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1. Introduction

In recent years there has been a considerable interest in the problem of con-

structing wavelet bases on various groups. Recently, R.L. Benedetto and J.J.

Benedetto [5] developed a wavelet theory for local fields and related groups. They

did not develop the multiresolution analysis (MRA) approach, their method is

based on the theory of wavelet sets and only allows the construction of wavelet

functions whose Fourier transforms are characteristic functions of some sets. Since

local fields are essentially of two types: zero and positive characteristic (excluding

the connected local fields R and C). Examples of local fields of characteristic zero

include the p-adic field �p where as local fields of positive characteristic are the

Cantor dyadic group and the Vilenkin p-groups. Even though the structures and

metrics of local fields of zero and positive characteristics are similar, their wavelet

and multiresolution analysis theory are quite different. The concept of multires-

olution analysis on a local field K of positive characteristic was introduced by

http://www.azjm.org 3 © 2010 AZJM All rights reserved.
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Jiang et al. [9]. They pointed out a method for constructing orthogonal wavelets

on local field K with a constant generating sequence.

It is well known that the classical orthonormal wavelet bases have poor fre-

quency localization. For example, if the wavelet ψ is band limited, then the

measure of the supp of (ψj,k)
∧ is 2j-times that of supp ψ̂. To overcome this

disadvantage, Coifman et al. [7] introduced the notion of orthogonal univariate

wavelet packets. Well known Daubechies orthogonal wavelets are a special case

of wavelet packets. Chui and Li[6] generalized the concept of orthogonal wavelet

packets to the case of compactly supported orthogonal vector-valued wavelet

packets so that they can be employed to the spline wavelets and so on. Shen [14]

generalized the notion of univariate orthogonal wavelet packets to the case of mul-

tivariate wavelet packets. Mittal and Manchanda [10] constructed vector-valued

nonuniform wavelet packets. The construction of wavelet packets and wavelet

frame packets on local fields of positive characteristic were recently reported by

Behera and Jahan in [2]. They proved lemma on the so-called splitting trick

and several theorems concerning the Fourier transform of the wavelet packets

and the construction of wavelet packets to show that their translates form an

orthonormal basis of L2(K). Other notable generalizations are the vector-valued

wavelets. More details on wavelet packets can be found in [1, 3, 4, 8, 11, 13] and

the references therein.

Recently Shah and Bhat [12] have generalized the concept of multiresolu-

tion analysis on Euclidean spaces Rn to vector-valued nonuniform multiresolution

analysis on local fields of positive characteristic. They called it a vector-valued

nonuniform multiresolution analysis (VNMRA) on local fields of positive charac-

teristic.

Motivated and inspired by the concept of vector-valued nonuniform multires-

olution analysis on local fields of positive characteristic, we construct the asso-

ciated orthogonal wavelet packets for such an MRA on local fields of positive

characteristic. More precisely, we show that the collection of all dilations and

translations of the wavelet packets is an overcomplete system in L2
(
K,CN

)
. Fi-

nally, we investigate certain properties of the vector-valued wavelet packets on

local fields of positive characteristic by introducing a notion of decomposition of

the space L2
(
K,CN

)
.

This paper is organized as follows. In Section 2, we discuss some preliminary

facts about local fields of positive characteristic and also some results which are

required in the subsequent sections. In Section 3, we introduce the notion of

vector-valued wavelet packets on local field K and prove that they generate an
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orthonormal basis for L2
(
K,CN

)
. In Section 4, we define vector-valued nonuni-

form wavelet packets and we study their properties on the space L2
(
K,CN

)
.

2. Preliminaries on local fields

A local field K is a locally compact, non-discrete and totally disconnected

field. If it is of characteristic zero, then it is a field of p-adic numbers �p or its

finite extension. If K is of positive characteristic, then K is a field of formal

Laurent series over a finite field GF (pc). If c = 1, it is a p-series field, while for

c 6= 1, it is an algebraic extension of degree c of a p-series field. Let K be a fixed

local field with the ring of integers D = {x ∈ K : |x| ≤ 1}. Since K+ is a locally

compact Abelian group, we choose a Haar measure dx for K+. The field K is

locally compact, non-trivial, totally disconnected and complete topological field

endowed with non–Archimedean norm | · | : K → R+ satisfying

(a) |x| = 0 if and only if x = 0;

(b) |x y| = |x||y| for all x, y ∈ K;

(c) |x+ y| ≤ max {|x|, |y|} for all x, y ∈ K.

Property (c) is called the ultrametric inequality. Let B = {x ∈ K : |x| < 1} be

the prime ideal of the ring of integers D in K. Then, the residue space D/B is

isomorphic to a finite field GF (q), where q = pc for some prime p and c ∈ N.

Since K is totally disconnected and B is both prime and principal ideal, so there

exists a prime element p of K such that B = 〈p〉 = pD. Let D∗ = D \ B =

{x ∈ K : |x| = 1}. Clearly, D∗ is a group of units in K∗ and if x 6= 0, then we can

write x = pny, y ∈ D∗. Moreover, if U = {am : m = 0, 1, . . . , q − 1} denotes the

fixed full set of coset representatives of B in D, then every element x ∈ K can

be expressed uniquely as x =

∞∑
`=k

c` p
` with c` ∈ U . Recall that B is compact and

open, so each fractional ideal Bk = pkD =
{
x ∈ K : |x| < Θ−k

}
is also compact

and open and is a subgroup of K+. We use the notation in Taibleson’s book [15].

In the rest of this paper, we use the symbols N,N0 and Z to denote the sets of

natural numbers, non-negative integers and integers, respectively.

Let χ be a fixed character on K+ that is trivial on D but non-trivial on B−1.

Therefore, χ is constant on cosets of D, so if y ∈ Bk, then χy(x) = χ(y, x), x ∈ K.
Suppose that χu is any character on K+, then the restriction χu|D is a character

on D. Moreover, as characters on D, χu = χv if and only if u − v ∈ D. Hence,
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if {u(n) : n ∈ N0} is a complete list of distinct coset representatives of D in K+,

then, as it was proved in [15], the set
{
χu(n) : n ∈ N0

}
of distinct characters on

D is a complete orthonormal system on D.

We now impose a natural order on the sequence {u(n)}∞n=0. We have D/B ∼=
GF (q), where GF (q) is a c-dimensional vector space over the field GF (p). We

choose a set {1 = η0, η1, η2, . . . , ηc−1} ⊂ D∗ such that span{ηj}c−1
j=0
∼= GF (q). For

n ∈ N0 satisfying

0 ≤ n < q, n = a0 + a1p+ · · ·+ ac−1p
c−1, 0 ≤ ak < p, and k = 0, 1, . . . , c− 1,

we define

u(n) = (a0 + a1η1 + · · ·+ ac−1ηc−1) p−1.

Also, for n = b0 + b1q + b2Θ2 + · · · + bsΘ
s, n ∈ N0, 0 ≤ Hk < q, k =

0, 1, 2, . . . , s, we set

u(n) = u(b0) + u(b1)p−1 + · · ·+ u(bs)p
−s.

This defines u(n) for all n ∈ N0. In general, it is not true that u(m + n) =

u(m)+u(n). But, if r, k ∈ N0 and 0 ≤ s < Θk, then u(rΘk+s) = u(r)p−k+u(s).

Further, it is also easy to verify that u(n) = 0 if and only if n = 0 and {u(`)+u(k) :

k ∈ N0} = {u(k) : k ∈ N0} for a fixed ` ∈ N0. Hereafter we use the notation

χn = χu(n), n ≥ 0.

Let the local field K be of characteristic p > 0 and η0, η1, η2, . . . , ηc−1 be as

above. We define a character χ on K as follows:

χ(ζµp
−j) =

{
exp(2πi/p), µ = 0 and j = 1,

1, µ = 1, . . . , c− 1 or j 6= 1.

The Fourier transform of f ∈ L1(K) is denoted by f̂(ξ) and defined by

F
{
f(x)

}
= f̂(ξ) =

∫
K
f(x)χξ(x) dx.

Note that

f̂(ξ) =

∫
K
f(x)χξ(x)dx =

∫
K
f(x)χ(−ξx) dx.

The properties of Fourier transforms on local field K are much similar to

those on the classical field R. In fact, the Fourier transform on local fields of

positive characteristic have the following properties:
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� The map f → f̂ is a bounded linear transformation of L1(K) into L∞(K),

and
∥∥f̂∥∥∞ ≤ ∥∥f∥∥1

.

� If f ∈ L1(K), then f̂ is uniformly continuous.

� If f ∈ L1(K) ∩ L2(K), then
∥∥f̂∥∥

2
=
∥∥f∥∥

2
.

The Fourier transform of a function f ∈ L2(K) is defined by

f̂(ξ) = lim
k→∞

f̂k(ξ) = lim
k→∞

∫
|x|≤Θk

f(x)χξ(x) dx,

where fk = f Φ−k and Φk is the characteristic function of Bk. Furthermore, if

f ∈ L2(D), then we define the Fourier coefficients of f as

f̂
(
u(n)

)
=

∫
D
f(x)χu(n)(x) dx.

The series
∑
n∈N0

f̂
(
u(n)

)
χu(n)(x) is called the Fourier series of f . From the

standard L2-theory for compact Abelian groups, we conclude that the Fourier

series of f converges to f in L2(D) and Parseval’s identity holds:∥∥f∥∥2

2
=

∫
D

∣∣f(x)
∣∣2dx =

∑
n∈N0

∣∣∣f̂(u(n)
)∣∣∣2 .

Let Z = {u(n) : n ∈ N0}, where {u(n) : n ∈ N0} is a complete list of

(distinct) coset representations of D in K+. Then we define

`2(Z) =

z : Z → C :
∑
n∈N0

|z(u(n))|2 <∞


as a Hilbert space with inner product

〈z, w〉 =
∑
n∈N0

z(u(n))w(u(n)).

The Fourier transform on `2(Z) is the map̂ : `2(Z) → L2(D) defined for

z ∈ `2(Z) by

ẑ(ξ) =
∑
n∈N0

z(u(n))χu(n)(ξ),
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and the Inverse Fourier transform on L2(D) is the map ∨ : L2(D) → `2(Z)

defined for f ∈ L2(D) by

f∨(u(n)) =
〈
f, χu(n)

〉
=

∫
D
f(x)χu(n)(x) dx.

For z ∈ `2(Z), we have

(ẑ)∨ (u(n)) =
〈
ẑ, χu(n)

〉
=

〈∑
m∈N0

z(u(m))χu(m), χu(n)

〉
=
∑
m∈N0

z(u(m))
〈
χu(m), χu(n)

〉
= z(u(n)).

Since
{
χu(n) : n ∈ N0

}
is an orthonormal basis for L2(D). It is also clear that the

function ẑ is an integral periodic function because for m ∈ N0, we have

ẑ(ξ + u(m)) =
∑
n∈N0

z(u(n))χu(n)(ξ), χu(n)(u(m)).

=
∑
n∈N0

z(u(n))χu(n)(ξ)

= ẑ(ξ).

For z, w ∈ `2(Z), we have Parseval’s relation:

〈z, w〉 =
∑
n∈N0

z(u(n))w(u(n)) =

∫
D
ẑ(ξ)ŵ(ξ) dξ = 〈ẑ, ŵ〉 ,

and Plancherel’s formula:

‖z‖2 =
∑
n∈N0

|z(u(n))|2 =

∫
D
|ẑ(ξ)|2 dξ = ‖ẑ‖2.

We now reconsider vector valued multiresolution on local fields as defined in

[1]. Let M be a constant and M ≤ s ∈ Z. By L2(K,CM ) we denote the set of all

vector valued functions f(x), i.e.

L2(K,CM ) = {f(x) = (f1(x), f2(x), ..., fM (x))T :

x ∈ K, ft(x) ∈ L2(K), k = 1, 2, ..., s},
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where T means the transpose of the vector.

The space L2(K,CM ) is called vector-valued function space. For

f ∈ L2(K,CM ), ||f || denotes the norm of the vector-valued function f and

is defined as

||f || =

(
M∑
t=1

∫
K
|ft(x)|2dt

) 1
2

. (1)

For a vector-valued function f ∈ L2(K,CM ) the integration of f(x) is defined as∫
K
f(x)dt =

(∫
K
f1(x),

∫
K
f2(x), ...,

∫
K
fM (x)

)T
.

The Fourier transform of f(x) is defined by

f̂(ζ) =

∫
K

f(x)χζ(x)dx.

For any two vector-valued functions f ,g ∈ L2(K,CM ) the inner product 〈f ,g〉 is

defined as

〈f ,g〉 =

∫
K

f(x)g(x)dx. (2)

A sequence {ft(x)} ∈ L2(K,CM ) is said to be orthonormal if it satisfies

〈fs(·), ft(·)〉 = δs,tIM , s, t ∈ Z, (3)

where δs,t denotes the Kronecker symbol such that δs,t = 1 when s = t and

δs,t = 0 when s 6= t, IM denotes the identity matrix of order M ×M.

Definition 1. A sequence {ft(x)} ∈ L2(K,CM ), t ∈ Z is called an orthonormal

basis for L2(K,CM ) if it satisfies (3) and, moreover, for any f ∈ L2(K,CM )

there exists a sequence of M ×M constant matrices {Fk}k∈Z such that

f(x) =
∑
t∈Z

Ftft(x), x ∈ K, (4)

where the multiplication Ftft(x) for each fixed x is the M×1 matrix multiplication,

and the convergence for infinite summation is as same as of the norm ||.|| defined

by (1) for the vector-valued function space.

Let {ft(x)}k∈Z be an orthonormal basis for L2(K,CM ). Then the expansion

(4) for any f ∈ L2(K,CM ) is unique and

Fk = 〈f , ft〉, t ∈ Z. (5)
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We also call the expansion (4) the Fourier expansion of f .

The corresponding Parseval equality is

〈f , f〉 =
∑
t∈Z

FtFk. (6)

From Eq. (6) it is clear that 〈f , f〉 = 0 if and only if f = 0, where 0 is the zero

vector.

Let Φ(x) = (ϕ1(x), ϕ2(x), ..., ϕM (x))T ∈ L2(K,CM ) satisfy the following refine-

ment equation:

Φ(x) =
∑
k∈N0

HkΦ(p−1x− u(k)), (7)

where {Hk}k∈N0 is a M ×M constant matrix sequence. Define a closed subspace

Vj ⊂ L2(K,CM ) by

Vj = closL2(K,CM )

(
span{ϕ(p−jx− u(k)) : k ∈ N0}

)
, j ∈ Z. (8)

Vector-valued multiresolution analysis defined by Abdullah on local fields [1] is

as follows:

Definition 2. Φ(x) defined by (7) generates a vector-valued multiresolution anal-

ysis {Vj}j∈Z of L2(K,CM ), if the sequence {Vj}j∈Z defined in (8) satisfies:

1. ... ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ ...,
2. ∩j∈ZVj = {bf0},∪j∈ZVj is dense in L2(K,CM ), where 0 is the zero vector

of L2(K,CM ),

3. Φ(x) ∈ V0 if and only if Φ(p−jx) ∈ Vj∀j ∈ Z,
4. there exists Φ(x) ∈ V0 such that the sequence {Φ(x − u(k)), k ∈ N0} is

an orthonormal basis of V0. The vector-valued function ϕ(x) is called a scaling

function of the vector-valued multiresolution analysis.

On taking the Fourier transform on both sides of (7), and assuming that

Φ̂(ζ) is continuous at zero, we have

Φ̂(ζ) = H(pζ)Φ̂(pζ), ζ ∈ K, (9)

where

H(ζ) = q
∑
k∈N0

Pkχk(ζ). (10)

Let Wj , j ∈ Z denote the orthogonal complement of Vj in Vj+1 and there

exist a vector-valued function Ψ(x) ∈ L2(K,CM ) such that the translations and

dilations of Ψ(x) form a Riesz basis of Wj i.e.

Wj = closL2(K,CM )

(
span{Ψ(p−jx− u(k)) : k ∈ N0}

)
, j ∈ Z. (11)
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Since Φ(x) ∈W0 ⊂ V1, there exists a unique finitely supported sequence {Gk}k∈N0

of M ×M constant matrices such that

Ψ(x) =
∑
k∈N0

GkΦ(p−1x− u(k)). (12)

Let

H(ζ) = q
∑
k∈N0

Gkχk(ζ). (13)

Then the equation (12) becomes

Ψ̂(ζ) = Gk(pζ)Φ̂(pζ), ζ ∈ K. (14)

3. Vector-valued nonuniform multiresolution analysis

Vector-valued nonuniform multiresolution analysis on local fields defined in

[12] is as follows:

Definition 3. Given integers N ≥ 1 and r odd with 1 ≤ r ≤ qN − 1 such that r

and N are relatively prime, we say that Φ ∈ L2(K,CM ) generates a VNUMRA

{Vj}j∈Z of L2(K,CM ), if the sequence {Vj}j∈Z satisfies:

(a) ... ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ ...,
(b) ∪j∈ZVj is dense in L2(K,CM ),

(c) ∩j∈ZVj = {0}, where 0 is the zero vector of L2(K,CM ),

(d) Φ(x) ∈ Vj if and only if {Φ(p−1Nx) ∈ Vj+1 ∀ j ∈ Z},
(e) there exists Φ(x) ∈ V0 such that the sequence {Φ(x − λ), λ ∈ Λ} is an

orthonormal basis of V0, where Λ = {0, u(r)/N}+Z. The vector valued function

Φ(x) is called a scaling function of the VNUMRA.

Note that when N = 1, one recovers from the above definition, the definition

of vector-valued multiresolution analysis on local fields of positive characteristic.

Let Φ(x) = (ϕ1(x), ϕ2(x), ..., ϕM (x))T ∈ L2(K,CM ) satisfy the following

refinement equation:

Φ(x) =
∑
λ∈Λ

Hλϕ
(
(p−1N)x− λ

)
, (15)

where {Hλ}λ∈Λ is M ×M constant matrix sequence that has only finite number

of terms. Define a closed subspace Vj ∈ L2(K,CM ) by

Vj = closL2(K,CM )

(
span{Ψ

(
(p−1N)jx− λ

)
, λ ∈ Λ}

)
, j ∈ Z. (16)
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Given a VNUMRA, let Wm denote the orthogonal complement of Vm in Vm+1,

for any integer m. It is clear from the conditions (a)-(c) of Definition 3 that

L2(K,CM ) = ⊕m∈ZWm.

As is the case in the standard situation (see [6, 10, 14, 15]), the main purpose of

VNUMRA is to construct orthonormal basis of L2(K,CM ) given by appropriate

translates and dilates of a finite collection of functions, called the associated

wavelets.

Definition 4. A collection {Ψ`}`=1,2,...,qN−1 of functions in V1 will be called

a set of wavelets associated with a given VNUMRA if the family of functions

{Ψ`(x− λ)}`=1,2,...,qN−1,λ∈Λ is an orthonormal system of W0.

On taking the Fourier transform on both sides of (15), we have

Φ̂(p−1Nζ) = G(ζ)Φ̂(ζ), ζ ∈ K, (17)

where

G(ζ) =
1

qN

∑
λ∈Λ

Gλχλ(ζ). (18)

Since Λ = {0, u(r)/N}+ Z, we can write

G(ζ) = G1
λ +G2

λχ
( r
N
ζ
)
, (19)

where {G1
λ} and {G2

λ} are M ×M constant symmetric matrix sequences, (for

details see [12]). Then

Φ̂(ζ) = G

(
pζ

N

)
Φ̂

(
pζ

N

)
= G

(
pζ

N

)
G

(( p

N

)2
ζ

)
G

(( p

N

)3
ζ

)
· · · Φ̂(0)

=

∞∏
m=1

G
(( p

N

)m)
Φ̂(0). (20)

Equation (20) implies that

G(0) = IM or
∑
λ∈Λ

Gλ = IM , (21)
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where IM denotes the identity matrix of order M ×M.

Wj = closL2(K,CM )

(
span{Ψk

(
(p−1N)jx− λ

)
, λ ∈ Λ, k = 1, 2, ..., qN − 1}

)
, j ∈ Z.
(22)

Since Ψk(x) ∈W0 ⊂ V1, there exists a uniquely supported sequence

{Gλ,k}λ∈Λ,k=1,2,...qN−1 of M ×M constant matrices such that

Ψk(x) =
∑
λ∈Λ

Gλ,kΨ((p−1N)x− λ). (23)

On taking the Fourier transform on both sides of (23), we have

Ψ̂k((p
−1N)ζ) = Hk(ζ)ϕ̂(ζ), (24)

where

Hk(ζ) =
1

qN

∑
λ∈Λ

Gλ,kχ(λζ). (25)

Since Λ = {0, u(r)/N}+ Z, we can write

Hk(ζ) = G1
λ,k +G2

λ,kχ
( r
N

)
ζ, (26)

where {G1
λ,k} and {G2

λ,k} are M ×M constant symmetric matrix sequences.

Lemma 1. Consider a VNUMRA as in Definition 3. Let Ψ0 = Φ, H0(·) = G(·)
and suppose that there exists qN−1 functions Ψk, k = 1, 2, ..., qN−1 in V1. Then

the family of functions {Ψk(x − λ)}λ∈Λ,k=0,1,2,...,qN−1 will form an orthonormal

system for V1 iff for k, l ∈ {0, 1, 2, ..., qN − 1}

qN−1∑
r=0

Hk

( p

N
(ζ + pu(r))

)
H`

( p

N
(ζ + pu(r))

)
= δk,`IM . (27)

For the proof of the lemma, we refer to [12].

By the orthonormality of Ψk(x) ∈ L2(K,CM ), k = 0, 1, 2, ..., qN − 1 (or

the orthonormality of VNUMRA Vj), as proved in [12] we have the following

conditions:
qN−1∑
s=0

Fk,` (ζ + pu(s)) = qδk,`IM . (28)

In [12], the following result on the existence of a vector-valued wavelet function

was proved:
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Theorem 1. Suppose {Ψk(t − λ)λ∈Λ, k=0,1,...,qN−1 is the system as defined in

Lemma 1 and orthonormal in V1. Then this system is complete in W0 ≡ V1	 V0.

If Ψ0,Ψ1, ...,ΨqN−1 ∈ V1 are as in Lemma 1 , one can obtain from them

an orthonormal basis for L2(K,CM ) by following the standard procedure for con-

struction of wavelets from a given MRA [6, 10, 14, 15]. It can be easily checked

that for every m ∈ Z, the collection {(qN)m/2Ψk((p
−1N)mx−λ)}λ∈Λ, k=0,1,...,qN−1

is a complete orthonormal system for Vm+1. Given a VNUMRA, since Wm is the

orthogonal complement of Vm in Vm+1,m ∈ Z and

L2(K,CM ) = ⊕m∈ZWm,

where ⊕ denotes the orthogonal direct sum with the inner product of L2(K,CM ).

From this it follows immediately that the collection {(qN)m/2Ψk((p
−1N)mx −

λ)}λ∈Λ, m∈Z, k=0,1,...,qN−1 forms a complete orthonormal system for L2(K,CM ).

When N = 1, we recover the usual construction of vector-valued wavelets from

vector-valued multiresolution analysis.

4. Vector-valued nonuniform wavelet packets and their
properties

In this section, we will define the vector-valued nonuniform wavelet packets

(VNUWP) and investigate their properties. Let

Γ0(x) = ϕ(x),Γk(x) = ψk(x),Θ
(0)
λ = Gλ,

Θ
(k)
λ = Gλ,k, λ ∈ Λ, k = 1, 2, ..., qN − 1.

Definition 5. The family of vector-valued nonuniform functions {Γ(p−1N)n+u(k)(x),

n ∈ N0, k = 0, 1, ..., qN − 1} is called a vector-valued nonuniform wavelet packet

w.r.t the orthogonal vector-valued scaling function Γ0(x), where

Γ(p−1N)n+u(k)(x) =
∑
λ∈Λ

Θ
(k)
λ Γn((p−1N)x− λ), k = 0, 1, ..., qN − 1. (29)

By taking the Fourier transform on both sides, we get

Γ̂(p−1N)n+u(k)(qNζ) = Θ(k)(ζ)Γ̂n(ζ), k = 0, 1, ..., qN − 1, (30)

where

Θ(k)(ζ) =
∑
λ∈Λ

Θ
(k)
λ χ(λζ), k = 0, 1, ..., qN − 1. (31)
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Since Λ = {0, u(r)/N}+ Z, we can write

Θ(k)(ζ) = K
(k)
λ + S

(k)
λ χ(r/N, ζ), (32)

where {K(k)
λ } and {S(k)

λ } are M ×M constant symmetric matrix sequences.

Thus we have

Θ(0)(ζ) = G(ζ),Θ(k)(ζ) = Hk(ζ). (33)

Then (27) can be written as

Θ(k)(ζ)Θ(l)(ζ)? + Θ(k)

(
ζ +

pu(1)

p−1N

)
Θ(l)

(
ζ +

pu(1)

p−1N

)
+ Θ(k)

(
ζ +

pu(2)

p−1N

)
Θ(l)

(
ζ +

pu(2)

p−1N

)
+ ...+ Θ(k)

(
ζ +

pu(qN − 1)

p−1N

)
Θ(l)

(
ζ +

pu(qN − 1)

p−1N

)
= δk,lIM , ζ ∈ K, k, l ∈ 0, 1, 2, ..., qN − 1. (34)

(28) can be written as

qN−1∑
p=0

αpwn (ζ + u(p)) = 0, where α = χ(r/N), (35)

and wn(ζ) =
∑
j∈Z

Γ̂n(ζ +Nj)Γ̂n(ζ +Nj)?. Now we will investigate the properties

of the vector-valued nonuniform wavelet packets.

Theorem 2. If {Γn(x), n ∈ N0} is a vector-valued nonuniform wavelet packet

with respect to orthogonal vector-valued nonuniform scaling function ϕ(x), then

∀n ∈ N0, we have

〈Γn(· − λ),Γn(· − σ)〉 = δλ,σIM , λ, σ ∈ Λ. (36)

Proof. We will prove the result by induction on n.

If n = 0, then (36) follows directly from hypothesis. Suppose 0 ≤ n < (qN)l

for some integer l. Then, for some (qN)l−1 ≤
[
n
qN

]
< Θl, where [x] denotes the

greatest integer of x and order n = qN
[
n
qN

]
+ k, k = 0, 1, 2, ..., qN − 1.

Therefore by induction, we have〈
Γ

[
n

p−1N

]
(· − λ),Γ

[
n
qN

]
(· − σ)

〉
= δλ,σIM . (37)
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We obtain

〈Γn(· − λ),Γn(· − σ)〉 =

∫
K
χ ((λ− σ), ζ)Γ̂n(ζ)Γ̂n(ζ)?dζ∫

ND
χ ((λ− σ), ζ)

∑
j∈Z

Γ̂n(ζ +Nj)Γ̂n(ζ +Nj)?dζ.

Let

wn(ζ) =
∑
j∈Z

Γ̂n(ζ +Nj)Γ̂n(ζ +Nj)?.

Then, using (30) and (37), we obtain

wn(qNζ)

=
∑
j∈Z

Γ̂n(p−1N(ζ + u(j)))Γ̂n(p−1N(ζ + u(j)))

=
∑
j∈Z

Θ(k)(ζ + u(j))Γ̂

[
n

p−1N

]
((ζ + u(j)))Γ̂

[
n

p−1N

]
((ζ + u(j)))?Θ(k)(ζ + U(j))

=
∑

j=n.qN

Θ(k)(ζ + nN)Γ̂

[
n

p−1N

]
(ζ + nN)Γ̂

[
n

p−1N

]
(ζ + nN)?Θ(k)(ζ + nN)

+
∑

j=n.qN+1

Θ(k) (ζ + nN + u(1)) Γ̂

[
n

p−1N

]
(ζ + nN + u(1))

× Γ̂

[
n

p−1N

]
(ζ + nN + u(1)) Θ(k) (ζ + nN + u(1))

+
∑

j=n.qN+2

Θ(k) (ζ + nN + u(2)) Γ̂

[
n

p−1N

]
(ζ + nN + u(2))

× Γ̂

[
n

p−1N

]
(ζ + nN + u(2)) Θ(k) (ζ + nN + u(2))

· · ·

+
∑

j=n.qN+(qN−1)

Θ(k)
(
ζ + nN + u(p−1N − 1)

)
Γ̂

[
n

p−1N

] (
ζ + nN + u(p−1N − 1)

)
× Γ̂

[
n

p−1N

]
(ζ + nN + u(p−1N − 1)) Θ(k) (ζ + nN + u(p−1N − 1))

= Θ(k)(ζ)

 ∑
j=n.qN

Γ̂

[
n

p−1N

]
(ζ + nN)Γ̂

[
n

p−1N

]
(ζ + nN)

Θ(k)(ζ)

+ Θ(k) (ζ + u(1))
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×

 ∑
j=n.qN+1

Γ̂

[
n

p−1N

]
(ζ + nN + u(1)) Γ̂

[
n

p−1N

]
(ζ + nN + u(1))


×Θ(k) (ζ + u(1))

+ Θ(k) (ζ + u(2))

×

 ∑
j=n.qN+2

Γ̂

[
n

p−1N

]
(ζ + nN + u(2))Γ̂

[
n

p−1N

]
(ζ + nN + u(2))


×Θ(k) (ζ + u(2))

+ · · ·

Θ(k)
(
ζ + u(p−1N − 1)

) ∑
j=n.qN+(qN−1)

Γ̂

[
n

p−1N

]
(ζ + nN + u(p−1N − 1))

Γ̂

[
n

p−1N

]
(ζ + nN + u(p−1N − 1))

]
Θ(k) (ζ + u(p−1N − 1))[

Θ(k)(ζ)Θ(k)(ζ) + Θ(k) (ζ + u(1)) Θ(k) (ζ + u(1))

+ Θ(k) (ζ + u(2)) Θ(k) (ζ + u(2)) + · · ·

+ Θ(k) (ζ + u(qN − 1)) Θ(k) (ζ + u(qN − 1))
]

q

qN−1∑
j=0

Θ(k)(ζ + u(j))Θ(k)(ζ + u(j)).

Also
qN−1∑
p=0

wn(ζ + u(p)) =
∑
j∈Z

Γ̂n(ζ + u(j))Γ̂n(ζ + u(j))

= q

qN−1∑
j=0

Θ(k)
( p

N
(ζ + pu(j))

)
Θ(k)

( p

N
(ζ + pu(j))

)
.

If λ = u(m1), σ = u(m2), where m1,m2 ∈ Z, using (34) we have

〈Γn(· − λ),Γn(· − σ)〉

=

∫
K
χ (u(m1 −m2), ζ)Γ̂n(ζ)Γ̂n(ζ)dζ

=

∫
ND

χ (u(m1 −m2), ζ)
∑
j∈Z

Γ̂n(ζ +Nj)Γ̂n(ζ +Nj)dζ
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=

∫
ND

χ (u(m1 −m2), ζ)wn(ζ)dζ

=

∫
D
χ (u(m1 −m2), ζ)

qN−1∑
p=0

wn(ζ + u(p))

 dζ
= q

∫
D
χ (u(m1 −m2), ζ)

qN−1∑
j=0

Θ(k)
( p

N
(ζ + pu(j))

)
Θ(k)

( p

N
(ζ + pu(j))

)
dζ

= δm1,m2IM

= δλ,σIM .

When λ = u(m1), σ = u(m2) + r/N , where m1,m2 ∈ Z, we obtain using (35)

〈Γn(.− λ),Γn(.− σ)〉

=

∫
ND

χ (u(m1 −m2), ζ)χ
( r
N
, ζ
)
wn(ζ)dζ

=

∫
D
χ (u(m1 −m2), ζ)χ

( r
N
, ζ
)qN−1∑

p=0

χ
( r
N
, ζ
)
wn(ζ + u(p))

 dζ

= 0.

J

Theorem 3. For any n1, n2 ∈ N0 and λ, σ ∈ Λ, we have

〈Γn1(· − λ),Γn2(· − σ)〉 = δn1,n2δλ,σIM ,

where {Γn(x) : n ∈ N0} is VNUWP with respect to orthogonal vector-valued

scaling function ϕ(x).

Proof. If n1 = n2, then the result follows by Theorem 2. If n1 6= n2, without

loss of generality we can assume that n1 > n2.

Write

n1 = qN

[
n1

qN

]
+ k, n2 = qN

[
n2

qN

]
+ l,

where k, l ∈ {0, 1, 2, ..., qN − 1}.
Case (i) If

[
n1
qN

]
=
[
n2
qN

]
, then k 6= l.

〈Γn1(· − λ),Γn2(· − σ)〉
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=

∫
K
χ ((λ− σ), ζ)Γ̂n1(ζ)Γ̂n2(ζ)dζ

=

∫
ND

χ ((λ− σ), ζ)
∑
j∈Z

Γ̂n1(ζ +Nj)Γ̂n2(ζ +Nj)dζ

=

∫
ND

χ ((λ− σ), ζ)v(ζ)dζ,

where v(ζ) =
∑
j∈Z

Γ̂n1(ζ +Nj)Γ̂n2(ζ +Nj). Therefore,

v(qNζ) =
∑
j∈Z

Γ̂n1
(
p−1N(ζ + u(j))

)
Γ̂n2 (p−1N(ζ + u(j)))

=
∑
j∈Z

Θk(ζ + u(j))Γ̂

[
n1

p−1N

]
(ζ + u(j))Γ̂

[
n2

p−1N

]
(ζ + u(j)) Θl(ζ + u(j)).

On proceeding as in Theorem 2, we obtain

v(qNζ) =

qN−1∑
j=0

Θk(ζ + u(j))Θl(ζ + u(j)).

Also

qN−1∑
p=0

v(ζ + u(p)) =
∑
j∈Z

Γ̂n1(ζ + u(j))Γ̂n2(ζ + u(j))

= q

qN−1∑
j=0

Θ(k)
( p

N
(ζ + pu(j))

)
Θ(k)

( p

N
(ζ + pu(j))

)
.

If λ = u(m1) and σ = u(m2), where m1,m2 ∈ Z, we obtain〈
Γn1(· − λ),Γn2(· − σ)〉

=

∫
ND

χ (u(m1 −m2), ζ)v(ζ)dζ

=

∫
D
χ (u(m1 −m2), ζ)

qN−1∑
p=0

v(ζ + u(p))

 dζ
= q

∫
D
χ (u(m1 −m2), ζ)

qN−1∑
j=0

Θ(k)
( p

N
(ζ + pu(j))

)
Θ(l)

( p

N
(ζ + pu(j))

)
dζ
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= δm1,m2δk,lIM

= δλ,σδk,lIM .

If λ = u(m1) + r/N and σ = u(m2), where m1,m2 ∈ Z, we obtain using (35)

〈Γn1(.− λ),Γn2(.− σ)〉

=

∫
ND

χ (u(m1 −m2), ζ)χ
( r
N
, ζ
)
χ
( r
N
, ζ
)
v(ζ)dζ

=

∫
D
χ (u(m1 −m2), ζ)χ

( r
N
, ζ
)qN−1∑

p=0

χ
( r
N
, ζ
)
v(ζ + u(p))

 dζ
= 0.

Case (ii) If
[
n1
qN

]
=
[
n2
qN

]
, then take

[
n1
qN

]
= qN

[
[n1/qN ]
qN

]
+ u(k1) and

[
n2
qN

]
=

qN
[

[n2/qN ]
qN

]
+ (l1), where u(k1), l1 ∈ {0, 1, 2, ..., qN − 1}.

Let
[
n1
qN

]
= qNp1 + u(k1) and

[
n2
qN

]
= qNΘ1 + u(l1), where p1 =

[
[n1/qN ]
qN

]
and Θ1 =

[
[n2/qN ]
qN

]
.

If p1 = Θ1, then the result follows immediately from Case (i).

If p1 6= Θ1, then take

p1 = qN
[

[p1/qN ]
qN

]
+ u(k2) = qNp2 + u(k2) and Θ1 = qN

[
[Θ1/qN ]
qN

]
+ u(l2) =

qNΘ2 + u(l2), where k2, l2 ∈ {0, 1, 2, ..., qN − 1}.
If p2 = Θ2, then the result follows from Case (i).

If p2 6= Θ2, then apply the above procedure. After performing a finite

number of steps, we have pm−1 = qNpm +u(km) and Θm−1 = qNΘm +u(lm),

where km, lm ∈ {0, 1, 2, ...qN − 1} and pm,Θm ∈ {0, 1, 2, ...qN − 1}.
Case I If pm = Θm.

Case II If pm 6= Θm.

For Case I the result follows from Case (i).

For Case II, we have

〈Γn1(· − λ),Γn2(· − σ)〉 =

∫
K
χ ((λ− σ), ζ)Γ̂n1(ζ)Γ̂n2(ζ)dζ

=

∫
K
χ ((λ− σ), ζ)Θ(k1)

( p

N
ζ
)

Γ̂

[
n1

p−1N

] ( p

N
ζ
)

Γ̂

[
n2

p−1N

] ( p

N
ζ
)

Θ(l1)
( p

N
ζ
)
dζ
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=

∫
K
χ ((λ− σ), ζ)Θ(k1)

( p

N
ζ
)

Θ(k2)

(( p

N

)2
ζ

)
· · ·Θ(km)

(( p

N

)m
ζ
)

Γ̂pm
(( p

N

)m
ζ
)

Γ̂Θm

(( p

N

)m
ζ
)

Θ(lm)
(( p

N

)m
ζ
)
· · ·

Θ(l2)

(( p

N

)2
ζ

)
Θ(l1)

(
ζ

(qN)

)
dζ

=

∫
K
χ ((λ− σ), ζ)[

m∏
n=1

Θ(kn)
(( p

N

)n
ζ
)]

Γ̂pm
(( p

N

)m
ζ
)

Γ̂Θm

(( p

N

)m
ζ
) [ m∏

n=1

Θ(ln)
(( p

N

)n
ζ
)]
dζ

=

∫
ND

χ ((λ− σ), ζ)

[
m∏
n=1

Θ(kn)
(( p

N

)n
ζ
)]

∑
j∈Z

Γ̂pm
(( p

N

)m
ζ +Nj

)
Γ̂Θm

(( p

N

)m
ζ +Nj

)
[
m∏
n=1

Θ(ln)
(( p

N

)n
ζ
)]
dζ

= 0,

which completes the proof. J

Corollary 1. If {Γn(x), n ∈ N0} is a vector-valued nonuniform wavelet packet

with respect to orthogonal vector-valued nonuniform scaling function ϕ(x), then

∀n ∈ N0, and k, l ∈ {0, 1, ..., qN − 1}, we have

〈Γ(p−1N)n+u(k)(· − λ),Γ(p−1N)n+u(l)(· − σ)〉 = δλ,σδk,lIM , λ, σ ∈ Λ.

Proof. We have

〈Γ(p−1N)n+u(k)(· − λ),Γ(p−1N)n+u(l)(· − σ)〉

=

∫
K
χ ((λ− σ), ζ)Γ̂(p−1N)n+u(k)(ζ)Γ̂(p−1N)n+u(l)(ζ)dζ
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=

∫
ND

χ ((λ− σ), ζ)
∑
j∈Z

Γ̂(p−1N)n+u(k)(ζ +Nj)Γ̂(p−1N)n+u(l)(ζ +Nj)dζ.

Let

vn(ζ) =
∑
j∈Z

Γ̂(p−1N)n+u(k)(ζ +Nj)Γ̂(p−1N)n+u(l)(ζ +Nj).

Therefore, on solving the equation as in Theorem 2, we have

vn(qNζ) =
∑
j∈Z

Γ̂(p−1N)n+u(k)
(
p−1N(ζ + u(j))

)
Γ̂(p−1N)n+u(l) (p−1N(ζ + u(j)))

=
∑
j∈Z

Θ(k)(ζ + u(j))Γ̂n(ζ + u(j))Γ̂n(ζ + u(j)) Θ(l)(ζ + u(j))

= q

qN−1∑
j=0

Θ(k)(ζ + u(j))Θ(l)(ζ + u(j)).

Also

qN−1∑
j=0

vv(ζ + u(p)) =
∑
j∈Z

Γ̂(p−1N)n+u(k)(ζ + u(j))Γ̂(p−1N)n+u(l)(ζ + u(j)).

Therefore, we have∑
j∈Z

Γ̂(p−1N)n+u(k)(ζ + u(j))Γ̂(p−1N)n+u(l)(ζ + u(j))

= q

qN−1∑
j=0

Θ(k)
( p

N
(ζ + pN)

)
Θ(l)

( p

N
(ζ + pN)

)
.

When λ = u(m1) and σ = u(m2), where m1,m2 ∈ Z, using (34) we obtain

〈Γ(p−1N)n+u(k)(.− λ),Γ(p−1N)n+u(l)(.− σ)〉

=

∫
ND

χ ((λ− σ), ζ)vn(ζ)dζ

=

∫
ND

χ ((λ− σ), ζ)

qN−1∑
p=0

vn(ζ + u(p))

 dζ
= q

∫
D
χ ((λ− σ), ζ)

qN−1∑
j=0

Θ(k)
( p

N
(ζ + pN)

)
Θ(l)

( p

N
(ζ + pN)

)
dζ
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= q

∫
D
χ ((λ− σ), ζ)δk,lIMdζ

= δm1,m2δk,lIM = δλ,σδk,lIM .

When λ = u(m1), σ = u(m2) + r/N, where m1,m2 ∈ Z, we obtain using (35)

〈Γ(p−1N)n+u(k)(.− λ),Γ(p−1N)n+u(l)(.− σ)〉

=

∫
ND

χ ((λ− σ), ζ)χ
( r
N
, ζ
)
vn(ζ)dζ

=

∫
D
χ ((λ− σ), ζ)χ

( r
N
, ζ
)qN−1∑

p=0

χ
( r
N
, ζ
)
vn(ζ + u(p))

 dζ

= 0,

which completes the proof. J
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