

1.2. Main result for minorants outside an exceptional set

For an extended real function m : R+ → R, we define [11], [12], [8, 2.1, (2.1t)]

ord[m] := lim sup
r→+∞

log
(
1 +m+(r)

)
log r

∈ R+
, (4)

the order of growth of m; for p ∈ R+,

typep[m] := lim sup
r→+∞

m+(r)

rp
∈ R+

, (5)

the type of growth of m at the order p. Thus, it is easy to see that

order[m] = inf
{
p ∈ R+ : typep[m] < +∞

}
, inf ∅ := +∞. (6)
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If u is a subharmonic function on C, then

order[u]
(1M)
:= order[Mrad

u ], typep[u]
(1M)
:= typep[M

rad
u ], (7)

and, under the condition typep[u] < +∞, the following 2π-periodic function

indp[u](s) := lim sup
r→+∞

u(reis)

rp
∈ R, s ∈ R, (8)

is called the indicator of the growth of u at the order p [12, 3.2].
For a ray or a circle on C, we denote by mes the linear Lebesgue measure on

this ray or the measure of length on this circle.

Theorem 2. Let u 6≡ −∞ be a subharmonic function on the complex plane, and

order[Brad
u ]

(1B)
< +∞. Then the conclusion (3) of Theorem 1 with arbitrary positive

numbers q ∈ R+ is equivalent to the following statement:
For any positive q ∈ R+, there are an entire function fq 6≡ 0 and a no-more-

than countable set of disks D(zk, tk), k = 1, 2, . . . , such that

log
∣∣fq(z)∣∣ ≤ u(z) for each z ∈ C \ Eq, where (9I)

Eq :=
⋃
k

D(zk, rk), sup
k
tk ≤ 1,

∑
|zk|≥R

tk = O
( 1

Rq

)
as R→ +∞. (9E)

If ord[u]
(7)
< +∞, then the statements of Theorem 1 or the statements (9) of this

Theorem 2 can be supplemented by the following restrictions:

ord
[
log |fq|

] (4),(6),(7)

≤ ord[u], (10o)

typep
[
log |fq|

] (5),(7)

≤ typep[u] for each p ∈ R+, (10t)

indp
[
log |fq|

] (8)

≤ indp[u] for each q ∈ R+. (10i)

Besides, for any ray L ⊂ C, we have

mes
(
L \

(
Eq ∪D(R)

))
= O

( 1

Rq

)
as R→ +∞, (11)

and also

mes
(
Eq
⋂
∂D(R)

)
= O

( 1

Rq

)
as R→ +∞. (12)

Theorem 2 will be proved in Sec. 3 after some preparations.
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2. Preparatory results

2.1. On exceptional sets

For a Borel measure µ on C, we set

µ(z, t) := µ
(
D(z, t)

)
, z ∈ C, t ∈ R+. (13)

For a function d : C→ R+, S ⊂ C and r : C→ R, we define

S∪d :=
⋃
z∈S

D
(
z, d(z)

)
⊂ C,

r∨d : z 7−→
z ∈ C

sup
{
r(z′) : z′ ∈ D

(
z, d(z)

)}
∈ R,

and denote the indicator function of the set S by

1S : z 7−→
z ∈ C

{
1 if z ∈ S,
0 if z /∈ S.

Lemma 1 (cf. [13, Normal Points Lemma], [14, § 4. Normal points, Lemma]).
Let r : C→ R+ be a Borel function such that

d := 2 sup{r(z) : z ∈ C} < +∞, (14)

and µ be a Borel positive measure on C with

Eµ,r :=

{
z ∈ C :

∫ r(z)

0

µ(z, t)

t
dt > 1

}
⊂ C. (15)

Then there exists a no-more-than countable set of disks D(zk, tk), k = 1, 2, . . . ,
such that

zk ∈ Eµ,r, tk ≤ r(zk), Eµ,r ⊂
⋃
k

D(zk, tk),

sup
z∈C

#
{
k : z ∈ D(zk, tk)

}
≤ 2020,

(16)

i. e., the multiplicity of this covering {D(zk, tk)}k=1,2,... of set Eµ,r is not greater
than 2020, and, for every µ-measurable subset S ⊂

⋃
kD(zk, tk),

1

2020

∑
S∩D(zk,tk)6=∅

tk ≤
∫
S∪d

r∨r dµ ≤
∫
S∪d

r∨d dµ. (17)
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Proof. By definition (15), there is a number

tz ∈
(
0, r(z)

)
such that 0 < tz < r(z)µ(z, tz) for each z ∈ Eµ,r. (18)

Thus, the system D =
{
D(z, tz)

}
z∈E of these disks has a property

Eµ,r ⊂
⋃
z∈E

D(z, tz), 0 < tz ≤ r(z)
(14)

≤ R.

By the Besicovitch Covering Theorem [15, 2.8.14], [16], [17], [18, I.1, Remarks],
[19], [20] in the Landkof version [21, Lemma 3.2], we can select some no-more-than
countable subsystem in D of disks D(zk, tk) ∈ D, k = 1, 2, . . . , tk := tzk , such that
properties (16) are fulfilled. Consider a µ-measurable subset S ⊂

⋃
kD(zk, tk).

In view of (18) it is easy to see that⋃{
D(zk, tk) : S ∩D(zk, tk) 6= ∅

} (18),(14)
⊂

⋃
z∈S

D(z, d) = S∪d. (19)

Hence, in view of (18) and (16), we obtain

∑
S∩D(zk,tk)6=∅

tk :=
∑

S∩D(zk,tk)6=∅

tzk
(18)

≤
∑

S∩D(zk,tk)6=∅

r(zk)µ(z, tk)

=
∑

S∩D(zk,tk) 6=∅

∫
D(zk,tk)

r(zk) dµ(z)
(18)

≤
∑

S∩D(zk,tk)6=∅

∫
D(zk,tk)

r∨r dµ

(19)
=

∑
S∩D(zk,tk)6=∅

∫
S∪d

1D(zk,tk)r
∨r dµ

=

∫
S∪d

 ∑
S∩D(zk,tk)6=∅

1D(zk,tk)

 r∨r dµ

(16)

≤ 2020

∫
S∪d

r∨r dµ
(14)

≤ 2020

∫
S∪d

r∨d dµ.

Thus, we obtain (17). This completes the proof of Lemma 1. J

Lemma 2. Let
{
D(zj , tj)

}
j∈J be a system of disks in C, d := 2 supj∈J tj < +∞.

Then, for each z ∈ C, there is a positive number r ≤ d such that⋃
j∈J

D(zj , tj)
⋂
∂D(z, r) = ∅. (20)
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Proof. Consider a disk D(z, d), where, without loss of generality, we can
assume that z = 0. Then, by condition d := 2 supj∈J tj < +∞, the union⋃

j∈J

(
D(zj , tj)e

−i arg zj
)⋂[

0, d] (21)

of radial projections
(
D(zj , tj)e

−i arg zj
)⋂[

0, d] of D(zj , tj) onto the radius [0, d]

is not empty, i. e. there is a point r ∈ [0, d] outside (21), which gives (20) for
z = 0.

Lemma 2 is proved. J

Lemma 2 has the following consequence:

Lemma 3. Let
{
D(zk, tk)}k=1,2,... be a system of disks satisfying (9E) with a

strictly positive number q ∈ R+\{0}, and q′ < q be a positive number. Then there
exists a number Rq ∈ R+ such that for any z ∈ C with |z| > Rq there is a positive

number r ≤
(
1 + |z|

)−q′
such that (20) holds for J = {1, 2, . . . }.

Proof. By condition (9E), there is a constant C ∈ R+ such that∑
D(zk,tk)\D(|z|−2) 6=∅

tk ≤
C

(1 + |z|)q
for each z ∈ C with |z| ≥ 3, (22)

and, for |z| ≥ 3,

if D(zk, tk) \D(z, 2) 6= ∅, then D(zk, tk)\D(|z| − 2) 6= ∅. (23)

For 0 ≤ q′ < q, we choose Rq ≥ 3 so that

C(1 + |z|)q′−q ≤ 1

2
for all |z| ≥ Rq ≥ 3. (24)

It follows from (22)–(24) that

∑
D(zk,tk)\D(z,2) 6=∅

tk ≤
C

(1 + |z|)q
(24)

≤ 1

2

1

(1 + |z|)q′
for each z ∈ C with |z| ≥ Rq,

and

sup
D(zk,tk)\D(z,2) 6=∅

tk ≤
1

2

1

(1 + |z|)q′
for each z ∈ C with |z| ≥ Rq. (25)

For an arbitrary fixed point z ∈ C with |z| ≥ Rq, we consider

J :=
{
k : D(zk, tk)\D(z, 2) 6= ∅

}
, D :=

{
D(zk, tk)

}
k∈J .
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By Lemma 2, with these J and D there is a circle ∂D(z, r) such that

0 ≤ r
(25)

≤ (1 + |z|)−q′ ≤ 1,
⋃
k∈J

D(zk, tk)
⋂
∂D(z, r) = ∅.

But, in view of (23), if k /∈ J , then, as before, D(zk, tk)
⋂
∂D(z, r) = ∅.

Lemma 3 is proved. J

2.2. The order and the upper density for measures on C

For a Borel positive measure µ on C, a function

µrad : r
(13)7−→

r ∈ R+
µ(0, r) (26)

is called the radial counting function of µ, the quantity

ord[µ]
(4),(6)

:= ord
[
µrad

]
is called the order of measure µ, and, for p ∈ R+, the quantity

typep[µ]
(5)
:= typep

[
µrad

]
(27)

is called the upper density of measure µ at the order p.
If u 6≡ −∞ is a subharmonic function on C with the Riesz measure

∆u =
1

2π
4u, (28)

where the Laplace operator 4 acts in the sense of the theory of distributions or
generalized functions [1], [2], then, by the Poisson – Jensen formula [1, 4.5], [2]

u(z) = Cu(z, r)−
∫ r

0

∆u(z, t)

t
dt, z ∈ C, (29)

in a disk D(z, r) in the form [4, 3, (3.3)]

Cu(r)− Cu(1) =

∫ r

1

∆rad
u (t)

t
dt,

and by (1B) together with

Lemma 4 ([22], [23, Theorem 3]). If u is a subharmonic function on C, then
B(z, t) ≤ C(z, t) ≤ B(z,

√
et) for each z ∈ C and for each t ∈ R+.
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we can easily obtain

Lemma 5. Let u 6≡ −∞ be a subharmonic function on C with Riesz measure
(28). Then, for each r ≥ 1,

Bu(r)− Cu(1) ≤ Cu(r)− Cu(1) ≤
∫ r

1

∆rad
u (t)

t
dt ≤ Cu(r) ≤ Bu(

√
er). (30)

In particular, we have the equalities

ord[∆u] = ord[Cu] = ord[Bu],

and the equivalences[
typep[∆u] < +∞

]
⇐⇒

[
typep[Cu] < +∞

]
⇐⇒

[
typep[Bu] < +∞

]
for each strictly positive p ∈ R+\{0}.

3. The proof of Theorem 2

3.1. From Theorem 1 to (9)

Let q′ ∈ R+. By Lemma 5, we have

au := ord[∆u]
(30)
= ord[Cu] < +∞. (31)

We choose
q := au + q′ + 3 ≥ 3. (32)

and an entire function fq from Theorem 1 with properties (2)–(3). Then, for
entire function e−1fq 6≡ 0, we obtain

log
∣∣e−1fq(z)∣∣ ≤ Cu

(
z,Q(z)

)
− 1

(29)
= u(z) +

∫ Q(z)

0

∆u(z, t)

t
dt− 1 for each z ∈ C\(−∞)u, (33)

where (−∞)u :=
{
z ∈ C : u(z) = −∞

}
is a minus-infinity Gδ polar set [1, 3.5],

and 1-dimensional Hausdorff measure of (−∞)u is zero [2, 5.4]. Therefore, this
set (−∞)u can be covered by a system of disks as in (9E) with q′ instead of q.
By Lemma 1 with

r
(2)
:= Q, d

(14)

≤ 2, µ
(28)
:= ∆u, Eq

(16)
:=
⋃
k

D(zk, tk)
(15),(9E)
⊃ Eµ,r, (34)
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we have, in view of (33),

log
∣∣e−1fq(z)∣∣ (33),(15)≤ u(z), for each z ∈ C\

(
Eq ∪ (−∞)u

)
. (35)

If S := Eq\D(R) and R ≥ 4, then, by (17),

1

2020

∑
|zk|≥R

tk
(17)

≤
∫
S∪d

r∨d d∆u

(34)

≤
∫
|z|≥R−2

1(
1 + (|z| − 2)

)q d∆u(z)

=

∫ +∞

R−2

1

(t− 1)q
d∆rad

u (t)
(32)

≤
∫ +∞

R−2

∆rad
u (t)

(t− 1)q−1
dt

(6),(31)

≤ const

∫ +∞

R−2

tau+1

(t− 1)q−1
dt

(32)
= O(Rau+3−q) as R→ +∞,

where const ∈ R+ is independent of R, and Rau+3−q (32)
= R−q

′
. The latter together

with (35) gives the statements (9) of Theorem 2.

3.2. From (9) to Theorem 1

Let q∗ ∈ R+. Suppose that the statements (9) of Theorem 2 are fulfilled with
q > q′ > q∗ ≥ 0. By Lemma 3 there exists a number Rq ∈ R+ such that for

any z ∈ C with |z| > Rq there is a positive number rz ≤
(
1 + |z|

)−q′
such that

Eq ∩ ∂D(z, rz) = ∅. Hence, by (9I), we obtain

log
∣∣fq(z + rze

is)
∣∣ ≤ u(z + rze

is) for each s ∈ R (36)

and for any z ∈ C with |z| ≥ Rq. Therefore,

log
∣∣fq(z)∣∣ ≤ Clog |fq |(rz)

(36)

≤ Cu(rz) ≤ C
(
z,

1

(1 + |z|)q′
)

if |z| ≥ Rq.

Hence there exist a sufficiently small number a > 0 and a sufficiently large number
Rq∗ ≥ Rq such that

log
∣∣afq(z)∣∣ ≤ C

(
z,

1√
e(1 + |z|)q∗

)
if |z| ≥ Rq∗ .

The function log |afq| is bounded from above on D(Rq∗), and the function

C
(
·, 1√

e(1 +Rq∗)q
∗

)
: z 7−→

z ∈ C
C
(
z,

1√
e(1 +Rq∗)q

∗

)
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is continuous [24, Theorem 1.14]. Therefore, there exists a sufficiently small
number b > 0 such that

log
∣∣abfq(z)∣∣ ≤ C

(
z,

1√
e(1 + |z|)q∗

)
for all z ∈ C.

Hence, for fq∗ := abfq 6= 0, by Lemma 4, we obtain (3) with q∗ ∈ R+ instead
of q in (2). Further, equalities (10o) and (10t) for orders and types are obvious
consequences of (3) even for q = 0. Similarly, we obtain equality (10i), since
indicators (8) of the growth of log |fq| and u are continuous. Relations (11)–(12)
are obvious particular cases of (9E).
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