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Some Generalizations of the Riemann Operator Method

I.M. Alexandrovich, M.V.-S. Sydorov*, S.A. Salnikova

Abstract. The generalized Bergman [3] and Vekua [9] complex operators are a single
apparatus for constructing solutions of various linear partial differential equations with
three independent variables, that associate holomorphic functions with two complex vari-
ables and solutions of these equations.
Integral operators are constructed that convert arbitrary analytic functions into regular
solutions of partial differential equations of different types (elliptical, parabolic, hyper-
bolic) in three-dimensional case. A method for finding an integral representation of
solutions of iterative partial differential equations of different types is developed. As an
example, the Cauchy problem for the Helmholtz equation of 4th order is solved.
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1. Introduction

The theory of analytic functions is a developed branch of analysis, and the
Riemann operator method makes it possible to use it to study differential equa-
tions. Riemann’s method is reduced to the derivation of an integral formula that
explicitly expresses the desired solution of the Cauchy problem through the initial
data and at the same time directly proves the uniqueness of the solution.

To construct the theory of solvability of boundary value problems for a second
order equation of elliptic type

∆U + a1(x, y)
∂U

∂x
+ a2(x, y)

∂U

∂y
+ a3(x, y)U = 0, (∗)

∗Corresponding author.
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where a1, a2, a3 are analytic functions, I.N.Vekua [9] essentially applied the fol-
lowing integral representation for all regular solutions of equation (*):

U(x, y) = Re

α (z, z̄)ϕ(z) +

z∫
0

β (z, z̄, t)ϕ(t)dt

 , (∗∗)

where ϕ(z) is an arbitrary analytic function, α and β are functions (each of them
is a so-called Riemann function) with the coefficients a1, a2, a3. The method of
constructing the formula (**), called the Riemann-Vekua method, is the simplest,
clearest and most constructive one.

A generalization of the Riemann operator method is proposed, by means of
which linear equations of stationary and nonstationary processes can be consid-
ered from a single position. The study of the properties of regular solutions and
the use of the apparatus of special functions made it possible to obtain a rep-
resentation for the solutions of the equations in a form convenient for research.
The generalization will be based on the Helmholtz equation.

2. Main results

Partial differential equations containing differential operators of the form

LS =
∂2

∂x2
+

∂2

∂y2
+ S

play an important role in the mathematical modeling of various processes. In
particular, they are used in modeling of diffusion processes, as well as biological
and environmental phenomena.

Methods for solving such equations involve the creation of integral and differ-
ential operators that determine the solution of equations of elliptic and hyperbolic
types [1, 2].

As is known, the solution of the Cauchy problem for an equation of elliptic
type with analytic coefficients exists and it is unique [4, 5].

Let D be a simply connected domain in the plane z = x+iy, that is symmetric
with respect to the real axis, and let f(z) and g(z) be arbitrary analytic functions
in D. Then the function U(x, y) defined by equality [10]

U(x, y) =
1

2
[f(z) + f(z̄)] +

α (z − z̄)
8

z∫̄
z
f(σ)

J1

(α
2

√
(z − σ) (z̄ − σ)

)
√

(z − σ) (z̄ − σ)
dσ+

+
1

2i

z∫̄
z
g(σ)J0

(α
2

√
(z − σ) (z̄ − σ)

)
dσ,

(1)
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where the integration from point z̄ to z is carried out along any directional contour
L in D, and Jν(z) is the Bessel function, is a regular solution in D of the following
Cauchy problem:

∂2U

∂x2
+
∂2U

∂y2
+
α2

4
U = 0, α− const > 0,

U
∣∣
y=0

= f(x),
∂U

∂y

∣∣
y=0

= g(x).
(2)

Due to the uniqueness of the solution of the Cauchy problem, formula (1) is a
general integral representation for all regular solutions of the Helmholtz equation
(2) in D through two arbitrary analytic functions in this domain. That is, for-
mula (1) establishes a one-to-one correspondence between the regular solutions
of equation (2) and the analytic functions in D.

Let G be an arbitrary star domain with respect to z = 0, z∗ ∈ G∗ =
{x− iy|x+ iy ∈ G} , τ be a real or complex variable, τ ∈ T, f(z, τ) be holo-
morphic in G and continuous in G function. Consider the differential equation
of the form

LSU =

(
∂2

∂x2
+

∂2

∂y2
+ S

)
U = 0, (3)

where U = U(x, y, τ) and S is a linear operator depending only on τ.
In accordance with the above statement (1) the integral representation for

the solutions of equation (3) will be sought in the form

U (z, z∗, τ) =
1

2

(
∂

∂z
− ∂

∂z∗

)
z∫
z∗
f(σ)J0

(√
S(z − σ) (z∗ − σ)

)
dσ+

+
1

2i

z∫
z∗
g(σ)J0

(√
S(z − σ) (z∗ − σ)

)
dσ.

(4′)

Let in (4′) z∗ = z̄, σ = r cos θ + ir sin θ cos t = x+ iy cos t, (z − σ) (z∗ − σ) =
y2 sin2 t. Then

U(x, y, τ) =
1

2

∂

∂y

π∫
0

f(x+ iy cos t, τ)J0

(√
Sy sin t

)
y sin tdt+

+
1

2i

π∫
0

g(x+ iy cos t, τ)J0

(√
Sy sin t

)
y sin tdt.

(5)

Rewrite (5) in the form

U(x, y, τ) =
1

2

∂

∂y

π∫
0

∞∑
n=0

(−1)ny2n+1 sin2n+1 t

(n!)222n
Snf(x+ iy cos t, τ)dt+

+
1

2i

π∫
0

∞∑
n=0

(−1)ny2n+1

(n!)222n
sin2n+1 t Sng(x+ iy cos t, τ)dt

(6)
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or

U1 (z, z̄, τ) =
1

2

∂

∂y

π∫
0

Ef(x+ iy cos t, τ)dt, (6′)

U2 (z, z̄, τ) =
1

2i

π∫
0

Eg(x+ iy cos t, τ)dt, (6′′)

where E =
∞∑
n=0

(−1)ny2n+1 sin2n+1 t

(n!)222n
Sn.

Let the operator S and the functions f and g be such that the series under
the integral (6′), (6′′) is uniformly convergent ∀z = x+ iy ∈ G, τ ∈ T0 ⊂ T. Prove
that U1 (z, z̄, τ) satisfies equation (3). Substitute formula (6’) into (3).

Consider the operator ∆U1 =
∂2U1

∂x2
+
∂2U1

∂y2

∆U1 =
1

2

∂

∂y

∞∑
n=0

(−1)n

22n(n!)2

(
∂2

∂x2
+

∂2

∂y2

)
π∫
0

y2n+1 sin2n+1 tf(x+ iy cos t, τ)dt =

=
1

2

∂

∂y

∞∑
n=0

(−1)n

22n(n!)2

π∫
0

(
y2n+1f ′′ sin2 t+ (2n+ 2)2ny2n−1f+

+2(2n+ 1)y2nf ′i cos t
)

sin2n+1 tdt.

After transformations under the sign of the sum, we obtain

∆U1 =
1

2

∂

∂y

π∫
0

∞∑
n=0

(−1)n+1y2n+2 sin2n+1 t

(n!)222n
Sn+1fdt = −SU1.

In the same way ∆U2 = −SU2.

Therefore, formula (4′) is true. Thus the following theorem is proved:

Theorem 1. For all functions f(z, τ), g(z, τ) holomorphic in G and continuous
in G such that the series in (6) is uniformly convergent ∀z ∈ G, τ ⊂ T0 ⊂ T ,

U(z, z̄, τ) =
1

2

∂

∂y

π∫
0

f(x+ iy cos t, τ)J0

(√
Sy sin t

)
y sin tdt+

+
1

2i

π∫
0

g(x+ iy cos t, τ)J0

(√
Sy sin t

)
y sin tdt

(4)

is a solution of equation (3) ∀τ ∈ T0, z, z̄ from the neighborhood of z = 0, z̄ = 0.

Remark 1. We will consider further g(z) = 0.
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The integral equation (4) with the Bessel function in the kernel can be solved.
For this purpose we consider domains of two types:

a) domain G, which is symmetric with respect to the real axis and contains a
complete segment connecting any two of its points with the same abscissa;

b) domain G which contains a complete segment of a line drawn from an
infinitely distant point to any point parallel to the axis OY.

In the class of domains where f takes on real values, formula (4) will look like

U(x, y, τ) =
∂

∂y

y∫
0

Re f(x+ iξ, τ)J0

(√
S (y2 − ξ2)

)
dξ, (7)

U(x, y, τ) = − ∂

∂y

∞∫
y

Re f(x+ iξ, τ)I0

(√
S (ξ2 − y2)

)
dξ, (8)

where

f(z, τ) cos
(√

Sz
)
z−

1
2 = O

(
1

|z|ε

)
as |z| → ∞. (9)

The integral operators (7), (8) map the analytic function f(z, τ) in G into the
solutions of equation (3).

Considering equations (7), (8) as integral convolution-type equations with a
Bessel function in the kernel, we obtain their solutions according to [7].

Re f(x+ iy, τ) =
∂

∂y

y∫
0

U(x, ξ, τ)I0

(√
S (y2 − ξ2)

)
dξ, (7′)

Re f(x+ iy, τ) = − ∂

∂y

∞∫
y

U(x, ξ, τ)J0

(√
S (ξ2 − y2)

)
dξ. (8′)

10. If S =
α2

4
, then equation (3) becomes the Helmholtz equation (2), and

the integral image (4) is the integral reflection of the solutions of the Helmholtz
equation. That is, we come to formula (1).

The obtained formulas of inversion (7′) and (8′) allow to reduce the boundary
value problems for the Helmholtz equation to the corresponding boundary-value
problems for analytic functions.

Problem. In the right half-plane z = x + iy, find the regular solution of
equation (2) with the assumption
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U(x, y)
∣∣
x=0

= Φ(y), −∞ < y <∞.
In this case Φ(y) is an even continuous function. We do not formulate any

assumptions about the behavior of the function U(x, y) as z →∞ in advance.
The solution of the problem, as shown by formula (7), is sought in the form

U(x, y) = ϕ(x, y)− α

2
y

y∫
0

ϕ(x, ξ)
J1

(α
2

√
y2 − ξ2

)
√
y2 − ξ2

dξ, ϕ = Re f(z). (10)

By the formula of inversion (7′), for −∞ < y <∞ we obtain

ϕ(0, y) = Φ(y) +
α

2
y

y∫
0

Φ(ξ)
I1

(α
2

√
y2 − ξ2

)
√
y2 − ξ2

dξ. (11)

We assume that the function ϕ(0, y) on the entire y-axis is correctly continuous
and in the neighborhood of an infinitely distant point satisfies the condition H(υ),
that is

|ϕ(0, y2)− ϕ(0, y1)| ≤ A
∣∣∣∣ 1

y2
− 1

y1

∣∣∣∣υ , (A = const > 0, υ = const > 0)

with large enough |y1|, |y2|. Then the solution of the Dirichlet problem in the
half-plane x > 0 will look like [6]

ϕ(x, y) = −Re 1

πi

∞∫
−∞

ϕ(0, ξ)− a
ξ − (y − ix)

dξ + a,

where a = ϕ(0,∞). Given that ϕ(0, y) = ϕ(0,−y), the last equality can be
rewritten in the form

ϕ(x, y) =
x

π

∞∫
0

ϕ∗(ξ)

[
1

(ξ − y)2 + x2
+

1

(ξ + y)2 + x2

]
dξ + a, (12)

where ϕ∗(ξ) = ϕ(0, ξ)− a. Substituting (12) into (10), we obtain the solution of
the Dirichlet problem

U(x, y) = a cos
α

2
y +

x

π

∂

∂y

∞∫
0

ϕ∗(t)dt
y∫
0

J0

(α
2

√
y2 − ξ2

)
×

×
[

1

(t− ξ)2 + x2
+

1

(t+ ξ)2 + x2

]
dξ.
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3. Integral representation for solutions of parabolic equations

Let S = −
(
a+ b

∂

∂τ

)
, where a, b− const.

Then equation (3) becomes an equation of parabolic type

Uxx + Uyy − bUτ − aU = 0. (13)

The operator Ef(z, τ) takes the form

Ef(x+ iy cos t, τ) = y sin t
∞∑

n,k=0

(
y2 sin2 t

22

)n+k
1

((n+ k)!)2
Ckn+ka

nbk
∂kf

∂τk
=

= y sin t
∞∑

n,k=0

(
y2 sin2 t

22

)n+k
anbk

n!k!(n+ k)!

k!

2πi

∮
K

f(x+ iy cos t, ξ)

(ξ − τ)k+1
dξ =

=
1

2πi

∮
K

f(x+ iy cos t, ξ)

ξ − τ
y sin t

∞∑
n,k=0

(
ay2 sin2 t

22

)n
1

n!

1

(n+ k)!
×

×
(
by2 sin2 t

22

)k
dξ

(ξ − τ)k
=

1

2πi

∮
K

f(x+ iy cos t, ξ)H(x, y, τ, ξ, t)
dξ

ξ − τ
.

Here K is a circle in T0 centred at the point ξ = τ,

H(x, y, τ, ξ, t) = y sin t
∞∑

n,k=0

1

n!(n+ k)!

(
a
(y

2

)2
sin2 t

)nb
(y

2

)2
sin2 t

ξ − τ


k

=

= Φ3

1, 1,
b
(y

2

)2
sin2 t

ξ − τ
, a
(y

2

)2
sin2 t

 y sin2 t,

where Φ3(β, γ, ω, z) =
∞∑

n,k=0

(β)k
(γ)n+k

ωkzn

k!n!
is a degenerated hypergeometric func-

tion of two variables, and (β)k, (γ)n+k are Pochhammer symbols.

The following theorem is proved.

Theorem 2. For functions f(z, τ), that are holomorphic in G and continuous in

G, ∀τ ∈ T0 ⊂ T U(x, y, τ) =
1

2πi

∮
K

(
1

2

∂

∂y

π∫
0

f(x+ iy cos t, ξ)H(x, y, τ, ξ, t)dt

)
dξ

ξ − τ
is a solution of equation (13).

If b = 0, a = −α
2

4
, then
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H(x, y, τ, ξ, t) = Φ3

(
1, 1, 0,−α

2

4

(y
2

)2
sin2 t

)
y sin t =

=
∞∑
n=0

(1)0

(1)n

(
−α

2

4

(y
2

)2
sin2 t

)n
1

n!
= y sin t J0

(α
2
y sin t

)
.

We come to equation (2) and to the known representation of its solutions –
formula (10).

If a = 0 (b 6= 0), then we have the equation

Uxx + Uyy − bUτ = 0.

The integral representation of the solutions of this equation will be

U(x, y, τ) =
1

2πi

∮
K

1

2

∂

∂y

π∫
0

f(x+ iy cos t, ξ)y sin t `
by2 sin2 t
4(ξ−τ) dt

 dξ

ξ − τ
.

4. Integral representation of solutions of an equation of
hyperbolic type

Let S = −
(
b
∂

∂τ

)2

, where b is a constant.

The differential equation (3) takes the form

Uxx + Uyy − b2Uττ = 0. (14)

Equation (14) is an equation of hyperbolic type for b ∈ R (b 6= 0) and an
equation of elliptical type for b purely imaginary.

Let b be a real number. Then Ef will be as follows:

Ef(z, τ) =

∞∑
n=0

y2n+1 sin2n+1 t bn

(n!)222n

(2n)!

2πi

∮
K

f(z, ξ)dξ

(ξ − τ)2n+1
,

where K is a circle in T0 centred at the point ξ = τ.
Given that [8]

∞∑
n=0

(2n)!

(n!)2

b
(y

2

)2
sin2 t

(ξ − τ)


n

=
1√

1− by2 sin2 y

(ξ − τ)2
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with condition −1

4
≤
b
(y

2

)2
sin2 t

(ξ − τ)2
≤ 1

4
we have the following theorem.

Theorem 3. For all functions f(z, τ) that are holomorphic in G and continuous
in G

U(x, y, τ) =
1

2πi

∮
K

1

2

∂

∂y

π∫
0

f(x+ iy cos t, ξ)
y sin tdt√

(ξ − τ)2 − by2 sin2 t

 dξ

is a solution of equation (14).

The statement of this theorem is obtained by direct verification.
Consider the differential equation of the form

LnSU =

(
∂2

∂x2
+

∂2

∂y2
+ S

)n
U = 0, (LnS)

where U = U(x, y, τ), S is a linear operator dependening only on τ ∈ T.

Lemma 1. If Ur(z, z̄, τ) is a
(
r = 0, n− 1

)
∈ 2(r+ 1) times continuously differ-

entiable solution of the equation (LS), then the function defined by

U(x, y, τ) =
n−1∑
r=0

Ur(x, y, τ)yr

satisfies the equation (LnS) .

Proof. We prove this lemma by the method of mathematical induction. Let’s
show that L2

SU = 0 :

L2
SU = LS(LSU) = LS(LS(U0 + yU1)) = LS(LSyU1) =

= LS

((
∂2

∂x2
+

∂2

∂y2
+ S

)
yU1

)
= 2

∂

∂y
(LSU1) = 0.

Let the lemma be valid for n− 1, that is Ln−1
S

(
n−2∑
r=0

Ury
r

)
= 0.

Prove, that LnSU = 0.

LnSU = LS(Ln−1
S U) = LS

(
Ln−1
S

(
n−2∑
r=0

Ury
r + Un−1y

n−1

))
= LnS

(
yn−1Un−1

)
.

Next we prove that
LnS
(
yn−1Un−1

)
= 0. (15)
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Let Un−1 = ϕ. Then LnS
(
yn−1ϕ

)
= Ln−1

S

(
LSy

n−1ϕ
)
. Consider

LS
(
yn−1ϕ

)
= yn−1

(
∂2ϕ

∂x2
+ Sϕ

)
+

∂2

∂y2

(
yn−1ϕ

)
=

= yn−1LSϕ+ (n− 1)(n− 2)yn−3ϕ+ 2(n− 1)yn−2∂ϕ

∂y
.

(16)

Equation (15) is also proved by the method of mathematical induction:
When n = 1, under the condition of the lemma LSU0 = 0.

Assume that (15) is true for r < n, that is

LrS
(
yr−1ϕ

)
= 0⇒ LnS

(
yr−1ϕ

)
= 0 r < n. (17)

Actually, LnS
(
yr−1ϕ

)
= Ln−rS

(
LrS
(
yr−1ϕ

))
= 0.

Using (16), (17) we prove the validity of (15) for n, that is

LnS
(
yn−1ϕ

)
= 2(n− 1)Ln−1

S

(
yn−1∂ϕ

∂y

)
+ (n− 1)(n− 2)Ln−1

S

(
yn−3ϕ

)
= 0. J

The above considerations prove the following theorem.

Theorem 4. For all functions fr(z, τ)
(
r = 0, n− 1

)
that are holomorphic in G

and continuous in G

U(x, y, τ) =
n−1∑
r=0

yr
1

2

∂

∂y

π∫
0

fr(x+ iy cos t, τ)J0

(√
Sy sin t

)
y sin tdt (18)

is a solution of the equation (LnS) for arbitrary τ = T0, z, z̄ from the neighborhood
of z = 0, z̄ = 0.

40. S =
α2

4
, n = 2

5. Cauchy problem

In the domain 0 < x, y < ∞, find four times continuously differentiable
solution of the Helmholtz equation(

∂2

∂x2
+

∂2

∂y2
+
α2

4

)2

U = 0, (19)

that satisfies the conditions

∂mU

∂ym

∣∣∣∣
y=0

= fm(x), m = 0, 3, (20)
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where fm(x) is a given function continuously differentiable a sufficient number of
times.

We look for the solution of the problem in the form (18) for n = 2:

U(x, y) = U0(x, y) + yU1(x, y).

Since U0 and U1 satisfy equation (2), with the boundary conditions (20) ful-
filled, we come to the corresponding boundary value problems for U0(x, y) and
U1(x, y).

Finally, the solution of the Cauchy problem (19), (20) for the Helmholtz
equation of fourth order will look like

U(x, y) =
1

2
[f0(z) + f0(z̄)]−

−z − z̄
8

z∫̄
z

(
α2

4
f0(σ) + f ′′0 (σ) + f2(σ)

)
J0

(α
2

√
(z − σ) (z̄ − σ)

)
dσ+

+
α (z − z̄)

8

z∫̄
z
f0(σ)

J1

(α
2

√
(z − σ) (z̄ − σ)

)
√

(z − σ) (z̄ − σ)
dσ − i

2

z∫̄
z
f1(σ)J0

(α
2

√
(z − σ) (z̄ − σ)

)
dσ−

−i
z∫̄
z

(
αf1(σ)

8
+

2

α
f ′′1 (σ) +

2

α
f3(σ)

)√
(z − σ) (z̄ − σ)J1

(α
2

√
(z − σ) (z̄ − σ)

)
dσ.

50. S = −
(
a+ b

∂

∂τ

)
. Based on the lemma and using Theorem 2, we come to

the following theorem.

Theorem 5. For all functions fr(z, τ)
(
r = 0, n− 1

)
that are holomorphic in G

and continuous in G

U(x, y, τ) =
n−1∑
r=0

yr
1

2πi

∮
K

1

2

∂

∂y

π∫
0

fr(x+ iy cos t, ξ)H(x, y, τ, ξ, t)dt

 dξ

ξ − τ

is a solution of the n-th order equation of parabolic type(
∂2

∂x2
+
∂2

∂t2
− b ∂

∂τ
− a
)n

U = 0

for arbitrary τ ∈ T0, z, z̄ from the neighborhood of z = 0, z̄ = 0.

60. Based on the lemma and using Theorem 3, we have the following statement:
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Theorem 6. For all functions fr(z, τ)
(
r = 0, n− 1

)
that are holomorphic in G

and continuous in G

U(x, y, τ) =
n−1∑
r=0

yr
1

2πi

∮
K

1

2

∂

∂y

π∫
0

fr(x+ iy cos t, ξ)
y sin tdt√

(ξ − τ)2 − by2 sin2 t

 dξ

is a solution of the n-th order equation of hyperbolic type(
∂2

∂x2
+
∂2

∂t2
− b2 ∂

2

∂τ2

)n
U = 0

for arbitrary τ ∈ T0, z, z̄ from the neighborhood of z = 0, z̄ = 0.

6. Conclusion

New representations for the solutions of some iterative equations of ellip-
tic, parabolic and hyperbolic types are obtained. The generalization of the Rie-
mann operator method allows studying iterative equations of stationary and non-
stationary processes from a single position.
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