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On Building Two-Player Games with Treatment
Schedules for the SIR Model

A. Hamidoğlu*, M.H. Taghiyev, G.W. Weber

Abstract. In this study, a treatment argument is provided as a discrete two-player
game related to an epidemiological dynamics, so-called, Susceptible- Infectious-Recovered
(SIR) model. Here, a simple discrete version of the dynamics of SIR model is considered
within a treatment structure in such a way to control the behaviour of each candidate:
population of the susceptible, infected and recovered people, respectively. In this regard,
several two-player game models are proposed, where one player follows its own existed
policy where as the other tries to track its opponent’s treatment schedule as close as
possible. In this regard, different strategies are built for one player to catch the other
in a two-player game environment, where one player determines the total number of
susceptible or infected people at a given period, in the meantime, the other tries to build
its corresponding treatment policy to get closer to its opponent’s counting schedule. The
main contribution of this work is to build a better treatment schedule by using a game
theoretical point of view to cure the population suffered from an infectious disease. At
the end, the work is related to pursuer-evasion discrete games and the idea could be
implemented on compartmental models like COVID-19 and transportation problems.

Key Words and Phrases: two-player game, SIR model, pursuit-evasion game, treat-
ment schedule.
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1. Introduction

Recently, there has been a great tendency for utilizing mathematical mod-
elling, most of which are derived from continuous environments for real life prob-
lems in different fields of science and technology. Among them, computational
epidemiology provides different tools and methodologies for modelling the spread
of infectious diseases with possible various treatments, such as the use of vacci-
nation [5, 6, 7, 10], hand washing [1, 42], social distancing [40], having related
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medications, drugs [3], etc. In this regard, game theory stands forward to model
different scenarios to decide which is better or the best in the face of preventing
the deadly disease before it is too late. For that analysis, an appropriate decision
making process plays a crucial role in a given competitive environment, where
one player’s decision would automatically influence the outcome of a situation
for all players involved. Here, the players could be seen as individuals, groups of
people, treatments or computer programs, aiming to develop strategies to opti-
mize the gain, so-called pay-off. In literature, we refer to [26, 28, 29, 33, 34], and
[12, 14, 15, 17, 37] for building game theoretical methodologies in epidemiology.

In addition, we refer to the book [34] for an introduction of modelling and
solving two-player and pursuit-evasion games with both discrete and continuous
point of views. Moreover, we refer to the paper [33] which examines two-player
zero-sum differential game known as the target guarding problem. Furthermore,
we refer to [12] for an overview of game theoretical perspectives in the dynamics
of various sort of infectious disease models with latest developments. Besides, we
refer to the paper [41] for stochastic differential games in mathematical economy.
Apart from that, we refer to [16, 38, 39] for modelling gene-environment networks
and [9, 13, 19, 44] for further analysis of different dynamical models with operation
research point of views.

In the context of two-player games in transportation and queueing theory,
we refer to [18] for constructing two game models as Nash non-cooperative and
Stackelberg games with additional problems in transportation systems modelling
by using decision-making models for planning and operating transportation sys-
tems. Moreover, we refer to the papers [20, 21, 22, 23, 24, 25] for modelling certain
class of transportation problems in queueing theory with statistical and proba-
bilistic aspects. Here, it is worth to note that those problems and approaches
are motivating to design two-player game environments in which one player, a
leader, knows or tracks the path of the other player, a follower, who is certainly
capable of taking any decision in this regard.

Recently, there has been a growing interest toward building effective and
control based environments for preventing the spread of an infectious disease, such
as influenza [11, 17, 37], smallpox [8], chickenpox [36], and more recently COVID-
19 [31, 43]. For that reason, new mathematical models have been constructed
to investigate and determine different dynamical behaviour of the widely spread
diseases [1, 31, 43]. Here, we refer to the recent papers [1, 2, 3, 40, 42, 43] for
modelling and analysing COVID-19 and its evolution process in different fields of
the subject under certain treatment measures. Moreover, we refer to the book [4]
for examining different models of infectious diseases of humans from mathematical
point of view (see also [35]).

In this paper, we design two-player games, where each player’s position is
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determined by the system emerged from dynamics of the SIR model [4] with
possible treatments posed on the system. In this regard, one player is allowed
to follow any possible treatments, where as the other tries to catch its opponent
treatment policy as near as possible. Here, we define one player’s position in
three different ways, namely, as the current number of susceptible, infected and
recovered population, respectively. More precisely, we propose three kinds of two-
player game models in which each player’s position is respectively related to the
number of these three categories; susceptible, infectious and recovered population
at a given period of time. Moreover, we portray a different playing ground where
one player which follows its own policy is considered as the evader, where as the
other which tracks its opponent treatment model is regarded as the pursuer. The
game is started by the evader which is followed by the pursuer, each player moves
one step at each period and the game finishes whenever the evader is caught by
the pursuer within a small neighbourhood. For such game models, we refer to
[26, 28, 29, 31] for examining two-player discrete, games where the position of
each player is formulated by controls taken from finite sets.

The paper is organized as follows. In Section 2, we provide the statement
of the problem by considering the dynamics of the SIR model and its discrete
version by adopting Euler discretization technique [26, 27, 32]. Moreover, we
propose a treatment policy for the discrete model of the SIR and build a proper
playing ground for interactions of two players, each of whom consists of different
treatment strategies for overcoming the disease. In Section 3, we design three
kinds of two-player games, where each player’s position is determined by the
discrete SIR model with possible treatment policies. In Section 4, the paper
concludes with some remarks and future works related to the topic.

2. Statement of the Problem

In this part, we consider the following dynamics of an epidemic [4]:


S′(t) = −αS(t)I(t),

I ′(t) = αS(t)I(t)− βI(t),

R′(t) = βI(t),

(1)

where constants α > 0, β > 0 represent interaction rates of the disease and
S(t), I(t), R(t) stands for the existence population of susceptible, infected and
recovered people at time t, respectively. For having unique solution, we state
previously that S(0) = S0, initial population, I(0) = I0 > 0, initial cases of
disease and number of initial recovered patients R(0) = R0, mostly assumed to
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be zero at the beginning of the outbreak. Since the dynamics of the system (1)
is designed as having no death cases, or contributing so less comparing to the
general population due to the disease, the total number of population stays fixed.
More precisely, it is well seen from the system that S(t)+I(t)+R(t) = S0+I0+R0.

Consider the following discrete form:{
S(n+ 1) = S(n)− hαS(n)I(n),

I(n+ 1) = I(n) + h(αS(n)I(n)− βI(n)),
(2)

where h > 0 is a fixed step size close to zero with S(0) = S0, I(0) = I0 > 0. After
the spread of a disease, the number of recovered patients at mth period, could be
seen in the following way:

R(m) = N − S(m)− I(m), (3)

where N represents the total number of population. It is well noted that at the
beginning of the spread of a disease, we can assume without loss of generality
that S0 ≈ N , and I0 ≈ 0. Here, the system (2) can be considered in the following
way: {

S(n+ 1) = S(n)− u(n),

I(n+ 1) = I(n) + v(n),
(4)

where u(n), v(n) > 0 for all n ∈ N. Here, u(n) := hαS(n)I(n) and v(n) :=
h(αS(n)I(n)− βI(n)). Moreover, we have the following interaction:

u(n)− v(n) = hβI(n) > 0, n ≥ 1. (5)

In addition, one can note that each k ∈ N for S(k) > 0, the sequence of susceptible
population {S(0), S(1), · · · , S(k)} is decreasing, whereas the sequence of infected
population {I(0), I(1), · · · , I(k)} is increasing as days go by. Moreover, total
number of susceptible and infected individuals at (k + 1)th period would be

S(k + 1) ≈ N −
k∑
i=0

u(i) and I(k + 1) ≈
k∑
i=0

v(i), (6)

respectively. Hence, the total number of recovered patients at (k + 1)th period
becomes

R(k + 1) ≈
k∑
i=0

(u(i)− v(i)). (7)
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Now, we are ready to design a treatment model posed on the discrete system.
For this reason, we consider the following model:

{
S(n+ 1) = S(n)− u(n) + µu(n),

I(n+ 1) = I(n) + v(n)− ηv(n),
(8)

where µ, η ∈ [0, 1], real numbers corresponding to the effectiveness rate of the
treatment delivered. For η = µ = 0, we obtain the model (4) which means no
treatment is involved. On the other hand, if η = µ = 1, we have the full treatment
for the disease, such as the use of vaccine in the treatment, which means the
epidemic ends instantly, i.e., S(n) = N and I(n) = 0, for each n ∈ N. Hence, one
can see that the effectiveness of the treatment becomes apparent whenever µ, η
are close to one. The next section presents the study of that treatment model
which determines each position of the players in a constructed two-player game.

3. Constructing Two-Player Games in the SIR Model with
Possible Treatment Policies

In this section, we design two-player games, where each player’s position is
determined by the system (8) with different µ, η ∈ [0, 1], where one player builds
its own treatment policy, whereas the other tries to catch its opponent’s policy
as close as possible. In this game, each player moves one step at a time and
the game finishes whenever one player (the evader) is trapped by the other (the
pursuer) within a small neighbourhood, i.e., the number of susceptible, infected
and recovered population in each policy becomes respectively closer to each other.
Hence, we consider three different game models, simultaneously investigating
interactions of each player’s positions related to current number of susceptible,
infected and recovered population. In this game, we concentrate on the following
discrete model (8) which determines the move of each player:{

Se(n+ 1) = Se(n)− (1− µe)ue(n),

Ie(n+ 1) = Ie(n) + (1− ηe)ve(n),

{
Sp(n+ 1) = Sp(n)− (1− µp)up(n),

Ip(n+ 1) = Ip(n) + (1− ηp)vp(n),

The evader’s model The pursuer’s model

where Se(0) = Se, Sp(0) = Sp with Ie(0) = Ie > 0 and Ip(0) = Ip > 0, both of
them are close to zero, possibly different from each other. More precisely, without
loss of generality, it is assumed that Se, Sp ≈ N, and Ie, Ip ≈ 0, where N stands
for the total number of people in the region, each of whom is capable of getting
sick from an infection during this period. Here, Se(k) and Ie(k) represent the
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total number of susceptible and infected people at the period k for the evader,
respectively. Similarly, Sp(k) and Ie(k) stand for the total number of susceptible
and infected people at the period k for the pursuer, respectively. For recovered
population, we use the formula (3) to determine the positions of each player.

Here, we call (µe, ηe) as the treatment policy for the evader and similarly
(µp, ηp) for the pursuer. Moreover, a position of the evader at kth step is seen as
Se(k) if the chasing is built on the number of susceptible people or it is taken as
Ie(k) if the chasing is constructed on the number of infected population. Similarly,
a position of the pursuer at kth step would be considered as Sp(k), Ip(k) or Rp(k)
with the policy (µp, ηp) depending on the game structure. For being precise,
we define the two-player game structure related to the positions of each player
determined by susceptible, infected and recovered population at each period of
time as the first, second and third game model, respectively.

Theorem 1. In a two-player first game model, for any treatment policy of the
evader, (µe, ηe) with initial environment (Se, Ie), there exists a treatment pol-
icy (µp, ηp) with initial environment (Sp, Ip) for the pursuer to catch its oppo-
nent within a small neighbourhood. Moreover, there are many treatment policies
favouring the pursuer in this regard.

Proof. Assume that the evader follows the policy (µe, ηe) with initial envi-
ronment (Se, Ie), i.e., Se ≈ N and Ie(0) = Ie > 0. Without loss of generality,
initially, Ie is supposed to be close to zero. Let ρ ≥ 1, any positive real number.
Here, the sequences

(ue(0), ue(1), · · · , ue(k)) and (ve(0), ve(1), · · · , ve(k)), (9)

determine the position of the evader at (k+1)th level, i.e., (Se(k+1) with Ie(k+1)
in our case. Now, for each ρ, we develop the following chasing strategies for the
pursuer:

µp =
ρ− 1 + µe

ρ
and ηp = ηe, (10)

with
Sp ≈ Se and Ip = ρIe, (11)

Under (10) and (11), we build the sequences

(up(0), up(1), · · · , up(k)) and (vp(0), vp(1), · · · , vp(k)), (12)

set up the position of the pursuer at (k + 1)th period, namely, (Sp(k + 1) with
Ip(k + 1)). Here, we show that for each k ∈ Z+, the relations

Se(k) ≈ Sp(k) and Ip(k) ≈ ρIe(k) (13)
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hold, i.e., the pursuer traps the evader. For the proof of (13), we use induction.
Namely, we check first whether both case holds for k = 1. We have

Sp(1)− Se(1) ≈ (Sp − Se) + hα(1− µe)(
1

ρ
SpρIe − SeIe) ≈ 0. (14)

Similarly, we obtain Ip(1) ≈ ρIe(1). From (14), the case for k = 1 holds. Now,
assume that the case k = (n − 1) holds, we prove that the case k = n satisfies.
From induction hypothesis, Sp(n − 1) ≈ Se(n − 1) and Ip(n − 1) ≈ ρIe(n − 1).
We have

Sp(n)− Se(n) ≈ hα(1− µe)
(1

ρ
Sp(n− 1)Ip(n− 1)− Se(n− 1)Ie(n− 1)

)
≈ 0.

Hence, Sp(n) ≈ Se(n) for each n ∈ N. Similarly, one can have Ip(n) ≈ ρIe(n) for
each n ∈ N.

As a result, for any ρ ≥ 1, we prove that the treatment policy (µp, ηp) satis-
fying (10) and (11) builds different chasing strategies in favour of the pursuer to
catch its opponent in any period which proves the theorem. J

Remark 1. In Theorem 1, we see that there are many strategies favouring the
pursuer to trap the evader within some neighbourhood at any period of time. For
any given k ∈ N and ε > 0, initial environment Sp for the pursuer could be chosen
as close to Se to make the gap stays within ε neighbourhood

|Se(k)− Sp(k)| < ε.

In Theorem 1, one can see that for ρ ≈ 1, we obtain the same scenario for
the second game model in which any treatment policy that the evader follows,
one can design a tracking schedule for the pursuer to get closer to its opponent.
Hence, we have the following result as an immediate consequence of Theorem 1.

Corollary 1. In a two-player second game model, for any treatment policy of the
evader, (µe, ηe) with initial environment (Se, Ie), there exists different treatment
policies (µp, ηp) with initial environment (Sp, Ip) in favour of the pursuer to trap
its opponent.

Remark 2. With Theorem 1 and Corollary 1, we see that it is possible to design
chasing strategies for two-player game in regard of different type of treatment
models as (8). Moreover, one can also build different chasing strategies in a two-
player third game model, where the position of each player is determined by the
number of recovered patients.



190 A. Hamidoğlu, Mustafa H. Taghiyev, Gerhard W. Weber

4. Conclusion

In this paper, we establish two-player game models with treatments for the
discrete SIR model. In this regard, we concentrated on the discrete models
emerged from the continuous dynamics of the SIR model which motivates us to
create a discrete playground for some continuous models like a spread model of
COVID-19 [2, 3] and any other infectious diseases. Hopefully, some discretization
techniques applied for those continuous models could provide us discrete models
like (8) (see e.g., [26, 30, 31, 32]) which creates a possible playing environment
for designing corresponding two-player games controlled by possible treatment
policies.

As a future work, it would be an interesting attempt to investigate whether
there exists a playing environment for two-player games in regard of the following
general discrete model:

{
Sλ(n+ 1) = λSλ(n)− hαSλ(n)Iλ(n),

Iλ(n+ 1) = λIλ(n) + h(αSλ(n)Iλ(n)− βIλ(n)),
(15)

where λ > 1. Of course, to have a well-defined structure, initial environments
Iλ(0) and Sλ(0) (h > 0 is also included if it is necessary) should be chosen in such
a way that the sequence {Sλ(0), Sλ(1), · · · , Sλ(k)} becomes a decreasing finite
sequence, whereas the sequence {Iλ(0), Iλ(1), · · · , Iλ(k)} becomes an increasing
finite sequence for each k ∈ N satisfying Sλ(k) > 0. Here, it is worth to mention
that the main difference between the model (15) and (2) is that spread of the
disease in (15) is more effective than the one in (2), i.e., the above epidemic model
is more contagious than the other. For answering that question, we may utilize
some topological properties of the following set [30]:

Xm(λ) :=
{
α0 + α1λ+ ...+ αkλ

k : |αi| ≤ m, k ∈ N
}
,

for understanding the behaviour of each consecutive term [30]. Those properties
could help us to get more familiar with the playing ground of each player and
their interaction among them.

In addition, it could be an interesting and motivating attempt to construct
two-player game models in transportation. More precisely, one could stay focused
on mathematical models of moving particles [20, 21, 22, 23] by building discrete
playing environments with players considered as moving particles controlled by
finite sets.
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