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On Perturbation of the Schrödinger Operator with
a Localized Complex-Valued Potential

I.Kh. Khusnullin

Abstract. The Schrödinger operator on the axis with a localized potential, which is the
sum of a small potential and a potential with a contracting carrier (narrow potential),
which can grow unlimitedly as the carrier is compressed, is considered. Potentials depend
on two small consistent parameters. One of the parameters describes the length of the
carrier of a narrow potential and the value of a small potential, the reciprocal of the second
corresponds to the potential values. A sufficient condition is obtained under which an
eigenvalue appears from the edge of the continuous spectrum and its asymptotic behavior
is constructed. A sufficient condition is also given under which the eigenvalue does not
appear.
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1. Introduction

As it is well known, under a perturbation of a quantum waveguide, eigenvalues
can appear from the edge of the continuous spectrum. In particular, in [1], [2],
for slightly curved waveguides, the existence of such an eigenvalue was proved
and, in [3], the asymptotic behavior of this eigenvalue was explored. In [3], the
conditions under which an eigenvalue appears from the border of the continuous
spectrum under a perturbation of a quantum waveguide by a small potential were
presented and its asymptotic behavior was explored. In [4]–[6], local deformations
of waveguides were considered. In [4], it was proved that, if the mean value of
a perturbation is positive, then an eigenvalue appears from the border of the
continuous spectrum and, if this value is negative, then there is no eigenvalue of
this kind. Moreover, in the two-dimensional case, the asymptotic behavior of the
eigenvalue thus appearing was studied, and, as proved in [5], such an eigenvalue
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can both appear and not appear in the critical case in which the mean value
of the perturbation of the boundary is zero. For the case where the eigenvalue
still appears, its asymptotic behavior was studied in [6]. The results of [1]–[5]
and the most of those of [6] were obtained using the Birman-Schwinger method
for self-adjoint operators. In [7], the two-dimensional Schrödinger operator with
magnetic and electric potentials was considered.

In [14], a rather arbitrary small localized perturbation of waveguides with
various types of boundary conditions was considered. In [10], [11], based on
the methods proposed in [8] and [9], respectively, two-parameter perturbations
of the Schrödinger and Hill operators on the axis were considered. Disturbance
conditions under which eigenvalues arise from the edge of the continuous spectrum
values were obtained. In [12], based on the approach proposed in [13], the results
in [10] were generalized to a wider class of parameters (in the case where the
perturbation is the sum of two narrow potentials).

In this paper, we study the eigenvalues of the Schrödinger operator on the
axis with a localized potential, which is the sum of a small potential and potential
with a contracting support that can grow unlimitedly as its support contracts.
Potentials depend on two small parameters. One of the parameters describes the
length of the carrier for a narrow potential and the value of a small potential,
the reciprocal of the second corresponds to the potential values. In contrast to
[10], weaker restrictions are imposed on the ratio of parameters (the product of
one parameter by the reciprocal of the second parameter tends to zero).

The structure of the work is as follows. In the next, second section, a theorem
which constitutes the main result of the paper, is formulated. In the third section
some auxiliary statements are formulated and proved. The fourth section gives
a proof of the main theorem. In the final, fifth section, qualitative statements
about spectrum structure of the considered operator are given.

2. Statement of the problem and formulation of results

Let V1(x) and V2(x) be complex-valued functions from C∞0 (R), x1 be an
arbitrary number, and the parameters 0 < µ, ε� 1 satisfy the relation

εµ−1 = o(1). (1)

In this paper we consider the operator

Hε,µ := − d2

dx2
+ µ−1

(
V1

(
x− x1
ε

)
+ εV2 (x)

)
(2)

in L2(R) on the domain W 2
2 (R).
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It is well known (see, for example, [15, Chapter V]) that the operator H0 :=

− d2

dx2
in L2(R) on domain W 2

2 (R) is self-adjoint, its discrete spectrum is empty,
and the continuous spectrum coincides with the semi-axis [0,+∞).

Suppose that the segment Q = [a, b] is such that x1 ∈ Q and suppVj(x) ⊂ Q,
j = 1, 2. We denote

〈g〉 : =

∫
R
g(t)dt.

Our main result is the following theorem.

Theorem 1. Suppose that the condition (1) holds true. If

Re (〈V1〉+ 〈V2〉) > 0, (3)

then there exists the unique eigenvalue λε,µ of operator Hε,µ tending to zero as
ε→ 0. This eigenvalue is simple and its asymptotics has the form

λε,µ = −1

4

(
εµ−1

)2
(〈V1〉+ 〈V2〉)2 +O

(
ε3µ−3

)
. (4)

If
Re (〈V1〉+ 〈V2〉) < 0, (5)

then operator Hε,µ has no eigenvalues converging to zero as ε→ 0.

3. Auxiliary statements

It is easy to see that the function

Wj(ξ) =
1

2

∫
R
|ξ − t|Vj(t)dt,

solves the equation
W ′′j (ξ) = Vj(ξ), j = 1, 2. (6)

In what follows we assume that x1 6∈ suppV2(x). Then for sufficiently small ε
we have suppV1(

x−x1
ε ) ∩ suppV2(x) = ∅. That is why there exist fixed intervals

Q1 ⊂ Q and Q2 ⊂ Q such that suppV1(
x−x1
ε ) ⊂ Q1, suppV2(x) ⊂ Q2 and

Q1 ∩ Q2 = ∅. We choose the cut-off functions χj(x) satisfying the following
conditions: functions χ1(x), χ2(x) equal to unity for x ∈ Qj and zero at x 6∈ Qj
respectively. Therefore, they satisfy the condition χ1(x)χ2(x) ≡ 0.

We follow the approach proposed in [13]. We put

ϕε,µ(x) := 1 + ε2µ−1χ1(x)W1

(
x− x1
ε

)
+ εµ−1χ2(x)W2 (x) . (7)
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We denote by Uε,µ the operator of multiplication by function ϕε,µ(x):

Uε,µ[v] := ϕε,µ(x)v. (8)

Operator Uε,µ performs one-to-one correspondence of L2(R) onto itself. Hence,
the eigenvalues of Hε,µ coincide with the eigenvalues of operator U−1ε,µHε,µUε,µ
(see [13]).

Lemma 1. Suppose that the condition (1) holds true. Then operator Uε,µ satisfies
the estimates ∣∣U−1ε,µ [1]

∣∣ 6 C1, x ∈ Q, (9)

U−1ε,µ [1] =1 +O(εµ−1), x ∈ Q, (10)

where the constant C1 is independent of ε, µ.

Proof. Estimate (9) follows immediately from the definition of functions
χj ,Wj and (1), (7), (8). It follows from (8) that

U−1ε,µ [1] =
1

ϕε,µ(x)
:= ϕ̃ε,µ(x).

Further,

ϕ̃ε,µ(x) = ϕ̃ε,µ(0) + ϕ̃′ε,µ(c)x, 0 < c < x, x ∈ Q,

where

ϕ̃′ε,µ(x) =
−εµ−1

ϕ2
ε,µ(x)

(
χ1(x)W ′1 (ξ1) +χ2(x)W ′2 (x) + εχ′1(x)W1 (ξ1) +χ′2(x)W2 (x)

)
,

ξ1 = (x− x1)ε−1.
The definition of function ϕ̃ε,µ(x) yields

ϕ̃ε,µ(0) =
1

1 + q
,

ϕ̃′ε,µ(c) =− εµ−1

ϕ2
ε,µ(c)

(
χ1(c)W

′
1

(
c− x1
ε

)
+ εχ′1(c)W1

(
c− x1
ε

)
+ χ2(c)W

′
2 (c) + χ′2(c)W2 (c)

)
,

(11)

where

q = ε2µ−1χ1(0)W1

(
−x1
ε

)
+ εµ−1χ2(0)W2 (0) .
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By (1), (7) and the definition of the functions χj , Wj , j = 1, 2 we obtain the
estimates

|q| < C2εµ
−1, |ϕ−2ε,µ(c)| 6 C3,

where C2, C3 are independent of ε, µ. Consequently, the last estimates and rela-
tions (11) imply

ϕ̃ε,µ(0) =1 +O(q) = 1 +O(εµ−1),

ϕ̃′ε,µ(c) =O(εµ−1).

The latter estimates imply (10). Lemma is completely proved. J

Lemma 2. Suppose that the condition (1) is satisfied. Then the representation

U−1ε,µHε,µUε,µ = H0 + εµ−1Lε,µ (12)

holds true, where Lε,µ is a second order differential operator with bounded com-
pactly supported coefficients satisfying the estimate

‖Lε,µu‖L2(R) 6 C4‖u‖W 2
2 (Q), (13)

with C4 independent of ε, µ.

Proof. By (2) and (8) we get

Hε,µUε,µ =
(
H0 + µ−1 (V1(ξ1) + εV2(x))

) [
1 + ε2µ−1χ1(x)W1(ξ1)

+ εµ−1χ2(x)W2(x)
]

=H0 + µ−1 (V1(ξ1) + εV2(x)) + ε2µ−1χ1(x)H0[W1(ξ1)]

+ εµ−1χ2(x)H0[W2(x)]

+ ε2µ−1
(
− χ′′1(x)W1(ξ1)− χ1(x)W1(ξ1)

d2

dx2

− 2ε−1χ′1(x)W ′1(ξ1)− 2χ′1(x)W1(ξ1)
d

dx

− 2ε−1χ1(x)W ′1(ξ1)
d

dx

)
+ εµ−1

(
− χ′′2(x)W2(x)

− χ2(x)W2(x)
d2

dx2

− 2χ′2(x)W ′2(x)− 2χ′2(x)W2(x)
d

dx
− 2χ2(x)W ′2(x)

d

dx

)
+ ε2µ−2

(
χ1(x)V1(ξ1)W1(ξ1) + χ2(x)V2(x)W2(x)

+ V1(ξ1)χ2(x)W2(x) + V2(x)χ1(x)W1(ξ1)
)
.
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By virtue of equations (6), the definitions of the operatorH0 and the functions
χj , j = 1, 2 from the last equalities we obtain

µ−1 (V1(ξ1) + εV2(x)) + ε2µ−1χ1(x)H0[W1(ξ1)] + εµ−1χ2(x)H0[W2(x)] =

µ−1 (V1(ξ1) + εV2(x)) + ε2µ−1χ1(x)
(
−ε−2W ′′1 (ξ1)

)
+ εµ−1χ2(x)

(
−W ′′2 (x)

)
=

µ−1 (V1(ξ1) + εV2(x))− µ−1 (V1(ξ1) + εV2(x)) = 0.

It follows from the definition of χj that

V1(ξ1)χ2(x)W2(x) ≡ 0, V2(x)χ1(x)W1(ξ1) ≡ 0.

In view of these identities and from (7), (8) we obtain

Hε,µUε,µ =Uε,µ[1]H0 + εµ−1
(
− εχ′′1(x)W1(ξ1)− 2χ′1(x)W ′1(ξ1)

− 2εχ′1(x)W1(ξ1)
d

dx
− 2χ1(x)W ′1(ξ1)

d

dx
− χ′′2(x)W2(x)

− 2χ′2(x)W ′2(x)− 2χ′2(x)W2(x)
d

dx
− 2χ2(x)W ′2(x)

d

dx

+ εµ−1V1(ξ1)W1(ξ1) + εµ−1V2(x)W2(x)
)
.

From (8) and the last equality, the representation (12) follows, where

Lε,µ =U−1ε,µ [1]
(
− εχ′′1(x)W1(ξ1)− 2χ′1(x)W ′1(ξ1)− 2εχ′1(x)W1(ξ1)

d

dx

− 2χ1(x)W ′1(ξ1)
d

dx
− χ′′2(x)W2(x)− 2χ′2(x)W ′2(x)

− 2χ′2(x)W2(x)
d

dx
− 2χ2(x)W ′2(x)

d

dx

)
+ U−1ε,µ [1]εµ−1

(
V1(ξ1)W1(ξ1) + V2(x)W2(x)

)
.

(14)

Further, we show that the operator Lε,µ satisfies estimate (13). It follows
from (9) that

‖Lε,µu‖L2(R) 6εC1

(∥∥∥χ′′1(x)W1(ξ1)u
∥∥∥
L2(R)

+ 2
∥∥∥χ′1(x)W ′1(ξ1)u

∥∥∥
L2(R)

+ 2ε
∥∥∥χ′1(x)W1(ξ1)

du

dx

∥∥∥
L2(R)

+ 2
∥∥∥χ1(x)W ′1(ξ1)

du

dx

∥∥∥
L2(R)

+
∥∥∥χ′′2(x)W2(x)u

∥∥∥
L2(R)

+ 2
∥∥∥χ′2(x)W ′2(x)u

∥∥∥
L2(R)

+ 2
∥∥∥χ′2(x)W2(x)

du

dx

∥∥∥
L2(R)

+ 2
∥∥∥χ2(x)W ′2(x)

du

dx

∥∥∥
L2(R)

)
+ εµ−1C1

(∥∥∥V1(ξ1)W1(ξ1)u
∥∥∥
L2(R)

+
∥∥∥V2(x)W2(x)u

∥∥∥
L2(R)

)
.

(15)
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Next, we estimate each term on the right-hand side of (15). By the definition of
the functions χj , j = 1, 2 we have∥∥∥χ′′1(x)W1(ξ1)u

∥∥∥
L2(R)

=
∥∥∥χ′′1(x)W1(ξ1)u

∥∥∥
L2(Q)

6
∥∥∥χ′′1(x)W1(ξ1)

∥∥∥
C(Q)
‖u‖L2(Q)

6 C5‖u‖W 2
2 (Q),

∥∥∥χ′1(x)W ′1(ξ1)u
∥∥∥
L2(R)

=
∥∥∥χ′1(x)W ′1(ξ1)u

∥∥∥
L2(Q)

6
∥∥∥χ′1(x)W ′1(ξ1)

∥∥∥
C(Q)
‖u‖L2(Q)

6 C6‖u‖W 2
2 (Q),

∥∥∥χ1(x)W ′1(ξ1)
du

dx

∥∥∥
L2(R)

=
∥∥∥χ1(x)W ′1(ξ1)

du

dx

∥∥∥
L2(Q)

6
∥∥∥χ1(x)W ′1(ξ1)

∥∥∥
C(Q)

∥∥∥du
dx

∥∥∥
L2(Q)

6 C7‖u‖W 2
2 (Q),

∥∥∥χ′1(x)W1(ξ1)
du

dx

∥∥∥
L2(R)

=
∥∥∥χ′1(x)W1(ξ1)

du

dx

∥∥∥
L2(Q)

6
∥∥∥χ′1(x)W1(ξ1)

∥∥∥
C(Q)

∥∥∥du
dx

∥∥∥
L2(Q)

6 C8‖u‖W 2
2 (Q),

∥∥∥χ′′2(x)W2(x)u
∥∥∥
L2(R)

=
∥∥∥χ′′2(x)W2(x)u

∥∥∥
L2(Q)

6
∥∥∥χ′′2(x)W2(x)

∥∥∥
C(Q)
‖u‖L2(Q)

6 C9‖u‖W 2
2 (Q),

∥∥∥χ′2(x)W ′2(x)u
∥∥∥
L2(R)

=
∥∥∥χ′2(x)W ′2(x)u

∥∥∥
L2(Q)

6
∥∥∥χ′2(x)W ′2(x)

∥∥∥
C(Q)
‖u‖L2(Q)

6 C10‖u‖W 2
2 (Q),

∥∥∥χ′2(x)W2(x)
du

dx

∥∥∥
L2(R)

=
∥∥∥χ′2(x)W2(x)

du

dx

∥∥∥
L2(Q)

6
∥∥∥χ′2(x)W2(x)

∥∥∥
C(Q)

∥∥∥du
dx

∥∥∥
L2(Q)

6 C11‖u‖W 2
2 (Q),

∥∥∥χ2(x)W ′2(x)
du

dx

∥∥∥
L2(R)

=
∥∥∥χ2(x)W ′2(x)

du

dx

∥∥∥
L2(Q)

6
∥∥∥χ2(x)W ′2(x)

∥∥∥
C(Q)

∥∥∥du
dx

∥∥∥
L2(Q)

6 C12‖u‖W 2
2 (Q),
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∥∥∥
L2(R)

=
∥∥∥V1(ξ1)W1(ξ1)u

∥∥∥
L2(Q)

6
∥∥∥V1(ξ1)W1(ξ1)

∥∥∥
C(Q)
‖u‖L2(Q)

6 C13‖u‖W 2
2 (Q),∥∥∥V2(x)W2(x)u

∥∥∥
L2(R)

=
∥∥∥V2(x)W2(x)u

∥∥∥
L2(Q)

6
∥∥∥V2(x)W2(x)

∥∥∥
C(Q)
‖u‖L2(Q)

6 C14‖u‖W 2
2 (Q),

where the constants Cj , j = 5, . . . , 14 are independent of ε, µ. Estimate (13)
follows from the last estimates, (15) and (1). Lemma is proved completely. J

4. Proof of the theorem

We introduce the notations

m(1)
ε,µ :=

∫
R
Lε,µ[1]dx, m(2)

ε,µ :=

∫
R
Lε,µ

[∫
R
|x− t|Lε,µ[1]dt

]
dx,

kε,µ :=
εµ−1

2
m(1)
ε,µ +

(εµ−1)2

2
m(2)
ε,µ.

(16)

Since operator Lε,µ satisfies inequality (13), Theorem 1 in [8] implies that
once

kε,µ = εµ−1c1 + (εµ−1)2c2 +O
(
(εµ−1)3

)
, c1, c2 = const, (17)

a sufficient condition for the existence of an eigenvalue converging to zero as
ε, µ→ 0 of the operator (H0 − εµ−1Lε,µ) is the inequality

Re(c1 + εµ−1c2) < 0, (18)

while a sufficient condition for the absence of such eigenvalue is the inequality

Re(c1 + εµ−1c2) > 0. (19)

If (18) is satisfied, then the operator (H0 − εµ−1Lε,µ) has the unique eigenvalue
converging to zero. This eigenvalue is simple and has the asymptotics

λε,µ = −
(
εµ−1c1 + (εµ−1)2c2

)2
+O

(
c1(εµ

−1)4 + (εµ−1)5
)
. (20)

It follows from (14) that∫
R
Lε,µ[1]dx =

∫
R
U−1ε,µ [1]

(
− εχ′′1(x)W1(ξ1)− 2χ′j(x)W ′1(ξ1)

− χ′′2(x)W2(x)− 2χ′2(x)W ′2(x)
)
dx

+ εµ−1
∫
R
U−1ε,µ [1]

(
V1(ξ1)W1(ξ1) + V2(x)W2(x)

)
dx.

(21)
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Changing the variable, we obtain the estimate∫
R
V1

(
x− x1
ε

)
W1

(
x− x1
ε

)
dx = ε

∫
R
V1(t)W1(t)dt

= ε

∫
Q
V1(t)W1(t)dt = O(ε),∫

R
V2 (x)W2 (x) dx =

∫
Q
V2 (x)W2 (x) dx = O(1).

The last estimates, by virtue of (1) and (10), imply the estimate

εµ−1
∫
R
U−1ε,µ [1]

(
V1(ξ1)W1(ξ1) + V2(x)W2(x)

)
dx = O(εµ−1).

From (21) and the last estimate we obtain∫
R
Lε,µ[1]dx =

∫
R
U−1ε,µ [1]

(
− εχ′′1(x)W1(ξ1)− 2χ′j(x)W ′1(ξ1)

− χ′′2(x)W2(x)− 2χ′2(x)W ′2(x)
)
dx+O(εµ−1).

From the last equality and (6) it follows∫
R

(
−εχ′′1(x)W1(ξ1)− 2χ′1(x)W ′1(ξ1)

)
dx = −

∫
R
χ′1(x)W ′1(ξ1)dx

= ε−1
∫
R
χ1(x)W ′′1 (ξ1)dx = ε−1

∫
R
V1(ξ1)dx =

∫
R
V1(t)dt,

(22)

∫
R

(
−χ′′2(x)W1(x)− 2χ′2(x)W ′2(x)

)
dx =−

∫
R
χ′2(x)W ′2(x)dx

=

∫
R
χ2(x)W ′′2 (x)dx =

∫
R
V2(x)dx.

(23)

From (10), (21), (22) and (23) it follows that∫
R
Lε,µ[1]dx = 〈V1〉+ 〈V2〉+O(εµ−1). (24)

Let us prove the estimate

m(2)
ε,µ = O(1). (25)
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By (16) we get

m(2)
ε,µ =

∫
R
Lε,µ

[∫
R
|x− t|Lε,µ[1]dt

]
dx =

∫
R
Lε,µ[f(x)]dx,

where

f(x) :=

∫
R
|x− t|Lε,µ[1]dt. (26)

The definition of operator Lε,µ for x ∈ Q and (24) yield

∣∣∣∣∫
R
|x− t|Lε,µ[1]dt

∣∣∣∣ =

∣∣∣∣∫
Q
|x− t|Lε,µ[1]dt

∣∣∣∣ 6 CQ

∣∣∣∣∫
Q
Lε,µ[1]dt

∣∣∣∣ 6 C15,

where CQ = max
x,t∈Q

|x− t|, therefore

|f(x)| 6 C15, x ∈ Q, (27)

where C15 is independent of ε, µ.

Estimate (15) yields

∣∣∣∣∫
R
Lε,µ[f(x)]dx

∣∣∣∣ 6 C1

(
ε

∫
R

∣∣∣W1(ξ1)χ
′′
1(x)f(x)

∣∣∣dx
+ 2

∫
R

∣∣∣χ′1(x)W ′1(ξ1)f(x)
∣∣∣dx+ 2ε

∫
R

∣∣∣W1(ξ1)χ
′
1(x)f ′(x)

∣∣∣dx
+ 2

∫
R

∣∣∣χ1(x)W ′1(ξj)f
′(x)

∣∣∣dx+

∫
R

∣∣∣W2(x)χ′′2(x)f(x)
∣∣∣dx

+ 2

∫
R

∣∣∣χ′2(x)W ′2(x)f(x)
∣∣∣dx+ 2

∫
R

∣∣∣W2(x)χ′2(x)f ′(x)
∣∣∣dx

+ 2

∫
R

∣∣∣χ2(x)W ′2(x)f ′(x)
∣∣∣dx)+

+ εµ−1C1

(∫
R

∣∣∣V1(ξ1)W1(ξ1)f(x)
∣∣∣dx+

∫
R

∣∣∣V2(x)W2(x)f(x)
∣∣∣dx).

(28)

Since functions χj and Vj are compactly supported, by (27) we obtain the
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estimates∫
R

∣∣∣W1(ξ1)χ
′′
1(x)f(x)

∣∣∣dx =

∫
Q

∣∣∣W1(ξ1)χ
′′
1(x)f(x)

∣∣∣dx 6 C16,∫
R

∣∣∣χ′1(x)W ′1(ξ1)f(x)
∣∣∣dx =

∫
Q

∣∣∣χ′1(x)W ′1(ξ1)f(x)
∣∣∣dx 6 C17,∫

R

∣∣∣V1(ξ1)W1(ξ1)f(x)
∣∣∣dx =

∫
Q

∣∣∣V1(ξ1)W1(ξ1)f(x)
∣∣∣dx 6 C18,∫

R

∣∣∣W2(x)χ′′2(x)f(x)
∣∣∣dx =

∫
Q

∣∣∣W2(x)χ′′2(x)f(x)
∣∣∣dx 6 C19,∫

R

∣∣∣χ′2(x)W ′2(x)f(x)
∣∣∣dx =

∫
Q

∣∣∣χ′2(x)W ′2(x)f(x)
∣∣∣dx 6 C20,∫

R

∣∣∣V2(x)W2(x)f(x)
∣∣∣dx =

∫
Q

∣∣∣V2(ξ1)W2(x)f(x)
∣∣∣dx 6 C21,

(29)

where the constants Cj , j = 16, . . . , 21 are independent of ε, µ.
It follows from (26) that

f ′(x) =

∫ x

−∞
Lε,µ[1]dt+

∫ x

+∞
Lε,µ[1]dt. (30)

We denote
f1(x) :=χ1(x)W ′1(ξ1), f2(x) := χ′1(x)W1(ξ1),

f3(x) :=χ2(x)W ′2(x), f4(x) := χ′2(x)W2(x).

By (30) the inequality∫
R

∣∣∣fj(x)f ′(x)
∣∣∣dx 6

∫
R

∣∣∣fj(x)

∫ x

−∞
Lε,µ[1]dt

∣∣∣dx+

∫
R

∣∣∣fj(x)

∫ x

+∞
Lε,µ[1]dt

∣∣∣dx
holds true, where j = 1, 2, 3, 4. Changing the order of integration in the second
term, we rewrite the latter inequality in the form∫

R

∣∣fj(x)f ′(x)
∣∣ dx 6 2

∫
R

∣∣∣∣fj(x)

∫ x

−∞
Lε,µ[1]dt

∣∣∣∣ dx. (31)

By (24) we have∫
R

∣∣∣∣fj(x)

∫ x

−∞
Lε,µ[1]dt

∣∣∣∣ dx =

∫
Q

∣∣∣∣fj(x)

∫ x

−∞
Lε,µ[1]dt

∣∣∣∣ dx
6
∫
Q
|fj(x)|

∣∣∣∣∫ x

−∞
Lε,µ[1]dt

∣∣∣∣ dx 6
∫
Q
|fj(x)|

∣∣∣∣∫
Q
Lε,µ[1]dt

∣∣∣∣ dx
6 Cj22

∣∣∣∣∫
Q
Lε,µ[1]dt

∣∣∣∣ 6 Cj23,
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where the constants Cj23, j = 1, . . . , 4 are independent of ε, µ.
This inequality and (31) imply that∫

R

∣∣fj(x)f ′(x)
∣∣ dx 6 2Cj23.

The last inequality and (28), (29) imply the estimate (25).
From (16), (24), (25) it follows

kε,µ =
εµ−1

2
(〈V1〉+ 〈V2〉) +O

(
ε2µ−2

)
. (32)

From (17), (32) it follows

c1 =
〈V1〉+ 〈V2〉

2
, c2 = O(1). (33)

It follows from (18) and (19) that the sufficient condition for the existence of
an eigenvalue converging to zero as ε, µ→ 0 for the operator (H0 + εµ−1Lε,µ) is
the inequality

Re(c1 + εµ−1c2) > 0, (34)

while the sufficient condition for the absence of such eigenvalue is the inequality

Re(c1 + εµ−1c2) < 0. (35)

It follows from (1) and (33) that for sufficiently small ε, µ, the sign of Re(c1 +
εµ−1c2) coincides with the sign of Re(c1). Consequently, inequalities (3) and (5)
follow from (34), (35) and (33). Asymptotics (4) is implied by (20) and (33). The
theorem is proved.

5. Concluding remarks

It follows from Lemma 2.3 of [14] that the following statement is true.

Theorem 2. If condition (1) is satisfied, then the continuous spectrum of the
operator Hε,µ coincides with the continuous spectrum of the operator H0.

It follows from Theorem 1 in [8] that apart from the eigenvalue converging
to zero, all other eigenvalues of operator Hε,µ (if they exist) tend to infinity as
ε, µ→ 0.
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