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Existence of Three Positive Solutions for Higher
Order Separated and Lidstone Type Boundary Value
Problems with p-Laplacian

L.T. Wesen*, K.G. Yeneblih

Abstract. In this paper, we consider a higher order p-Laplacian differential equations,

(−1)n[φp(u(2n−2)(t) + k2u(2n−4)(t))]′′ = f(t, u(t)), 0 ≤ t ≤ 1,

associated with the boundary conditions

u(2i)(0) = 0 = u(2i)(1), 1 ≤ i ≤ n− 1,

a1u(0)− a2u′(0) = 0 b1u(1) + b2u
′(1) = 0,

where n ≥ 2 and k ∈ (0, 23π) is a constant. By applying Five functional fixed point
theorem, we establish sufficient conditions for the existence of triple positive solutions.

Key Words and Phrases: Green’s function, p-Laplacian, boundary value problem,
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1. Introduction

The p-Laplace equation has been much studied during the last fifty years and
its theory is by now rather developed. The p-Laplace equation is a degenerate or
singular elliptic equation in divergence form. And defined as

−div(|∇u|p−2∇u) = 0 1 < p <∞. (1)

When p = 2, the equation (1) reduces to the Laplace equation. When p 6= 0,
the equation (1) is nonlinear and degenerates at the zeros of the gradient of u.
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Consequently, in this case the solution, commonly referred to as p-harmonic func-
tions, need not be smooth, nor even C2 [13]. The particular case of (1) is the
classical one dimensional p-Laplacian operator and is given by φp(s) = |s|p−2s,
where p > 1, φ−1p = φq and 1

p + 1
q = 1. These type of problems appears in math-

ematical modeling of viscoelastic flows, image processing, turbulent filtration in
porous media, biophysics, plasma physics, rheology, glaciology, radiation of heat,
plastic molding etc. Recent advanced research indicated that even the Brownian
motion has its counter part and a mathematical game ‘tug of war’ leads to the
case p =∞. For more details on applications and origin of p-Laplacian, we refer
to [6, 9]. Due to wide mathematical and physical background, the existence of
positive solutions for nonlinear boundary value problems with p-Laplacian op-
erators have received great attention in recent years. To mention a few paper
along these lines Wang [25], Lian and Wong [19], Agarwal et al. [2], Li and Ge
[16], Liu and Ge [20], Avery and Henderson [3], Li and Shen [18] and for further
development in the topic, see [11, 12, 22, 29, 31, 26, 27, 30].

Motivated by the papers mentioned above, in this paper, we establish exis-
tence of triple positive solutions for higher order p-Laplacian differential equations
of the form

(−1)n[φp(u
(2n−2)(t) + k2u(2n−4)(t))]′′ = f(t, u(t)), 0 ≤ t ≤ 1, (2)

with the separated boundary conditions

a1u(0)− a2u′(0) = 0

b1u(1) + b2u
′(1) = 0

(3)

and Lidstone type boundary condition

u(2i)(0) = 0 = u(2i)(1), i = 1, 2, 3, . . . , n− 1, (4)

where n ≥ 2,a1, b1 ≥ 0, a2, b2 > 0, k ∈ (0, 23π) is a constant, k2 ≤ a1b1
a2b2

and

f : [0, 1] × R+ → R+ is a continuous function, by applying five functional fixed
point theorem. In the past few decades for k = 0 and p = 2, a lot of work has
been done on the existence of one and multiple positive solutions of the boundary
value problems associated with differential equations by using various methods,
see [7, 8, 5, 10, 28, 24] and for k 6= 0 and p = 2, most of the authors focused on
the existence of positive solutions of second order differential equations satisfying
Neumann and Sturm-Liouville boundary conditions, see [14, 23, 17, 19].

The rest of the paper is organized as follows. In Section 2, we express the
solution of the boundary value problem (2)-(4) in to an equivalent integral equa-
tion involving Green’s functions as a kernel and estimate bounds for these Green’s
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functions. In Section 3, we establish criteria for the existence of triple positive
solution for the boundary value problem (2)-(4). Finally as an application, we
give an example to illustrate our results.

2. Green’s function and bounds

In this section, we express the solution of the boundary value problem (2)-(4)
in to an equivalent integral equation involving Green functions and we estimate
bounds for these Green functions.

Let v =

(
(−1)n−1

(
φp(u

(2n−2)(t) + k2u(2n−4)(t))
))

. Then we construct the

Green’s function k1(t, s) for the homogeneous problem

−v′′(t) = 0, 0 ≤ t ≤ 1, (5)

v(0) = 0 = v(1). (6)

Lemma 1. Let y(t) ∈ L1[0, 1]. Then the problem (5)-(6) has a unique positive
solution

v(t) =

∫ 1

0
k1(t, s)y(s)ds, (7)

where

k1(t, s) =

{
t(1− s), t ≤ s
s(1− t), s ≤ t.

(8)

Clearly, φp is an odd function, from Lemma 1

φp

(
(−1)n−1

(
u(2n−2)(t) + k2u(2n−4)(t)

))
=

∫ 1

0
k1(t, s)f(s, u(s))ds.

Since φ−1p = φq, it follows that

(−1)n−2
[
− (u′′(t) + k2u(t))(2(n−2))

]
= φq

(∫ 1

0
k1(t, s)f(s, u(s))ds

)
.

Lemma 2. Let φq

(∫ 1
0 k1(t, s)f(s, u(s))ds

)
∈ L1[0, 1] and x(t) = −(u′′(t) +

k2u(t)). Then the BVP

(−1)n−2x(2n−4)(t) = 0, 0 ≤ t ≤ 1, (9)

x(2i)(0) = 0 = x(2i)(1), 2 ≤ i ≤ n− 3 (10)
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has a unique solution

x(t) =

∫ 1

0
kn−2(t, s)φq(

∫ 1

0
k1(s, r)f(r, u(r))dr)ds. (11)

The Green’s function for the homogeneous boundary value problem (9), (10) as
described in [1, 28] is kn−2(t, s), where kn−2(t, s) is defined recursively as

kj(t, s) =

∫ 1

0
kj−1(t, ξ)k1(ξ, s)dξ, for 2 ≤ j ≤ n− 2, (12)

and k1(t, s) was defined in (8).

Combining the assumptions of Lemma 2 and (11) we get

−(u′′(t) + k2u(t)) =

∫ 1

0
kn−2(t, s)φq(

∫ 1

0
k1(s, r)f(r, u(r))dr)ds. (13)

Lemma 3. The boundary value problem (2)–(4) has a unique solution

u(t) =

∫ 1

0
h(t, r)

∫ 1

0
kn−2(r, s)φq(

∫ 1

0
k1(s, τ)f(τ, u(τ))dτ)ds)dr, (14)

where h(t, s) is the Green’s function for the corresponding homogeneous BVP (13)
with the boundary conditions (3) and given by

h(t, s) =


1

d
(a1 sin kt+ a2k cos kt)(b1 sin k(1− s) + b2k cos k(1− s)), t ≤ s,

1

d
(a1 sin ks+ a2k cos ks)(b1 sin k(1− t) + b2k cos k(1− t)), s ≤ t.

(15)
where d = k(a1b1 − a2b2k2) sin k + k2(a1b2 + a2b1) cos k 6= 0.

Equation (14) is the equivalent integral equation for the boundary value prob-
lem (2)–(4).

Lemma 4. The Green’s function h(t, s) satisfies the following inequalities:

(i) h(t, s) > 0, for all t, s ∈ (0, 1),

(ii) h(t, s) ≤Mh(s, s), for all (t, s) ∈ [0, 1]× [0, 1],

(iii)
1

M
h(s, s) ≤ h(t, s), for all (t, s) ∈ [0, 1]× [0, 1],

where M = max

{
a1 + a2k

a2k cos k
,
b1 + b2k

b2k cos k

}
.
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Proof. For the proof we refer to [21]. J

Lemma 5. [28] The Green’s function k1(t, s) in (8) satisfies the following in-
equalities:

(i) k1(t, s) ≥ 0, for all t, s ∈ [0, 1],

(ii) k1(t, s) ≤ k1(s, s), for all t, s ∈ [0, 1],

(iii) k1(t, s) ≥
1

4
k1(s, s), for all t ∈ I and s ∈ [0, 1],

where I =
[
1
4 ,

3
4

]
.

Lemma 6. [28] The Green’s function kn−2(t, s) in (12) satisfies the following
inequalities:

(i) kn−2(t, s) ≥ 0, for all t, s ∈ [0, 1],

(ii) kn−2(t, s) ≤
1

6n−3
k1(s, s), for all t, s ∈ [0, 1],

(iii) kn−2(t, s) ≥
1

4n−2

(
11

96

)n−3
k1(s, s), for all t ∈ I and s ∈ [0, 1],

where I =
[
1
4 ,

3
4

]
.

For the reader’s convenience, we present some necessary definitions and the-
orems we may use throughout the entire paper.

Definition 1. Let X be a Banach space over R. A nonempty, closed set P ⊂ X
is a cone, provided

(a) a1u + a2v ∈ P for all u,v ∈ P and all a1, a2 ≥ 0, and

(b) u,−u ∈ P implies u = 0.

Definition 2. The map α is said to be nonnegative continuous concave functional
on P provided that α : P → [0,∞), is continuous and

α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y)

for all x, y ∈ P, and 0 ≤ t ≤ 1. Similarly, we say the map β is a nonnegative
continuous convex functional on P provided that β : P → [0,∞), is continuous
and

β(tx+ (1− t)y) ≤ tβ(x) + (1− t)β(y)

for all x, y ∈ P, and 0 ≤ t ≤ 1.
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Definition 3. An operator T is called completely continuous, if it is continuous
and maps bounded sets into precompact sets.

Let γ, β, and θ be nonnegative, continuous, convex functionals on P and α,ψ
be nonnegative, continuous, concave functionals on P . Then, for nonnegative
real numbers h, a, b, d and c, we define the convex sets

P (γ, c) = {x ∈ P : γ(x) < c},
P (γ, α, a, c) = {x ∈ P : a ≤ α(x), γ(x) ≤ c},
Q(γ, β, d, c) = {x ∈ P : β(x) ≤ d, γ(x) ≤ c},
P (γ, θ, α, a, b, c) = {x ∈ P : a ≤ α(x), θ(x) ≤ b, γ(x) ≤ c}, and

Q(γ, β, ψ, h, d, c) = {x ∈ P : h ≤ ψ(x), β(x) ≤ d, γ(x) ≤ c}.

The following Avery Five Functional Fixed Point Theorem [4] which was the
generalization of Leggett-Williams Fixed Point Theorem [15], will be used to
prove our main results.

Theorem 1. Let P be a cone in real Banach space E. Suppose there exist positive
numbers c and e, nonnegative, continuous, concave functionals α and ψ on P,
and nonnegative, continuous, convex functionals γ, β, and θ on P, with

α(x) ≤ β(x)and ‖x‖ ≤ eγ(x)

for all x ∈ P (γ, c). Suppose

A : P (γ, c)→ P (γ, c)

is completely continuous and there exist nonnegative numbers h, a, k, b with 0 <
a < b such that:

(i) {x ∈ P (γ, θ, α, b, k, c) : α(x) > b} 6= ∅ and α(Ax) > b for x ∈ P (γ, θ, α, b, k, c),

(ii) {x ∈ Q(γ, β, ψ, h, a, c) : β(x) < a} 6= ∅ and β(Ax) < a for x ∈ Q(γ, β, ψ, h, a, c),

(iii) α(Ax) > b provided x ∈ P (γ, α, b, c) with θ(Ax) > k,

(iv) β(Ax) < a provided x ∈ Q(γ, β, a, c) with ψ(Ax) < h. Then A has at least

three fixed points x1, x2, x3 ∈ P (γ, c) such that

β(x1) < a, b < α(x2), and a < β(x3) with α(x3) < b.
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3. Existence of three positive solutions

In this section, we will impose conditions on f(t, u(t)) to establish the exis-
tence of at least three positive solutions for nonlinear p-Laplacian boundary value
problem (2)-(4) by applying Five Functional Fixed Point Theorem.

Let B = {u|u ∈ C[0, 1]} be a Banach space with the norm ‖u‖ = maxt∈[0,1] |u|,
and let

P = {u ∈ B|u(t) > 0, t ∈ [0, 1] and min
t∈I
|u(t)| ≥ η‖u‖},

where η =
(

1
M2

)(
11n−3

26n−16

)
. We note that P is a cone in B. Define an integral

operator T : P → B by

Tu(t) =

∫ 1

0
h(t, r)

∫ 1

0
kn−2(r, s)φq(

∫ 1

0
k1(s, τ)f(τ, u(τ))dτ)dsdr, t ∈ [0, 1]. (16)

Now it’s time to define the nonnegative continuous concave functionals α,ψ and
the nonnegative continuous convex functionals β, θ, γ on P by

α(u) = min
t∈I
|u(t)|,

ψ(u) = min
t∈J
|u(t)|,

β(u) = max
t∈I

u(t),

γ(u) = θ(u) = max
t∈[0,1]

u(t),

α(u) = min
t∈I
|u(t)| ≤ max

t∈I
u(t) = β(u),

‖u‖ ≤ 1

η
min
t∈I

u(t) ≤ 1

η
max
t∈[0,1]

u(t) =
1

η
γ(u),

(17)

where J = [t1, t2],
1
4 < t1, t2 <

3
4 . We denote

L =

(
M

6n−3

∫ 1

0
h(r, r)

∫ 1

0
k1(s, s)φq

(
k1(τ, τ)dτ

)
dsdr

)−1
M =

(
η
M

6n−3

∫ 1

0
h(r, r)

∫ 1

0
k1(s, s)φq

(
k1(τ, τ)dτ

)
dsdr

)−1
.

(18)

The p-Laplacian BVP (2)-(4) has a solution u(t) if and only if u(t) is a fixed
point of the operator T defined in the cone P.

We assume the following conditions hold throughout this paper:

(A1) 0 <
∫ 1
0 k1(t, s)ds <∞,
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(A2) f : [0, 1]× [0,∞]→ [0,∞] is a continuous function.

Lemma 7. The operator T : P → B defined by (16) is a self map on P.

Proof. From (A1) and the positivity of the Green’s function h(t, s) and k1(t, s)
in Lemma 4 and 5, respectively, u ∈ P , Tu(t) ≥ 0 on t ∈ [0, 1]. Now, for u ∈ P
and by Lemmas 4–6, we have

(Tu)(t) =

∫ 1

0
h(t, r)

∫ 1

0
kn−2(r, s)φq(

∫ 1

0
k1(s, τ)f(τ, u(τ))dτ)dsdr,

≤ M

6n−3

∫ 1

0
h(r, r)

∫ 1

0
k1(s, s)φq(

∫ 1

0
k1(τ, τ)f(τ, u(τ))dτ)dsdr.

So that

‖Tu‖ ≤ M

6n−3

∫ 1

0
h(r, r)

∫ 1

0
k1(s, s)φq(

∫ 1

0
k1(s, τ)f(τ, u(τ))dτ)dsdr. (19)

Then by Lemmas 4– 6, for u ∈ P we have

min
t∈I

(Tu)(t) = min
t∈I

∫ 1

0
h(t, r)

∫ 1

0
kn−2(r, s)φq(

∫ 1

0
k1(s, τ)f(τ, u(τ))dτ)dsdr

≥ 1

M

∫ 1

0
h(r, r)(

1

4n−2
(
11

96
)n−3)

( ∫ 1

0
k1(s, s)φq(

∫ 1

0
k1(s, τ)f(τ, u(τ))dτ)ds

)
dr

≥ η‖Tu‖.

So (Tu)(t) ∈ P. Hence T : P → P . J

Further, the operator T is completely continuous by an application of the
Arzela–Ascoli theorem.

Theorem 2. Suppose that there exist 0 < b < k < k
η < c, such that f satisfies

the following conditions:

W1. f(t, u(t)) < φp(bL), t ∈ [0, 1] and u ∈ [ηb, b],

W2. f(t, u(t)) > φp(kM), t ∈ I and u ∈ [k, kη ],

W3. f(t, u(t)) < φp(cL), t ∈ [0, 1] and u ∈ [0, c].

Then the p-Laplacian BVP (2)-(4) has at least three positive solutions, u1, u2,
and u3 such that β(u1) < b, k < α(u2) and b < β(u3) with α(u3) < k.
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Proof. Recall T defined in (16):

Tu(t) =

∫ 1

0
h(t, r)

∫ 1

0
kn−2(r, s)φq(

∫ 1

0
k1(s, τ)f(τ, u(τ))dτ)dsdr, t ∈ [0, 1].

Hence we need to prove the existence of three fixed points for T which satisfy the
conditions of Theorem 1. As shown in Lemma 7, the operator T is a self map on
P, and also T is completely continuous. From (17), for each u ∈ P, α(u) ≤ β(u),
and ‖u‖ ≤ 1

ηγ(u). It is shown that T : P (γ, c) → P (γ, c). Let u ∈ P (γ, c). Then
0 < γ(u) = maxt∈[0,1] u(t) = ‖u‖ ≤ c. By using condition W3,

γ(Tu(t)) = max
t∈[0,1]

Tu(t)

= max
t∈[0,1]

[ ∫ 1

0
h(t, r)

∫ 1

0
kn−2(r, s)φq

( ∫ 1

0
k1(s, τ)f(τ, u(τ))dτ

)
dsdr

]
≤
∫ 1

0
Mh(r, r)

∫ 1

0

1

6n−3
k1(s, s)φq

( ∫ 1

0
k1(τ, τ)φp(cL)dτ

)
dsdr

< cL M

6n−3

∫ 1

0
h(r, r)

∫ 1

0
k1(s, s)φq

( ∫ 1

0
k1(τ, τ)dτ

)
dsdr < c. (20)

Thus, Tu(t) ∈ P (γ, c), we have T : P (γ, c) → P (γ, c). From this end we claim
condition (i) and (ii) of Theorem 1. It is clear that

k + k
η

2
∈ {u ∈ P (γ, θ, α, k,

k

η
, c), α(u) > k} 6= ∅, (21)

ηb+ b

2
∈ {u ∈ Q(γ, β, ψ, ηb, b, c), β(u) < b} 6= ∅. (22)

Now, let u ∈ P (γ, θ, α, k, kη , c) or u ∈ Q(γ, β, ψ, ηb, b, c). Then k ≤ |u(t)| ≤ k
η and

ηb ≤ |u(t)| ≤ b. By using the hypothesis (W2) we get

α(Tu(t)) = min
t∈I

Tu(t)

= min
t∈I

[ ∫ 1

0
h(t, r)

∫ 1

0
kn−2(r, s)φq

( ∫ 1

0
k1(s, τ)f(τ, u(τ))dτ

)
dsdr

]
≥
∫ 1

0

1

M
h(r, r)

∫ 1

0

1

4n−2

(
11

96

)n−3
k1(s, s)φq

( ∫ 1

0
k1(s, τ)φp(kM)dτ

)
dsdr

>
kM
M

1

4n−2

(
11

96

)n−3 ∫ 1

0
h(r, r)

∫ 1

0
k1(s, s)φq

(1

4

∫ 1

0
k1(τ, τ)dτ

)
dsdr > k. (23)



34 L.T. Wesen, K.G. Yeneblih

By considering condition W1,

β(Tu(t)) = max
t∈J

Tu(t)

= max
t∈J

[ ∫ 1

0
h(t, r)

∫ 1

0
kn−2(r, s)φq

( ∫ 1

0
k1(s, τ)f(τ, u(τ))dτ

)
dsdr

]
≤
∫ 1

0
Mh(r, r)

∫ 1

0

1

6n−3
k1(s, s)φq

( ∫ 1

0
k1(s, τ)φp(bL)dτ

)
dsdr

< bL M

6n−3

∫ 1

0
h(r, r)

∫ 1

0
k1(s, s)φq

( ∫ 1

0
k1(τ, τ)dτ

)
dsdr < b. (24)

Thus, conditions (i) and (ii) of Theorem 1 are verified. Let’s prove (iii). Let
u ∈ P (γ, α, k, c) with θ(Tu(t)) > k

η . Then

α(Tu(t)) = min
t∈I

Tu(t)

= min
t∈I

[ ∫ 1

0
h(t, r)

∫ 1

0
kn−2(r, s)φq

( ∫ 1

0
k1(s, τ)f(τ, u(τ))dτ

)
dsdr

]
≥
∫ 1

0

1

M
h(r, r)

∫ 1

0

1

4n−2

(
11

96

)n−3
k1(s, s)φq

( ∫ 1

0
k1(s, τ)f(τ, u(τ))dτ

)
dsdr

≥ 1

M

1

4n−2

(
11

96

)n−3 ∫ 1

0
h(r, r)

∫ 1

0
k1(s, s)φq

( ∫ 1

0
k1(s, τ)f(τ, u(τ))dτ

)
dsdr

≥ 11n−3

M226n−166n−3

∫ 1

0
h(t, r)

∫ 1

0
k1(r, s)φq

( ∫ 1

0
k1(s, τ)f(τ, u(τ))dτ

)
dsdr

= η
1

6n−3

∫ 1

0
h(t, r)

∫ 1

0
k1(r, s)φq

( ∫ 1

0
k1(s, τ)f(τ, u(τ))dτ

)
dsdr

≥ η max
t∈[0,1]

∫ 1

0
h(t, r)

∫ 1

0
kn−2(r, s)φq

( ∫ 1

0
k1(s, τ)f(τ, u(τ))dτ

)
dsdr = ηθ(Tu(t)) > k.

(25)
Finally, to assert (iv) of Theorem 1, let u ∈ Q(γ, β, b, c) with ψ(Tu(t)) < ηb.

β(Tu(t)) = max
t∈J

Tu(t)

= max
t∈J

[ ∫ 1

0
h(t, r)

∫ 1

0
kn−2(r, s)φq

( ∫ 1

0
k1(s, τ)f(τ, u(τ))dτ

)
dsdr

]
≤ max

t∈[0,1]

[ ∫ 1

0
h(t, r)

∫ 1

0
kn−2(r, s)φq

( ∫ 1

0
k1(s, τ)f(τ, u(τ))dτ

)
dsdr

]
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≤
∫ 1

0
Mh(r, r)

∫ 1

0

1

6n−3
k1(s, s)φq

( ∫ 1

0
k1(s, τ)f(τ, u(τ))dτ

)
dsdr

=
1

η

ηM

6n−3

∫ 1

0
h(r, r)

∫ 1

0
k1(s, s)φq

( ∫ 1

0
k1(s, τ)f(τ, u(τ))dτ

)
dsdr

≤ 1

η
min
t∈I

∫ 1

0
h(t, r)

∫ 1

0
kn−2(r, s)φq

( ∫ 1

0
k1(s, τ)f(τ, u(τ))dτ

)
dsdr

≤ 1

η
min
t∈J

∫ 1

0
h(t, r)

∫ 1

0
kn−2(r, s)φq

( ∫ 1

0
k1(s, τ)f(τ, u(τ))dτ

)
dsdr =

1

η
ψ(Tu(t)) < b.

(26)
From (23)-(26), all the conditions of Theorem 1 satisfied, then by Theorem 1 the
assertion of Theorem 2 follows. J

4. Example

Let us consider an example to illustrate our results.

Example 1. Consider the boundary value problem

(−1)3[φp
(
u(4)(t) + k2u′′(t)

)
]′′ = f(t, u(t)), 0 ≤ t ≤ 1, (27)

u(0)− 2u′(0) = 0,

u(1) + 3u′(1) = 0,

}
(28)

u′′(0) = 0 = u′′(1),

u(4)(0) = 0 = u(4)(1).

}
(29)

Set p = 2 and k = 1
3 . The solution of the BVP (28)-(29) is given by

u(t) =

∫ 1

0
h(t, r)

∫ 1

0
k1(r, s)

∫ 1

0
k1(s, τ)f(τ, u(τ))dτdsdr,

where
h(t, s) =

1
1
9 sin(1/3) + 5

9 cos(1/3)

{
(sin( t3) + 2

3 cos( t3))(sin(13(1− s)) + 2
3 cos(13(1− s)))

(sin( s3) + 2
3 cos( s3))(sin(13(1− t)) + 2

3 cos(13(1− t)))
and

f(t, u(t)) =


et + 545u

100 , t ∈ [0, 1], u ∈ [0, 1],

et + 545
100 + 271(u2 − 1), t ∈ [1/4, 3/4], u ∈ [1, 43],

et + 50108445
100 , t ∈ [0, 1], u ∈ [43,∞).
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By computing the value of the parameters we get η = 0.0356,L = 8.1778,M =
229.713. f(t, u(t)) satisfies all the conditions of Theorem 2. Then the p-Laplacian
BVP (27)-(29) has at least three positive solutions u1, u2, and u3 such that
maxt∈[ 1

4
, 3
4
] u1 < 1, 3/2 < mint∈[ 1

4
, 3
4
] u2 and 1 < maxt∈[ 1

4
, 3
4
] u3 with mint∈[ 1

4
, 3
4
] u3 <

3/2 by Theorem 1.
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