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Hardy’s Inequalities and Erdélyi-Kober Fractional
Integrals on BMO(ρ)

K.-P. Ho

Abstract. In this paper, the Hardy’s inequalities are extended to the function spaces
of bounded mean oscillation associated with growth functions. We also establish the
boundedness of the Erdélyi-Kober fractional integrals on the function spaces of bounded
mean oscillation associated with growth functions.
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1. Introduction

We establish the Hardy’s inequality and obtain the boundedness of the Erdélyi-
Kober fractional integrals on the function spaces of bounded mean oscillation
associated with growth function ρ, BMO(ρ) [10, 11, 12, 19].

The function spaces BMO(ρ) are generalizations of the classical function
space of bounded mean oscillation BMO introduced by John and Nirenberg [13].
These function spaces are also the dual spaces of the Orlicz-Hardy spaces [20, 25].
For the characterization of BMO(ρ) and the use of BMO(ρ) on the study of
the commutator of singular integral operators, the reader is referred to [10] and
[11], respectively. Furthermore, BMO(ρ) also includes the Lipschitz spaces Λα,
0 < α ≤ 1, [18, 23].

The Hardy’s inequality is one of the most important inequalities in analysis.
For the history and the developments of the Hardy’s inequality, the reader may
consult [15, 21]. For the extension of the Hardy’s spaces on BMO and Hardy
type spaces, the reader is referred to [1, 2, 3, 4, 5, 6, 17, 26, 27]. Motivated by the
results given in [26, 27], we aim to extend the Hardy’s inequality to BMO(ρ).
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The Hardy’s inequality gives the boundedness of the Hardy operator which
is a special case of the Erdélyi-Kober fractional integrals. The Erdélyi-Kober
fractional integrals provide several applications on applied analysis and physics,
see [14, 22]. In this paper, we also extend the mapping properties of the Erdélyi-
Kober fractional integrals to BMO(ρ). As BMO and Λα, 0 < α ≤ 1 are members
of BMO(ρ), our results also yield the Hardy’s inequality and the mapping prop-
erties of the Erdélyi-Kober fractional integrals on BMO and Λα, 0 < α ≤ 1.

This paper is organized as follows. The definition of BMO(ρ) and the dilation
properties of BMO(ρ) are presented in Section 2. The main result of this paper
is given in Section 3.

2. Definitions

In this section, we present the definition of BMO(ρ) and study the mapping
properties of the dilation operators on BMO(ρ).

We start with the definition of BMO(ρ). Let R+ = (0,∞) and I denote the
family of open connected intervals in R+. For any I ∈ I, the Lebesgue measure
of I is denoted by |I|. Let Lloc denote the class of locally integrable functions on
R+.

Let m, l ≥ 0 and ρ : R+ → R+. We say that ρ is of upper type m if there
exists a constant C > 0 such that

ρ(st) ≤ Ctmρ(s), ∀t ∈ (1,∞), s ∈ R+. (1)

It is of lower type l if there exists a constant C > 0 such that

ρ(st) ≤ Ctlρ(s), ∀t ∈ (0, 1), s ∈ R+. (2)

Definition 1. Let ρ : R+ → R+. If ρ is a non-decreasing function of finite upper
type and limt→0+1 ρ(t) = 0, then ρ is called a growth function.

The notions of growth function, lower type and upper type had been used in
[20, 25] for the study of Orlicz-Hardy spaces.

Let ρ : R+ → R+ be a growth function. We recall the definition of the
function space of bounded mean oscillation associated with ρ, BMO(ρ) from
[10, 11, 19, 25].

Definition 2. Let ρ : R+ → R+ be a growth function. A locally integrable
function f belongs to BMO(ρ) if

‖f‖BMO(ρ) = sup
I∈I

1

|I|ρ(|I|)

∫
I
|f(t)− fI |dt <∞,

where fI = 1
|I|
∫
I f(y)dy.
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Endowed with the norm given in Definition 2, BMO(ρ) becomes a Banach
space provided we identify functions which differ a.e. by constant; obviously,
‖f‖BMO(ρ) = 0 for f(x) = c = const a.e. in R+. Notice that when ρ ≡ 1, ρ is
of upper type and lower type 0, BMO(ρ) becomes the classical function space of
bounded mean oscillation BMO.

When ρ(r) = rα, 0 < α ≤ 1, BMO(ρ) becomes the Lipschitz space Λα, see
[10, 18, 19, 23].

Lemma 1. Let ρ : R+ → R+ be a growth function. If f ∈ BMO(ρ), then
|f | ∈ BMO(ρ) and ‖|f |‖BMO(ρ) ≤ 2‖f‖BMO(ρ).

Proof. For any I ∈ I, we have∣∣|f(t)| − |fI |
∣∣ ≤ |f(t)− fI |, t > 0,

see [24, Chapter IV, Secion 1.1.3]. Thus,

1

|I|

∫
I

∣∣|f(t)| − |fI |
∣∣dt ≤ 1

|I|

∫
I
|f(t)− fI |dt (3)

and, hence,

||f |I − |fI || =
∣∣∣∣ 1

|I|

∫
I
(|f(t)| − |fI |)dt

∣∣∣∣ ≤ 1

|I|

∫
I

∣∣|f(t)| − |fI |
∣∣dt

≤ 1

|I|

∫
I
|f(t)− fI |dt. (4)

Consequently, (3) and (4) give

1

|I|ρ(|I|)

∫
I
||f(t)| − |f |I |dt

≤ 1

|I|ρ(|I|)

∫
I
||f(t)| − |fI ||dt+

1

|I|ρ(|I|)

∫
I
||fI | − |f |I |dt

≤ 2
1

|I|ρ(|I|)

∫
I
|f(t)− fI |dt.

By taking supremum over I ∈ I, we obtain

‖|f |‖BMO(ρ) ≤ 2‖f‖BMO(ρ). J

The above lemma assures that whenever f ∈ BMO(ρ), f+ = max(f, 0) =
(f + |f |)/2 and f− = f − f+ belong to BMO(ρ).
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We now present the dilation properties of BMO(ρ). For any s > 0 and
f ∈ Lloc, the dilation operator Dsf is defined as

Dsf(t) = f(t/s), t ≥ 0.

For any I = (a, b) ∈ I, write Is = (a/s, b/s). Obviously, |Is| = |I|/s.

Lemma 2. Let m, l ≥ 0 and ρ : R+ → R+ be a growth function of upper type m
and lower type l.

1. There is a constant C > 0 such that for any f ∈ BMO(ρ) and s ∈ (1,∞),
we have Dsf ∈ BMO(ρ) and

‖Dsf‖BMO(ρ) ≤ Cs−l‖f‖BMO(ρ). (5)

2. There is a constant C > 0 such that for any f ∈ BMO(ρ) and s ∈ (0, 1),
we have Dsf ∈ BMO(ρ) and

‖Dsf‖BMO(ρ) ≤ Cs−m‖f‖BMO(ρ). (6)

Proof. As the proof of (5) is similar to the proof of (6), for brevity, we just
present the proof for (5).

Let I ∈ I. By using the substitution t = su, we find that

(Dsf)I =
1

|I|

∫
I
f(t/s)dt =

1

|I|

∫
Is

f(u)sdu =
1

|Is|

∫
Is

f(u)du = fIs . (7)

Consequently, the substitution t = su gives

1

|I|ρ(|I|)

∫
I
|Dsf(t)− (Dsf)I |dt =

1

|I|ρ(|I|)

∫
Is

|f(u)− fIs |sdu

=
1

|Is|ρ(s|Is|)

∫
Is

|f(u)− fIs |du. (8)

As ρ is of lower type l and of upper type m, we find that

ρ(|Is|) ≤ Cs−lρ(s|Is|), s ∈ (1,∞) (9)

ρ(|Is|) ≤ Cs−mρ(s|Is|), s ∈ (0, 1). (10)

Therefore, when s ∈ (1,∞), (8) and (9) give

1

|I|ρ(|I|)

∫
I
|Dsf(t)− (Dsf)I |dt ≤ Cs−l

1

|Is|ρ(|Is|)

∫
Is

|f(u)− fIs |du



96 K.-P. Ho

≤ Cs−l‖f‖BMO(ρ).

By taking supremum over I ∈ I on both sides of the above inequalities, we obtain
(5).

Similarly, when s ∈ (0, 1), according to (8) and (10), we have

1

|I|ρ(|I|)

∫
I
|Dsf(t)− (Dsf)I |dt ≤ Cs−m

1

|Is|ρ(|Is|)

∫
Is

|f(u)− fIs |du

≤ Cs−m‖f‖BMO(ρ).

Hence,
‖Dsf‖BMO(ρ) ≤ Cs−m‖f‖BMO(ρ). J

3. Main results

This section contains the main results of this paper. We establish the Hardy’s
inequalities on BMO(ρ). We also obtain the mapping properties of the Erdélyi-
Kober fractional integrals on BMO(ρ). These two results are consequence of a
general result for the integral operators on BMO(ρ).

Let K : (0,∞)×(0,∞)→ R be a Lebesgue measurable function. We consider
the integral operator

Tf(t) =

∫ ∞
0

K(s, t)f(s)ds, t ≥ 0.

Theorem 1. Let m, l ≥ 0 and ρ : R+ → R+ be a growth function of upper type m
and lower type l. Suppose that K : (0,∞)× (0,∞)→ R is a Lebesgue measurable
function satisfying

K(λs, λt) = λ−1K(s, t), λ > 0 (11)∫ 1

0
|K(u, 1)|uldu+

∫ ∞
1
|K(u, 1)|umdu <∞. (12)

There exists a constant C > 0 such that for any f ∈ BMO(ρ)

‖Tf‖BMO(ρ) ≤ C‖f‖BMO(ρ). (13)

Proof. In view of Lemma 1 and the fact that f = f+ − f−, we only need
to consider f ∈ BMO(ρ) with f ≥ 0. Similarly, we can also assume that K is
positive since K+ and K− satisfy (11) and (12) and∫ ∞

0
K(s, t)f(s)ds =

∫ ∞
0

K+(s, t)f(s)ds−
∫ ∞

0
K−(s, t)f(s)ds.
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By using the substitution s = ut, from (11) we have

Tf(x) =

∫ ∞
0

K(s, t)f(s)ds =

∫ ∞
0

K(ut, t)f(ut)tdu

=

∫ ∞
0

K(u, 1)f(ut)du =

∫ ∞
0

K(u, 1)D1/uf(t)du.

Therefore, for any I ∈ I,

(Tf)I =
1

|I|

∫
I

∫ ∞
0

K(u, 1)f(ut)dudt

=

∫ ∞
0

K(u, 1)

(
1

|I|

∫
I
D1/uf(t)dt

)
du

=

∫ ∞
0

K(u, 1)(D1/uf)Idu.

Since K and f are nonnegative, (Kf)I is well defined. Consequently,

|Tf(t)− (Tf)I | =
∣∣∣∣∫ ∞

0
K(u, 1)D1/uf(t)du−

∫ ∞
0

K(u, 1)(D1/uf)Idu

∣∣∣∣
≤
∫ ∞

0
|K(u, 1)|

∣∣D1/uf(t)− (D1/uf)I
∣∣du.

By integrating over I on both sides of the above inequality, we obtain∫
I
|Tf(t)− (Tf)I |dt

≤
∫
I

∫ ∞
0
|K(u, 1)|

∣∣D1/uf(t)− (D1/uf)I
∣∣dudt

=

∫ ∞
0
|K(u, 1)|

(∫
I

∣∣D1/uf(t)−D1/u(f)I
∣∣dt) du

≤ ρ(|I|)|I|
∫ ∞

0
|K(u, 1)|‖D1/uf‖BMO(ρ)du

= ρ(|I|)|I|
(∫ 1

0
|K(u, 1)|‖D1/uf‖BMO(ρ)du

+

∫ ∞
1
|K(u, 1)|‖D1/uf‖BMO(ρ)du

)
.

When u ∈ (0, 1), s = u−1 ∈ (1,∞) and (5) gives

‖D1/uf‖BMO(ρ) = ‖Dsf‖BMO(ρ) ≤ Cs−l‖f‖BMO(ρ) = Cul‖f‖BMO(ρ).
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Similarly, when u ∈ (1,∞), s = u−1 ∈ (0, 1) and (6) yields

‖D1/uf‖BMO(ρ) = ‖Dsf‖BMO(ρ) ≤ Cs−m‖f‖BMO(ρ) = Cum‖f‖BMO(ρ).

Consequently,∫
I
|Tf(t)− (Tf)I |dt

≤ Cρ(|I|)|I|‖f‖BMO(ρ)

(∫ 1

0
|K(u, 1)|uldu+

∫ ∞
1
|K(u, 1)|umdu

)
for some C > 0. The above inequality guarantees that (Kf)I is finite and well
defined. Moreover, by multiplying 1

ρ(|I|)|I| on both sides of the above inequalities,
we have

1

ρ(|I|)|I|

∫
I
|Tf(t)− (Tf)I |dt

≤ C‖f‖BMO(ρ)

(∫ 1

0
|K(u, 1)|uldu+

∫ ∞
1
|K(u, 1)|umdu

)
.

By taking supremum over I ∈ I, we obtain (13). J

When ρ ≡ 1, the above result recovers the boundedness of the integral oper-
ators on BMO given in [7, Corollary 4].

As ρ(r) = rα, 0 < α ≤ 1 is a growth function of lower type α and upper type
α, Theorem 1 also gives the following result for the Lipschitz spaces.

Corollary 1. Let 0 < α ≤ 1 and K : (0,∞) × (0,∞) → R be a Lebesgue
measurable function satisfying (11) and∫ ∞

0
|K(u, 1)|uαdu <∞.

There exists a constant C > 0 such that for any f ∈ Λα

‖Tf‖Λα ≤ C‖f‖Λα .

We now apply Theorem 1 to some concrete operators. The classical Hardy
operator is defined as

Hf(t) =
1

t

∫ t

0
f(s)ds.

For the history, development and applications of the Hardy inequality, the reader
is referred to [15, 16, 21].

We now establish the Hardy inequalities on BMO(ρ).
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Theorem 2. Let m, l ≥ 0 and ρ : R+ → R+ be a growth function of upper type
m and lower type l. There is a constant C > 0 such that for any f ∈ BMO(ρ),
we have

‖Hf‖BMO(ρ) ≤ C‖f‖BMO(ρ).

Proof. We find that

Hf(t) =

∫ ∞
0

K(s, t)f(s)ds,

where K(s, t) = 1
tχ(s,t):s≤t. It obviously satisfies (11). Moreover,∫ 1

0
|K(u, 1)|uldu+

∫ ∞
1
|K(u, 1)|umdu =

∫ 1

0
uldu =

1

1 + l
<∞.

Thus, (12) is fulfilled. Theorem 1 yields the boundedness of H : BMO(ρ) →
BMO(ρ). J

In particular, we have the Hardy’s inequality on BMO. The validity of the
Hardy’s inequality onBMO is well known. For the studies of the Hardy inequality
on BMO, the reader is referred to [26, 27].

We now turn to the study of the Erdélyi-Kober fractional integral operators.
We use the definitions of the Erdélyi-Kober fractional integral operators from [14,
(0.7)] and [22]. Let δ, η > 0 and γ ∈ R. For any locally integrable function f , the
Erdélyi-Kober fractional integral operators are defined as

Iγ,δη f(t) =
t−η(δ+γ)

Γ(δ)

∫ t

0
sη(γ+1)−1(tη − sη)δ−1f(s)ds, t ≥ 0,

Kγ,δ
η f(t) =

tηγ

Γ(δ)

∫ ∞
t

(sη − tη)δ−1s−η(γ+δ)+η−1f(s)ds, t ≥ 0,

where Γ(·) is the Gamma function.
The Erdélyi-Kober fractional integral operators have a number of applications

on fractional calculus, applied mathematics and statistics, the reader is referred to
[14, 22] for those applications of the Erdélyi-Kober fractional integral operators.
For the mapping properties of the Erdélyi-Kober fractional integral operators on
Morrey spaces, amalgam spaces and rearrangement-invariant spaces, the reader
is referred to [9].

We now use Theorem 1 to study the boundedness of the Erdélyi-Kober frac-
tional integral operators on BMO(ρ).

Theorem 3. Let δ, η > 0 and γ ∈ R. Let m, l ≥ 0 and ρ : R+ → R+ be a growth
function of upper type m and lower type l.
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1. If η(γ + 1) + l > 0, then there is a constant C > 0 such that for any
f ∈ BMO(ρ),

‖Iγ,δη f‖BMO(ρ) ≤ C‖f‖BMO(ρ).

2. If −ηγ + m < 0, then there is a constant C > 0 such that for any f ∈
BMO(ρ),

‖Kγ,δ
η f‖BMO(ρ) ≤ C‖f‖BMO(ρ).

Proof. We have Iγ,δη f(t) =
∫∞

0 K0(s, t)f(s)ds, where

K0(s, t) =
t−η(δ+γ)

Γ(δ)
χ(0,t)(s)s

η(γ+1)−1(tη − sη)δ−1.

For any λ > 0, we have

K0(λs, λt) =
(λt)−η(δ+γ)

Γ(δ)
χ(0,λt)(λs)(λs)

η(γ+1)−1((λt)η − (λs)η)δ−1

= λ−1K0(s, t).

Moreover, there exists a constant C > 0 such that∫ 1

0
|K0(u, 1)|uldu+

∫ ∞
1
|K0(u, 1)|umdu

=
1

Γ(δ)

∫ 1

0
sη(γ+1)+l−1(1− sη)δ−1ds

≤ C

(∫ 1
2

0
sη(γ+1)+l−1ds+

∫ 1

1
2

(1− sη)δ−1ds

)
<∞,

because η(γ+1)+l > 0 and δ, η > 0. Therefore, Theorem 1 yields the boundedness

of Iγ,δη on BMO(ρ).

For Kγ,δ
η , we have Kγ,δ

η f(t) =
∫∞

0 K1(s, t)f(s)ds, where

K1(s, t) =
tηγ

Γ(δ)
χ(t,∞)(s)(s

η − tη)δ−1s−η(γ+δ)+η−1.

Obviously, for any λ > 0, K1(λs, λt) = λ−1K(s, t). In addition,∫ 1

0
|K1(u, 1)|uldu+

∫ ∞
1
|K1(u, 1)|umdu

=
1

Γ(δ)

∫ ∞
1

(sη − 1)δ−1s−η(γ+δ)+η+m−1ds
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≤ C
(∫ 2

1
(sη − 1)δ−1ds+

∫ ∞
2

sηδ−η−η(γ+δ)+η+m−1ds

)
<∞,

because −ηγ +m < 0 and δ, η > 0. Theorem 1 gives the boundedness of Kγ,δ
η on

BMO(ρ). J

Particularly, we obtain the boundedness of the Erdélyi-Kober fractional inte-
gral operators on BMO.

Theorem 4. Let δ, η > 0 and γ ∈ R.

1. If γ > −1, then there is a constant C > 0 such that for any f ∈ BMO,

‖Iγ,δη f‖BMO ≤ C‖f‖BMO.

2. If γ > 0, then there is a constant C > 0 such that for any f ∈ BMO,

‖Kγ,δ
η f‖BMO ≤ C‖f‖BMO.

It is well known that the Hardy space H1 is the pre-dual of BMO. For the
studies of the Erdélyi-Kober fractional integral operators, the reader may consult
[8].

We also have the corresponding result for the Lipschitz spaces.

Corollary 2. Let 0 < α ≤ 1, δ, η > 0 and γ ∈ R.

1. If η(γ+1)+α > 0, then there is a constant C > 0 such that for any f ∈ Λα,

‖Iγ,δη f‖Λα ≤ C‖f‖Λα .

2. If −ηγ + α < 0, then there is a constant C > 0 such that for any f ∈ Λα,

‖Kγ,δ
η f‖Λα ≤ C‖f‖Λα .
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