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Locally Invo-Regular Rings

P.V. Danchev

Abstract. We define and study in a comprehensive way the class of so-called locally
invo-regular rings. These rings form a proper subclass of the class of almost unit-regular
rings due to Chen (Commun. Algebra, 2012) and nontrivially enlarge both the classes
of weakly tripotent rings due to Breaz-Ĉımpean (Bull. Korean Math. Soc., 2018) and
quasi invo-regular rings due to the present author (J. Prime Research Math., 2019). We
also somewhat refine the classification of those weakly tripotent rings by using our recent
results published in Commun. Korean Math. Soc. (2017) and results obtained by Li et
al. in Commun. Korean Math. Soc. (2018).
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1. Introduction and Background

Throughout the text of the current article, all rings R are assumed to be
associative, possessing the identity element 1 which differs from the zero element
0 of R, and all subrings excluding the proper ideals are unital (i.e., containing the
same identity as that of the former ring). Our standard terminology and notation
are mainly in agreement with [18]. For instance, U(R) denotes the set of all units
in R, Id(R) the set of all idempotents in R, Nil(R) the set of all nilpotents in R,
J(R) the Jacobson radical of R, and C(R) the center of R. The specific notions
and notations will be given explicitly in the sequel.

First of all, let us recall by referring to [14] and [15] that an element a of
an arbitrary ring R is said to be unit-regular if there exists u ∈ U(R) such that
a = aua. If every element of R is equipped with that property, R is called unit-
regular, too. This kind of rings has very interesting and important properties,
which affect the general ring’s structure.
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Generalizing substantially this critical concept, the so-called almost unit-
regular rings were explored in [2] which, in the context of formal (triangular
and full) matrix rings extensions accomplished with the Morita contexts with
zero pairings, are better to be termed as locally unit-regular rings. Here we shall
examine a subclass of the class consisting of these rings as defined bellow – for
more information on a related subject see [16] as well.

On the other hand, an element b of a ring R is called tripotent if the equality
b3 = b is fulfilled. If each element of R is with this property, R is said to
be tripotent as well. The complete description of such rings is given in [17].
Specifically, they are a subdirect product (= a subring of a direct product) of a
family of copies of the fields Z2 and Z3.

On the other hand, the so-called weakly tripotent rings were explored in [1]
that are rings in which at least one of the elements b or 1− b is a tripotent. It is
immediate that weakly tripotent rings of characteristic 3 are themselves tripotent
as (1 − b)3 = 1 − b3 = 1 − b yields b3 = b. An interesting example of a weakly
tripotent ring of characteristic 8 is the indecomposable ring Z8 whose elements
are solutions of (one of) the equations x2 = 1 or (1 − x)2 = 1 (thus x or 1 − x
is obviously a tripotent). In general, mainly in the non-commutative case, these
rings have not a complete characterization yet. By the way, it is worthwhile noting
that the same terminology of weakly tripotent rings was used in [6] under the
meaning that each element in the ring satisfies (one of) the equations x3 = ±x.
Nevertheless, these two notions differ from each other, since the field Z5 is weakly
tripotent in the sense of [6], but it is definitely not weakly tripotent in the sense
of [1], whereas the aforementioned indecomposable ring Z8 is not of the weakly
tripotent sorts of rings described in [6] (notice that this is true also directly taking
into account that 23 = 0 6= ±2).

An element c of a ring R is said to be invo-regular if, there exists an involution
v ∈ R (i.e., v2 = 1) such that c = cvc (in fact, c is a special unit-regular element
with the inner inverse being an involution). It is pretty clear that any tripotent
element has to be invo-regular, because it can be checked by simple manipulations
that b = b3 assures b = bvb with v = 1 + b− b2 and v2 = 1. The converse is false,
however. If every element of R is invo-regular, then R is called invo-regular too.
These rings were completely described in [4] by showing that they coincide with
the above discussed tripotent rings (see, e.g., [5, Theorem 2]). Even something
more, the so-termed quasi invo-regular rings were handled in [5] in which each
element is invo-regular such that the inner inverse v has the property that v
or 1 − v is an involution. Surprisingly, quasi invo-regular rings are themselves
invo-regular, that gives an immediate coincidence of these two ring classes.

So, we come to our pivotal tool.
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Definition 1. We shall say that a ring R is locally invo-regular if, for any r ∈
R, either r or 1 − r is invo-regular in R. This means that either r = rvr or
1− r = (1− r)v(1− r) for some v ∈ R with v2 = 1.

A few quick commutative examples are the next ones: Boolean rings, the field
Z3 and its arbitrary (finite or infinite) direct products, the indecomposable ring
Z4, etc. A direct inspection shows that the field F4 consisting of four elements is
non-locally invo-regular ring of characteristic 2.

This new point of view, in accordance with the aforementioned ring classes,
allows us to derive the next implications:

quasi invo-regular ⇒ weakly tripotent ⇒

⇒ locally invo-regular ⇒ locally unit-regular.

None of these implications is reversible in general (see, for more detailed
information, Example 1 below). However, in the case of abelian (in particular,
commutative) rings, all locally invo-regular rings are exactly weakly tripotent in
the sense of [1].

As it was demonstrated in the paragraph before [2, Example 2.6], although the
indecomposable local ring Z4 is almost unit-regular, the direct product Z4 × Z4

is not almost unit-regular.
Our motivation in writing up this research paper is to encompass the above

mentioned classes of weakly tripotent and invo-regular (= quasi invo-regular)
rings into the class of locally invo-regular rings which possesses quite more exotic
properties. However, although our rings from Definition 1 are closely related to
the aforementioned almost unit-regular rings, they will be properly enclosed in
them.

In what follows, our basic achievement will be the complete description of
the structure of locally invo-regular rings and, in particular, of the structure of
weakly tripotent rings by approaching in a different way than that in [1].

2. Main Results

As it was already emphasized, in the non-commutative case there is no a
satisfactory complete characterization of the weakly tripotent rings from [1], so
that by what we have shown above such full characterizing cannot be happen in
the general case of locally invo-regular rings too. Nevertheless, the chief result of
ours is the following one:

Theorem 1. A ring R is locally invo-regular if, and only if, all elements of J(R)
satisfy the equation x2 = 2x and R ∼= R1 ×R2, where either R1 = {0} or R1 is a
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locally invo-regular ring with 8 = 0 (thus it is of characteristic either 2, 4 or 8)
for which R1/J(R1) is Boolean provided R1 is abelian (i.e., all its idempotents
are central) and x4 = 0 for all x ∈ J(R1), and either R2 = {0} or R2 is a ring
which is a subdirect product of a family of copies of the field of three elements Z3.

Proof. ”Left-to-right”. Given z ∈ J(R), one has z = zvz or 1 − z =
(1− z)v(1− z). This yields z(1− vz) = 0, i.e., z = 0, or 1− z = v as 1− vz and
1− z both invert taking into account that vz ∈ J(R). Thus z = 1− v, which by
squaring gives z2 = 2z, as required.

Furthermore, for 3 ∈ R, we write 3 = 3.v.3 = 9v for some v ∈ R with
v2 = 1. By squaring, one obtains 72 = 23.32 = 0. In the other possibility, we
write −2 = (−2).v.(−2) = 4v. Again by squaring, 12 = 22.3 = 0. So, finally,
8.9 = 0 in R will hold. Next, with the Chinese Remainder Theorem at hand, one
decomposes R ∼= R1 × R2, where either R1 = {0} or R1 is a locally invo-regular
ring with 8 = 0, and either R2 = {0} or R2 is a locally invo-regular ring with
9 = 0. We even claim that 3 = 0 in R2. In fact, the equality 3 = 9v holding
in R2 directly implies what we pursue. In the case where −2 = 4v holds in R2,
one deduces that −4 = 8v = −v, i.e., 4 = v. Squaring that equality, we find
that 15 = 0. But we also have that 18 = 0. This immediately ensures 3 = 0, as
claimed.

We will now describe both direct factor components separately:

Describing R1: Here 2 = 0 or 4 = 0 or 8 = 0. By what we have shown
above, x2 = 2x holds for every x ∈ J(R1). Therefore, x3 = 2x2 = 4x and thus
x4 = 4x2 = 8x = 0, as expected. That is why J(R1) is always nil.

Let now R1 be abelian. As 2 is a central nilpotent, it follows that 2 ∈ J(R1)
and hence the quotient ring R1/J(R1) is locally invo-regular of characteristic
2. However, as it is well-known, R1 being abelian guarantees that R1/J(R1) is
abelian too, because J(R1) is nil. According to [13], all nilpotents of R1/J(R1) are
also central and thus they are zero as this factor-ring is obviously semiprimitive
(= semi-simple in the sense of Jacobson). If now v is an involution in R1/J(R1),
i.e., v2 = 1, then (v − 1)2 = 0 since 2 = 0 and thus 2v = 0, deriving from this
that v = 1 which gives the assertion.

Describing R2: Here 3 = 0. We intend to prove now that each element of R2

satisfies the equation x3 = x and so [17] will then apply to get the expected claim.
We assert that Nil(R2) = {0} whence R2 will be abelian (that is, every one of its
idempotents is central). To show this, given q ∈ R2 with q2 = 0, we consider the
difference q−1 ∈ U(R2). It must be q−1 = (q−1)v(q−1) or 2−q = (2−q)v(2−q),
for some v ∈ R2 with v2 = 1 as 1 − (q − 1) = 2 − q = −1 − q ∈ U(R2). In the
first situation, canceling by q − 1, we have q − 1 = v and so squaring q = v + 1
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it follows that 2 + 2v = 0, i.e., v = −1 as 3 = 0. Therefore, q = −1 + 1 = 0,
as needed. In the second situation, canceling by 2 − q, we arrive at −1 − q = v
and thus squaring q = −1− v = −(1 + v) it again follows that v = −1 and hence
q = 0, as required.

Furthermore, the equality x = xvx ensures that xv is an idempotent forcing
that x = x2v. So, x2 = x3v yields x = x3v2 = x3, as promised. Similarly,
1− x = (1− x)3 = 1− x3, because 3 = 0. Consequently, x = x3 in both aspects,
as required.

”Right-to-left”. If R1 is a locally invo-regular ring and R2 is a tripotent
ring, then we assert that the direct product R1 ×R2 is too a locally invo-regular
ring. As the verification is only a routine technical exercise, we leave it to the
interested reader for a direct check. J

It was shown in [1, Lemma 1(1)] that a subring of a weakly tripotent ring is
also weakly tripotent. As this cannot happen in the case of locally invo-regular
rings, we now have to prove that the centers of locally invo-regular rings are always
locally invo-regular (and thus they are commutative weakly tripotent rings).

Proposition 1. The center of a locally invo-regular ring is also a locally invo-
regular ring (in fact, it is a commutative weakly tripotent ring).

Proof. Given z ∈ C(R), we write z = zvz or 1 − z = (1 − z)v(1 − z) for
some v ∈ R with v2 = 1. Consequently, in the first case, one writes that z = z2v
whence z2 = z3v, and so z = z3v2 = z3. Thus z is a tripotent element and hence
it can be written as z = z(1 + z− z2)z, where 1 + z− z2 is an involution in C(R)
as by a direct inspection (1 + z − z2)2 = 1. The second possibility follows in the
same manner by replacing z → 1− z, so we omit the details. J

Let us recall that an element a of a ring R is strongly regular if there is an
element d ∈ R such that a = a2d. Thus, if each element of a ring is strongly
regular, the ring is also said to be strongly regular. So, generalizing this, we call
a ring R locally strongly regular if, for every r ∈ R, at least one of the elements r
or 1− r is strongly regular.

It is well known that the center of a unit-regular ring is also a unit-regular ring
(indeed, it is a commutative strongly regular ring, and thus a subdirect product
of fields) – this follows elementarily observing that for any c in C(R), where R
is unit-regular, it will follow that c = cuc = c2u = uc2 for some u ∈ U(R). Now,
by using the same idea, we are able to extend this to locally unit-regular rings as
follows: The center of a locally unit-regular ring is a locally strongly regular ring.

It seems that non-commutative weakly tripotent rings have not been com-
prehensively studied in [1], so a new additional material concerning that theme
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with a new approach is definitely needed. Under this reason, we shall now con-
siderably extend [1, Corollary 4] by shown that weakly tripotent rings are special
strongly clean rings, as more exactly they are surely strongly invo-clean, as de-
fined in [3]: A ring R is called strongly invo-clean if, for each r ∈ R, there exist
e ∈ Id(R) and v ∈ U(R) with v2 = 1 such that r = e + v and ev = ve. It was
shown in [3, Corollary 2.17] (accomplishing this with achievements in [11]) that
if a ring R is strongly invo-clean, then R is decomposable as R1 × R2, where
R1 = {0} or R1/J(R1) is Boolean with nil J(R1) of index of nilpotence at most
3, and R2 = {0} or R2 is a subdirect product of a family of copies of the field Z3.
This, however, is a strict containment as the ring Z4 × Z4 is obviously strongly
invo-clean, but as already noticed above it is even not locally unit-regular.

The next relationship considerably strengthens [1, Corollary 4].

Proposition 2. Every weakly tripotent ring is strongly invo-clean. The converse
implication is untrue.

Proof. For such a ring R, we have r3 = r or (1− r)3 = 1− r whenever r ∈ R.
In the first case, we have r = (1− r2) + (r2 + r−1). A direct manipulation shows
that 1− r2 ∈ Id(R) as r2 ∈ Id(R) and (r2 + r − 1)2 = 1, observing elementarily
that these two elements commute. We also see that rR ∩ (1 − r2)R = {0}. To
look at this, we write ra = (1 − r2)b for some a, b ∈ R. Since r2 6= 0 (as for
otherwise, r2 = 0 will imply that 0 = r3 = r, and we are done), one obtains
by multiplying by r2 from the left that r3a = (r2 − r4)b which is equivalent to
ra = 0, as required.

Dealing with the other equality (1 − r)3 = 1 − r, by replacing r → 1 − r,
we can write by using the trick above that 1 − r = f + w for some idempotent
f = 1 − (1 − r)2 = 2r − r2 and an involution w = 1 − 3r + r2. Therefore,
r = (1 − f) + (−w) ∈ Id(R) + U(R), where (−w)2 = w2 = 1, as required.
However, the equality rR ∩ (1− r)2R = {0} cannot properly happen.

About the second part, we refer to [8] (compare with Example 1 presented
below). J

By what we have shown so far, it will follow that some valuable characteriza-
tion of weakly tripotent rings could be extracted from already well-known results
established in [3, Corollary 2.17].

A question that immediately arises (mainly due to the last proof) is of whether
or not weakly tripotent rings are unit-regular (certainly, they are necessarily
locally unit-regular being locally invo-regular).

We will be now able to improve [1, Corollary 9] in the following expected way
by giving a more direct and transparent proof:
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Proposition 3. A ring R is locally invo-regular without non-trivial idempotents
if, and only if, for each r ∈ R, one of the equalities r2 = 1 or r2 = 2r holds. In
particular, such a ring is necessarily weakly tripotent.

Proof. ”⇒”. Given rvr = r or (1 − r)v(1 − r) = 1 − r for some v ∈ R with
v2 = 1, one plainly sees that rv or (1 − r)v is an idempotent. Hence, rv = 0
or rv = 1 ensuring that r = 0 or r = v whence r2 = 1 in the second case, or
(1−r)v = 0 or (1−r)v = 1 assuring that 1−r = 0, i.e., r = 1 or 1−r = v whence
in the second case (1− r)2 = 1, that is, r2 = 2r. Since r = 0 yields r2 = 2r and
r = 1 yields r2 = 1, we are done.

”⇐”. If r is an idempotent, it easily follows that r = 1 or r = 0, as required.
If r2 = 1, we have r = r.r.r, while if r2 = 2r we have (1 − r)2 = 1 and so
1− r = (1− r).(1− r).(1− r), as needed. J

As an immediate consequence to the last assertion, one can derive the follow-
ing:

Corollary 1. Suppose that R is a ring with no non-trivial idempotents in which
2 is nilpotent. Then R is locally invo-regular if, and only if, R/J(R) ∼= Z2 and
the equation x2 = 1 holds for any element of U(R) if, and only if, R/J(R) ∼= Z2

and the equation x2 = 2x = 0 holds for any element of J(R).

In particular, such a ring R is locally invo-regular exactly when it is weakly
tripotent.

Proof. ”Necessity.” As 2 ∈ J(R) is a central nilpotent, setting R := R/J(R),
one observes that R is a ring of characteristic 2 (i.e., 2 = 0) such that, in accor-
dance with Proposition 3, the condition r2 = 1 or r2 = 0 is true. This makes up
R without non-trivial idempotents as well. Furthermore, in the first case, it must
be (r − 1)2 = 0 whence r = 1 + (r − 1), whereas in the second case r = 0 + r.
This means that, in both situations, R is a strongly nil-clean ring, so that [11]
will apply to get that R is Boolean and hence isomorphic to Z2, as asked for.

Certainly, both equalities x2 = 1 and x2 = 2x = 0 cannot be true simultane-
ously, so the relation x2 = 1 will be fulfilled for all x ∈ U(R) as the other one
x2 = 2x ∈ J(R) is impossible in U(R) and, reciprocally, the relation x2 = 2x will
be valid for all x ∈ J(R) as the other one x2 = 1 makes no sense in J(R).

”Sufficiency.” As U(R/J(R)) ∼= U(R)/(1 + J(R)) ∼= U(Z2) = {1}, it follows
at once that U(R) = 1+J(R). Hence Nil(R) ⊆ J(R) because 1+Nil(R) ⊆ U(R).
However, one sees thatNil(R) = J(R) since J(R) is nil. But R being local implies
that any element r of R is either nilpotent or unit. That is, r2 = 2r = 0 or r2 = 1.
Therefore, (1− r)3 = 1− 3r+ 3r2− r3 = 1− 3r = 1− r as r2 = 2r = 0 or r3 = r,
substantiating our claim.
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Concerning now the additional statement, one way being self-evident, we
concentrate on the other one. Henceforth, we just apply the aforementioned [1,
Corollary 9] to get the desired result. J

One more critical remark, which clarifies all the things alluded to above, is
that in [1, Corollary 9(2)] the condition imposed on the ring R to be ”a local
ring” is superfluous as the quotient R/J(R) ∼= Z2 is surely a field.

The next characterization criterion might be of some applicable purposes
(compare with Proposition 2 quoted above) – see also [9] and [10].

Lemma 1. Suppose R is a ring of characteristic 2. Then the following three
issues are equivalent:

(1) R is weakly tripotent.

(2) All elements of R satisfy (one of) the equations x3 = x or x3 = x2.

(3) Each element r of R is presentable as r = q + e, where q, e ∈ R commute
with q2 = 0 and e2 = e such that either qe = 0 or q(1− e) = 0.

Proof. First of all, let char(R) = 2.

The equivalence (1) ⇐⇒ (2) follows by a direct routine check, because
(1− x)3 = 1− x is tantamount to x3 = x2 as 2 = 0.

Now, we handle the implication (3) ⇒ (2). In fact, one derives that r2 = e
and r3 = qe + e. So, if qe = 0, we obtain r3 = r2. However, if qe = q, one gets
r3 = r, as formulated.

What remains to show is the validity of the converse implication (2) ⇒ (3).
Indeed, we claim foremost that the nilpotence index of R is exactly 2. To see
that, given q ∈ Nil(R), we have q3 = q or q3 = q2. Thus q(1 − q2) = 0 or
q2(1 − q) = 0. As both 1 − q2 and 1 − q invert in R, it must be q2 = 0 in
both, as required. Furthermore, we directly can apply Proposition 2 to write
that r = v + e = (v + 1) + (1 + e), where v + 1 is a nilpotent of order 2 and
1 + e is an idempotent. However, a more precise analysis of this record is needed.
Another useful approach might be as follows: If u ∈ U(R), then either u3 = u or
u3 = u2. Hence, in both cases u2 = 1, which means that (u − 1)2 = 0. This, in
turn, forces that u ∈ 1 + Nil(R), i.e., U(R) = 1 + Nil(R). As these rings have
elements as solutions of (one of) the equations x3 = x or x3 = x2 and thus they
are thereby clearly exchange, the application of [11] shows that r = q + e with
qe = eq, q2 = 0 and e2 = e. Nevertheless, we need the more detailed relations
between q and e stated above. To draw them, we foremost calculate that r2 = e
and r3 = qe + e as 2 = 0. Then, r3 = r yields qe + e = q + e, i.e., q(1 − e) = 0;
whereas r3 = r2 implies that qe+ e = e, i.e., qe = 0, as promised. J
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As we already have seen above in Proposition 2, if R is a weakly tripotent
ring, then R is strongly invo-clean, but we need a rather more precise description,
however. This will successfully be materialized in the next statement.

Theorem 2. A ring R is weakly tripotent (of characteristic 2, 4 or 8) if, and
only if, every element r of R is presentable as r = q+e, where q, e ∈ R commute,
with q2 = 2q (hence q2 = 0 when 2 = 0, q3 = 0 when 4 = 0 and q4 = 0 when
8 = 0) and e2 = e such that either qe = 0 or q(1− e) = 0.

Proof. ”⇒”. The case where 2 = 0 was handled above in Lemma 1.

So, let now char(R) = 4. Then, for any q ∈ Nil(R), we have q3 = q or
(1− q)3 = 1− q. The first equality immediately ensures that q = 0. The second
one, however, implies that (1− q)2 = 1 as 1− q inverts in R, so that we come to
q2 = 2q. Thus, q3 = 2q2 = 4q = 0 as 4 = 0. Furthermore, with Proposition 2 at
hand, we write r = q + e, where qe = eq with e2 = e and q3 = 0. Consequently,
r = r3 = q3 + 3q2e + 3qe + e = −q2e − qe + e = q + e yields q2e + qe = −q. As
q2 = 2q, we derive that 3qe = −q, i.e., −qe = −q, i.e., q(1− e) = 0, as desired. If
now (1− r)3 = 1− r, then as showed in Proposition 2 we may replace r by 1− r
(and hence q → −q and e→ 1− e), deducing that qe = 0, as wanted.

Assuming now that char(R) = 8, as already observed above, we have q2 = 2q
whence q4 = 4q2 = 8q = 0 as 8 = 0. Furthermore, for r3 = r such that
r = q + e with qe = eq, one infers that q3 + 3q2e + 3qe = q. The latter means
that q(1 − q)(1 + q) = 3qe(1 + q). Since 1 + q is invertible in R, this leads to
q(1 − q) = 3qe and hence to q(1 − q)(1 − e) = 0. But 1 − q also inverts in R,
so we obtain the pursued equality q(1− e) = 0. Another way of proving up this
equality is to use as given above the relation q2 = 2q. Replacing as above q → −q
and e→ 1− e in the case of 1− r = (1− r)3, one concludes that qe = 0, as asked
for.

”⇐”. Writing r = q + e with q and e satisfying the conditions stated above,
we can proceed like this: If qe = q = eq, then r3 = (q+e)3 = q3+3q2e+3qe+e =
4q + 9qe + e = 13q + e = q + e = r whenever 4 = 0. If now qe = 0 = eq, then
1 − r = −q + (1 − e), so (−q)(1 − e) = −q = (1 − e)(−q) and thereby we may
apply the same trick to obtain (1− r)3 = 1− r.

For 8 = 0, things are little more complicated as follows: In fact, the element
0 6= 2r does not satisfy the equation x3 = x as for otherwise 8r3 = 2r = 0. Hence
one has (1 − 2r)3 = 1 − 2r and thus 4r = 4r2. For further detailed arguments,
we refer to [9]. J

Note that even without 8 = 0 at hand, the equalities qe = 0 = eq (hence
q(1− e) = (1− e)q = q), q2 = 2q and e2 = e force whenever r = q + e, i.e. when
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1 − r = −q + (1 − e), that (1 − r)3 = −q3 + 3q2(1 − e) − 3q(1 − e) + (1 − e) =
−4q + 3q(1− e) + (1− e) = −q + (1− e) = 1− r, as expected.

Likewise, as 4q2 = 0 when 8 = 0, one may derive that r3 = q3−q2e+3qe+e =
4q + qe + e = 5q + e = r + 4q, provided qe = eq = q. Thus 2r3 = 2r, and after
the squaring of r3 = r + 4q we deduce that r6 = r2, that is, r2 is a tripotent.

Recall that a ring is called indecomposable if it does not possess non-trivial
central idempotents and strongly indecomposable if it does not possess non-trivial
idempotents. An appeal to [13] enables us to state that every ring without central
nilpotent elements is indecomposable, but the converse is not always true – how-
ever, this is the case for regular rings in the sense of von Neumann (in particular,
for unit-regular rings).

We now have accumulated all the ingredients necessary to proceed by proving
with the next achievement, which is a significant reminiscent of [1, Corollary 9].

Theorem 3. Suppose R is a locally invo-regular ring with no central nilpotent
elements. Then the following two points are true:

(i) If char(R) = 3, then R ∼= Z3.

(ii) If char(R) is even and not exceeding 8 and all nilpotents of order ≤ 2 are
contained in J(R), then char(R) = 2 and R/J(R) is Boolean.

Proof. Item (i) follows immediately with the aid of Theorem 1 because as
noticed above R has to be indecomposable.

As for item (ii), we first observe that as 2 ∈ Nil(R) is central, it must be
2 = 0. Hence, if v ∈ R with v2 = 1, then (v − 1)2 = 0 and so v = 1 + t for some
t ∈ R with t2 = 0. Therefore, in view of our assumption, v ∈ 1 + J(R). This
relation, combined with the local invo-regularity of R, forces that R/J(R) is also
locally invo-regular with existing involution exactly 1. That is, both x and 1− x
are idempotents for any x ∈ R/J(R). The latter possibility also implies that x
is an idempotent, as needed. J

Pertaining these considerations to weakly tripotent rings, we may proceed
as in [9]: According to Proposition 2, for each r ∈ R, we have r = v + e =
(1 + v) + (1 + e) for some v ∈ R with v2 = 1 and e ∈ Id(R). But (1 + v)2 = 0 and
(1 + e)2 = 1 + e, so R is nil-clean (see, e.g., [11] or [12]). Moreover, we claim that
the index of nilpotence of R is at most 2. In fact, taken an arbitrary q ∈ Nil(R),
we write as above that q = v + e. With [3, Corollary 2.6] at hand we arrive at
e = 1. We, therefore, have q = v + 1 and hence q2 = 0 as 2 = 0. The claim
sustained (compare also with [19, Lemma 2.1] where the proof is unnecessarily
intricately stated). Another approach to extract this claim could be taken from
Lemma 1 above.
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Furthermore, since the homomorphic images of a weakly tripotent ring and
those of a nil-clean ring retain the same property, one deduces that R/J(R) has
to be simultaneously weakly tripotent and nil-clean. However, [19, Theorem 2.2]
allows us to conclude that R/J(R) is a subdirect product of a family of copies of
Z2, bearing in mind that the matrix ring M2(Z2) need not be weakly tripotent
(see Example 1(3) below). Consequently, we expect to have only R/J(R) ∼= Z2

or R/J(R) ∼= Z2 × Z2, since one expects that the inclusion R/J(R) ⊆
∏
λ Z2 is

impossible for λ ≥ 3 because, for example, the triple direct product Z2 × Z2 ×
Z2 cannot be isomorphic to the weakly tripotent factor-ring R/J(R). In fact,
assuming in a way of contradiction that R/J(R) ∼= Z2 × Z2 × Z2, we may refer
to, e.g., the ring T3(Z2) which is surely not weakly tripotent in accordance with
Example 1(2) quoted below. Indeed, there is an appropriate proper nil-ideal I
of T3(Z2) such that T3(Z2)/I ∼= Z2 × Z2 × Z2 with a consecutive epimorphism
T3(Z2)/I → T3(Z2)/J(T3(Z2)) as it is known that I ⊆ J(T3(Z2)). So, resuming,
the possibility for R/J(R) to be in general isomorphic to either R/J(R) ∼= Z2 or
R/J(R) ∼= Z2 × Z2 is not absolutely realistic.

On the other vein, the elements of a weakly tripotent ring of characteristic 2
satisfy (one of) the equations x2 = 0 or x2 = x3.

The ring T2(Z2) possesses the property that the factor-ring modulo of its
Jacobson radical is isomorphic to the direct product Z2 × Z2. So, about the
validity of the reverse implication, a question which immediately arises is whether
or not an indecomposable ring R of characteristic 2, for which z2 = 0 for any
z ∈ J(R) and for which the factor-ring R/J(R) has the presentation R/J(R) ∼=
Z2 × Z2, will be isomorphic to T2(Z2)?

The next (possibly non-commutative) examples shed some more light on the
currently studied class of rings:

Example 1. (1) The triangular (upper) matrix ring T2(Z2) is locally invo-
regular.

In fact, each (nontrivial) element in it is either an idempotent or an involution
or a nilpotent of order 2. As the first two types of elements are clearly invo-
regular, what remains to verify is that 1− q is invo-regular whenever q2 = 0. But
this follows elementarily since (1− q)2 = 1− q2 = 1 with 2 = 0.

Moreover, it was also shown in [1, Example 11] that T2(Z2) is even weakly
tripotent.

(2) The (upper) triangular matrix ring T3(Z2) is not locally invo-regular (and
thus it is not weakly tripotent).
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To see that, consider the invertible matrix x =

 1 1 1
0 1 1
0 0 1

. Direct calcu-

lations show that x3 6= x and x4 = I3, the identity 3 × 3 matrix. Now, setting,

y := 1 − x, one computes that y =

 0 1 1
0 0 1
0 0 0

 and y3 = 0 6= y. Further

straightforward computations guarantee that any involution matrix v in T3(Z2),

i.e., v2 = I3, is of the form v =

 1 a b
0 1 c
0 0 1

, where a, b, c ∈ Z2 such that ac = 0

(this certainly excludes the case a = c = 1).

Next, it is obvious that x cannot be written as x = xvx for some involution
v as x2 6= I3. We will demonstrate now that y is also non-presentable in such a
way, namely y 6= yvy. Assuming the contrary, we write 0 1 1

0 0 1
0 0 0

 =

 0 1 1
0 0 1
0 0 0

 1 a b
0 1 c
0 0 1

 0 1 1
0 0 1
0 0 0

 .

However, this leads to 0 1 1
0 0 1
0 0 0

 =

 0 1 c+ 1
0 0 1
0 0 0

 0 1 1
0 0 1
0 0 0

 ,

which is the desired contradiction 0 1 1
0 0 1
0 0 0

 =

 0 0 1
0 0 0
0 0 0

 .

It is long known that T3(Z2)/I ∼= Z2 × Z2 × Z2 for a proper nil-ideal I of
T3(Z2). So, although the quotient T3(Z2)/I is obviously Boolean and so weakly
tripotent, what could be extracted from this is that the same cannot be said of the
former ring T3(Z2).

Finally, it is worth to noticing that T3(Z2) is surely locally unit-regular, how-
ever (see [2, Corollary 4.5 (2)]).

(3) The full matrix ring M2(Z2) is unit-regular but not locally invo-regular.
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Indeed, by considering the invertible matrix u =

(
0 1
1 1

)
having the property

u3 = 1 6= u, one calculates that 1 − u =

(
0 1
1 1

)
= u2 6= (1 − u)3, whence

(1− u)2 = u and (1− u)3 = 1. This shows that M2(Z2) is, definitely, not weakly
tripotent. This fact, however, is not directly deducible from the corresponding
results presented in [1].

Further, we shall even show a bit more. The only non-trivial involutions in

M2(Z2) are the three ones v =

(
0 1
1 0

)
, w =

(
1 1
0 1

)
and y =

(
1 0
1 1

)
.

What suffices to check is the invalidity of each of the equalities u = uvu, u = uwu,
u = uyu as well as of 1 − u = (1 − u)v(1 − u), 1 − u = (1 − u)w(1 − u),
1 − u = (1 − u)y(1 − u). In fact, it can be verified by direct computations,
which we leave for a check to the interested reader, that the curious relationships
uvu = v 6= u, uwu = w 6= u, uyu = y 6= u as well as (1− u)v(1− u) = v 6= 1− u,
(1− u)w(1− u) = w 6= 1− u, (1− u)y(1− u) = y 6= 1− u hold. This, manifestly,
substantiates our claim after all.

(4) The (upper) triangular matrix ring T2(Z3) is not locally invo-regular (and
thus it is not weakly tripotent).

To substantiate this, we look at the invertible matrix A =

(
−1 −1
0 −1

)
which

is of order 6, that is, u6 = 1. For E being the identity matrix, namely

(
1 0
0 1

)
,

we consider the difference B := E −A =

(
−1 1
0 −1

)
, which also inverts in the

whole ring. As B2 =

(
1 1
0 1

)
6=
(

1 0
0 1

)
, the claim is sustained.

(5) It could be expected that the almost unit-regular ring R, having U(R) with
U2(R) = {1}, is non-commutative locally invo-regular which is neither weakly
tripotent in the sense of [1] nor local. However, the proof still eludes us.

This example leads us to the following strengthening of [2, Corollary 4.5].

Theorem 4. Let R be a ring and n ∈ N. Then the triangular matrix ring Tn(R)
is locally invo-regular if, and only if, either

(1) n = 1 and R is locally invo-regular

or

(2) n = 2 and R ∼= Z2.
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Proof. ”⇒”. The first point is straightforward, so we will be concentrated on
the second one. In fact, as in the proof of [2, Corollary 4.5 (2)], it will follow that
n = 2 or n = 3 and R is a division ring. Concerning the case where n = 2, it
easily follows that the factor-ring T2(R)/I ∼= R×R is locally invo-regular for some
appropriate ideal I of T2(R) as being an epimorphic image of the locally invo-
regular ring T2(R). Hence, we claim that R ∼= Z2. In fact, R × R being locally
invo-regular implies the same property for R. Assuming in a way of contradiction
that R 6= {0, 1}, it follows there is r ∈ R which is neither 0 nor 1. Assume also
that 2 6= 0. But as in R each nonzero element is invertible, it follows from the
proof of Theorem 1 that 3 = 0 and hence R ∼= Z3. However, Example 1(4) shows
that this is impossible. So, R has characteristic 2. That is why it must be r2 = 1
or (1−r)2 = 1 as both r and 1−r invert in R. The first equality gives (1−r)2 = 0,
so r = 1, contrary to our hypothesis. The second one gives 1−r2 = 1, i.e., r2 = 0.
Thus r = 0, contrary to our assumption. Finally, R really must contain only two
elements, namely 0 and 1, as required.

Concerning the case where n = 3, we assert that the ring T3(R) cannot be
locally invo-regular as the ring T3(Z2) is not so appealing to Example 1 (2) quoted
above. Indeed, there is a sequence of epimorphisms T3(R)→ T3(R/M)→ T3(Z2)
for some maximal ideal M of R.

”⇐”. As (1) trivially ensures that Tn(R) ∼= R, we are concentrating on (2).
What needs to be proved is that T2(Z2) is locally invo-regular. To this aim,
Example 1(1) assures that T2(Z2) is such a ring. J

The next comments are worthwhile.

Remark 1. As already noted above, in [1], Breaz and Cı̂mpean investigated those
rings R for which either (at least one of) r or 1− r is a solution of the equation
x3 = x whenever r ∈ R. In the commutative case, the authors obtain a complete
characterization like this: R is a subring of the direct product K1×K2×K3 such
that K1/J(K1) ∼= Z2, for every z ∈ J(K1) : z2 = 2z, K2 is a Boolean ring
(i.e., a subring of a direct product of copies of Z2), and K3 is a subring of a direct
product of copies of Z3.

We shall now illustrate how some of this can be somewhat deduced from already
well-known results established in [12]. Indeed, at the beginning, we assert that all
indecomposable weakly tripotent rings of characteristic 3 are always isomorphic
to the field Z3 and thus they are commutative. To see that, we state that x = x3

implies that x2 is an idempotent and so either x2 = 0, which leads to x = 0, or
x2 = 1. On the other vein, as already seen above, 1 − x = (1 − x)3 implies that
x = x3, which is nothing new. Now, an application of [12] is a guarantor of our
initial claim. Furthermore, treating now the case where 8 = 0 (and hence 2 is
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a nilpotent – this case also includes the cases 2 = 0 and 4 = 0), we assert that
U(R) = 1 +Nil(R). In fact, the containment ⊇ being obvious, we need to show
the opposite one. So, given u ∈ U(R), it will follow that u2 = 1 or (1 − u)2 = 1
(as u3 = u or (1−u)3 = 1−u). Thus, in the first possibility, (1−u)2 = 2(1−u) ∈
Nil(R), whence 1 − u ∈ Nil(R) and u ∈ 1 + Nil(R), as required. In the second
possibility, one gets u2 = 2u ∈ Nil(R), which is inadequate. Finally, the assertion
is sustained. That is why, as demonstrated above, x = x3 implies that x2 is an
idempotent and (x−x2)2 = 2(−x+x2) is a nilpotent, so that x ∈ Id(R)+Nil(R).
In the remaining case, 1 − x = (1 − x)3 implies that (1 − x)2 is an idempotent
and using the same trick once again by replacing x with 1 − x, we arrive at
1− x ∈ Id(R) +Nil(R) giving up x ∈ (1− Id(R)) +Nil(R) ⊆ Id(R) +Nil(R),
as asked for. This means that R is nil-clean and, according to [11], R must be
strongly nil-clean possessing the property R/N(R) is Boolean, where the symbol
N(R) represents Nil(R), calling it the nil-radical of R.

We end our work with the following several questions that come to mind
immediately and which remain unanswered in the text above.

The first two of them are concerned with corners and say the following:

• If the ring R is locally invo-regular (resp., locally unit-regular), does it
follow that the corner subring eRe is also locally invo-regular (resp., locally unit-
regular) for any e ∈ Id(R)?

• If R is a locally invo-regular (resp., a locally unit-regular) ring, is either eRe
or (1−e)R(1−e) an invo-regular (resp., a unit-regular) ring for every e ∈ Id(R)?

• If R is a locally invo-regular ring of characteristic 2 such that J(R) = {0},
is it then true that R is a Boolean ring?

Notice that, in view of Theorem 1, this needs to be established when R is
non-abelian.

• Describe, up to an isomorphism, the structure of locally n-torsion regular
rings R in the sense that, for any r ∈ R, there exists an n-torsion unit w of R
for some natural n ∈ N (that is, wn = 1 with n ∈ N) such that either r = rwr or
1− r = (1− r)w(1− r).

For some relevant material on that aspect, the reader can consult with [7].

Acknowledgement

The scientific work in this article is partially supported by the Bulgarian
National Science Fund under Grant KP-06 No 32/1 of December 07, 2019.



Locally Invo-Regular Rings 43

References
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