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Stability Conditions for Linear Difference System
With Two Delays

S.U. Deger*, Y. Bolat

Abstract. In this paper, we give new necessary and sufficient conditions for the asymp-
totic stability of a linear delay difference system with two delays

Tyl — 0y + ATy +20—1) =0, ne{0,1,2,...},
where A is a 2 x 2 constant matrix, a € [—1,1] —{0} is a real number and [, k are positive

integers such that 1 <1 < k.
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1. Introduction

We consider a linear delay difference system with two delays

Tpt1 — axp + A(Tp_ +2,—) =0, ne{0,1,2,..}, (1)

where A is a 2 x 2 constant matrix, a € [—1,1] — {0} is a real number and [, k
are positive integers such that 1 <[ < k. Also, suppose that the solutions of
the system (1) are uniquely determined by initial values z_j, _g1, ..., 2o € R
In this paper, we give new necessary and sufficient conditions for the asymptotic
stability of the system (1).

Dynamic models are a useful tool to study in all areas of life and get a bet-
ter understanding of relevant phenomena such as populations and economics.
These models constitute mathematical representations for discrete processes by
difference equations. Especially, stability of these difference equations has been
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extensively studied in the literature. Recently, they have been investigated by
many researchers. For example, Levin and May [1], Clark [2], Kuruklis [3], Mat-
sunaga and Hara [4], Matsunaga [5], Nagabuchi [6], Deger and Bolat [8], Kipnis
and Malygina [9], Ivanov, Kipnis and Malygina [10] and Cermék and Jéansky
[11, 12] have investigated stability of linear delay difference equations. Especially,
the studies of Matsunaga [5] and Nagabuchi [6] have been a source of inspiration
for this study. Matsunaga [5] generalized the study of Matsunaga and Hara [4]
with one delay. Nagabuchi [6] investigated the study of Matsunaga and Hara
[4] for two delay.The aim of this paper is to give new results that generalize the
study of Nagabuchi [6] for asymptotically stable linear delay difference system.
System (1) can be written with z,, = Py, for a nonsingular matrix P as

Yns1 — ayn + P AP (Yp_p + ynt) =0 n € {0,1,2,...}.

Thus we have merely to take into account system (1), where the matrix A can
be one of the following two matrices in Jordan form [7]:

(i) A:(‘h p) (i) A=q<c9se _SM),

0 g sinf  cosf

where ¢, q1, g2, p and 6 are real constants with 0 < [0| < 7.

2. Main Results

Theorem 1. Assume that 0 < |0] < 5, a € [-1,1] — {0} and the matriz A in
the system (1) has the form (ii). Then system (1) is asymptotically stable iff

(")
9 cos <(k —21)(;1—[)2 |9!)>

Theorem 2. Assume that a € [—1,1] — {0} and the matriz A in the system (1)
has the form (i). Then system (1) is asymptotically stable iff
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The proof of the theorems. The purpose of this paper is to obtain neces-
sary and sufficient conditions for asymptotic stability of the system (1). It is
required to show that all the roots of characteristic equation of system (1) lie
inside unit disk D?[7]. For the proof, root analysis is applied to the system (1).
The characteristic equation of the system (1) is

F () = det ((Ak’“ - a/\k> I+A (Ak’—’ + 1)) —0, 2)

where I is a 2 x 2 identity matrix. We will prove our theorems for the case (i7) of
the matrix A. The proof for the case (i) of the matrix A is similar. We consider
the Eq. (2). Then

F(A) =

~ det Nt —aXF 4 gcosd ()\k_l + 1) —qsinf ()\k_l + 1)
¢ gsing (AN 41) AL Ak 4 geos (A 4 1)

= ()\’”1 —aX¥ 4+ gcos b ()\k_l + 1))2 + (q sin 6 ()\k_l + 1))2

_ (/\k+1 — axb o geif ()\kfl 4 1)) <)\k+1 —aXF 4 ge (Akfl I 1))
If we get

F ) = AL apk 4 geif (A’H + 1) —0, (3)

then _
FN)=fNf) =0,

where X is the complex conjugate of A. Consider the equation
FO) =X = axt 4 ge? (A4 1) =0, (4)

If6 = —6 in (4) with -5 < 6 < 0, then (3) is obtained with 0 < 6 < 5. Thus, we
have merely to consider the case f () = 0 with 0 < # < 7. Furthermore, system
(1) is asymptotically stable iff all the roots of characteristic equation f(\) =0
with 0 < 6 < 7 lie inside unit disk D?. Tt should be noted that, for ¢ = 0, the
roots of (3) are 0 (multiplicity k) and a (simple), furthermore, (3) has no real
root when ¢ # 0. Now we are ready to give lemmas.

2.1. Some auxiliary lemmas

Firstly, we will calculate arguments of complex roots of the (3) on D? for

q# 0.
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Lemma 1. Suppose that 0 < 0 < § and a € [~1,1] — {0}. Then the arguments
of complex roots of (3) on OD? are as follows:
(2v+1)7+ 20
wl/ = - 7 . 7
k+1
where v = {— H% + %H +1,...—1,0,1, ..., k“ 1_20 H} { H Etlr2 4
H% — 2|}, IIl denotes greater integer functwn and 1,k are posztwe mtegers

such that 1 <[ < k.

Proof. Let A € OD?. Then A = ¢ with w € (—m,7]. Thus \ satisfy
F) = A —adF 4 e (\F=1 +1) = 0. Then
LA G
ett ()\k + )\l)'

)

q= (5)

— 1
Since A = Y e obtain conjugate of (5) as

e (ar—1)
VP (6)
From (5) and (6), we have
) o

Since a € [~1,1] — {0}, we can choose a = cosw for w € (-7, 7] — {-5,5}. If
we write A = e in (7), we have

210 _ giw(kHH1) —iw 8)

So we get
2v+1)m+20
k+1 '

wW=w, =

The proof is completed. «

Now we will determine the value of ¢ # 0 in terms of a and the argument w,
when a root of (3) lies on D?.

Lemma 2. Suppose that 0 < 0 < 5 and a € [-1,1] —{0}. If A = € is a root of
(3) on OD?, then

sin w,,
2sin (kw, — 0)’
2u+1)7+ 260

k+1

Qv =

where ¢ = {q,} with w, = . Also, for each q,, the simple root

A = €™ s the only root on 0D?.
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Proof. We consider (6) and (8):

el (1—a))
T ONOREN
(1 —al)
(1 —al)
e— 0 \—k+1 ()\Zk + )\kH)
(1 —al)
e~ \—RHT (\2F _ ¢2if)
(1 —al)
by ()\ke—ie _ )\—keie) ’

e _ p—iw

Since a = cosw for w € (—m, 7| — {—g, g} and sinw = — Ve have
eiw _ e—iw
= 2
2 (ei(wk—e) _ e—i(wk—@))
27
or .
B sinw
= 2sin (wk — )"
Now let us show that (3) has a simple root. It is sufficient to show that
2 | #0.If 24 | # 0, it can be said that f (\) is locally homeomorphic
0N =y, OX \=»,

in a neighborhood of A = A\,. This expression indicates that A, is a simple root.
From (3) we obtain

gﬁ | = (E+ DA — ka4 el (k- 1) AR
A=Ay
L AL )k -
= (k4+ 1)\ — ka)t 1—W(k:—l))\’,j =1
ML+ DA — laXET - (B + 1) A, — kal 10)
B At '
of
Suppose that s |)\ = 0. Then from (10), we get

I+ D)X o (e 1)\, — ka =0, (11)
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— 1
Since \, = —, we obtain conjugate of (11) as
v

(+1) o (k+1)

)\];_Hl - )\],f_l N —ka=0

or
—kaXETH (B )M e, + 1+ 1 =0, (12)

Using (11) and (12), the following equality can be derived:
(k+1+2)e®04) _ (41 4+2)e®9) _ (k4 142)e™ + (k+1+2)e ™ =0

(k+142) (#0670 41) (e — ™) = 0
(k+1+2) ()\];_l + 1) sinw = 0.

Since ¢ # 0, k+1+2 # 0 and \f= +1 £ 0, % | # 0. Hence the proof is
A=Ay

completed. «

Remark 1. From Lemma 1 and Lemma 2, it can be seen that the value of q, is
sin w,,

symmetric with respect to k and l. Thus we have q, = m
sin (lw, —

In the next lemma, the movement of the roots of (3) will be investigated on

OD? as q varies. Here, note that A | =\, (q,) =X, and A | = A, (0) = a are
9=qv q=0
the roots of f () =0 around ¢ = ¢, and ¢ = 0.

Lemma 3. Suppose that 0 < 0 < § and a € [-1,1] — {0}. |)| increases as |q|
increases in the neighborhood of ¢ = q, .

Proof. Consider f € C? and define
Fg, ) = AL ank 4 getf ()\"H n 1) .

Since A, is the root of f(A) = 0, f(qu,A\y) = 0. From the proof of Lemma 2

we know that af(gl;\’)\v) | # 0. Also, by implicit function theorem, A, is
A=Ay
holomorphic in the neighborhood of ¢ = ¢,. Thus, from f (¢, \,) = 0, we have
of
d\y dq
A __0q 1

A
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Also, since A\, = re*, we have

d\y 0y o\, Or o\, Ow

dg ORe(q)  Or ORe(q) + Ow ORe(q)

_ w Or e ow

ORe(q) e ORe(q)
B ﬂ or i ow
~r \ORe(q) ORe(q)

Y or Lir ow
~ r \ORe(q) dRe(q) )’

Since ¢ is limited within real values and from (13) we obtain

r Of R< r@f@f)

—_— — e S ——
dr r dA\y Ao Oq Ao O0q OA
o v v = ) 14
=R () = e of of P =
oA BN
Since (10) and ? _ ! (AFFL — aXF) for g # 0, we have
q q
_rofof _
Ao Oq ON

Ll()\ﬁﬂ—a)\ﬁ) i)\ﬁ*Hl l—_l—l B la_ +k+1—k‘a
v q AL AL R

1., 1 1 k+1 ka
= 7*/\1) (A —a) [/\5)\5_[“ <(l +1) —laA, + AR - AL—k—l)]
r1 I[+1 la\, kE+1 kaX,
= g (Av —a) [ k—1 T Nk—l + T Nk }
v ) —|— 1 v + 1 )\1/ + 1 )\l/ + 1

_r(/\ _a) i—a l n k n 1
YA N1 AP p1 1-Xa
T 2 l k‘ 1
=i, = .

q‘ al [Aq’il+1+A£’“+1+1—Aua}
2uv+1)m+20
k+1

r 0f9f v 2 l k 1
Ay — . 4 . .
| | eiw(k=0) 4 1 + eiwl—=k) 41 + 1—ewcosw

If @ = cosw can be chosen with w = , then
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Taking the real part of last equality, we get
r Of 0f r o (L4 kK
LR A ) - Tt ). 15
Ao OgOX ¢ | q 2 * (15)
If we substitute (15) into (14), we get
l+k
g Pl <J; i 1) '
— = for ¢ # 0. 16
dq P z (16)
| ox

We notice that A\, # a. From (16), the proof is completed. «

Lemma 4. In the neighborhood of ¢ = 0, the following inequalities are true:
(I) If0 <8 < % and a € (0,1], then sgn (|A\| — a) .sgn (q) < 0 for ¢ # 0.

(II) If 0 = 5 and a € (—1,1] — {0}, then |A| > a for q # 0.

8f 10 k-1
e ; S
Proof. (I) Using (13) we get ‘%’ | = —% | = _M_
q=0 =~ (¢;M)=(0,a) a
) o\
Since
dr r d\,
2 Rel —
dq © <AU dq>
eiG (ak—l + 1)
cos (ak*l + 1)
- aF+1 J
we have
r
dg ’

for 0 < # < § and @ € (0,1]. On the other hand, since A\, (¢,) = A, and
A (0) = a,

d _
(@) = A O)
dq q—0 q—0

— hmw<0‘

q—0 q
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Thus (I) holds for ¢ # 0.

d d?
(II) In the case of 6 = E, since — | = 0, the sign of —Z | should be
2 dq q=o dg* q=o
considered. Since f (¢, A, (¢)) = 0, we obtain

Pf o Pf A\, Of (AN Of BN _
0q? 0q0N, dg  ON2 \ dg o\, dg?

From here, we have

d?x,  2(a"'+1) (ld" T+ k)
dq? - a2k+1 J

thus

1d2\,
aTq2 > O.

Since A, = re*,

2N, A\ ppdrdw (dw 2 N d2r N ird%
= — 11— — — —_— —_— i .
o2 7 dq dq dq q q

By restrictions on the real values of ¢, we conclude

R (dw)2 L
dg? r dgq dRe(q)* ]’

Via polar representation, we have
d?r rod?\, dw\? r d?)\,
D — —_— > — .
dg? Re(% dq2>+r<dQ> = e </\u dq2>

d*r o> Re A | 2(a T 4 ) (T 4 k)
dq? q=0= N dg® ) © a2k+2

Especially,

> 0.

So, the assertion of this lemma holds for g # 0. <

Now, using Lemma 3 and Lemma 4, we can debate the asymptotic stability
of the system (1).

It follows immediately from Lemma 4 (I);

If ¢ increases away from 0, the root A (0) = a on dD? lies inside D?. Thus
g > 0 is a necessary condition for the asymptotic stability of the system (1).
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Consider ¢ > 0;

From Lemma 4 (I) it follows that when 0 < 6 < 7, all the roots of f(\) =0
lie inside D? in the neighborhood of ¢ = 0. From Lemma 3 and Lemma 4 (1)
it follows that when 6 = 7 and the roots of f (A) = 0 depend continuously on ¢
and if ¢ increases away from 0, then the root A (0) = a may overflow D2, thus
f (\) = 0 might have at least one root in C — D? as long as ¢ > 0.

So all the roots of f (\) = 0 are inside D? iff ¢* > ¢ >0 and 0 < 6 < 5 hold,

where ¢* = min{g, : ¢ > 0}. Hence ¢* > ¢ > 0 is also a sufficient condition.

Lemma 5. The system (1) is asymptotically stable iff 0 < q¢ < q*, where

]

o

* q-1, <9§ PR
€= q0, _g §0<07
. <7r—20> . <7r+29>
_ sin k;+l B Sin k+l
N (e GRr) “"dq0_2 G0 (r+ 200\
cos 2(]{3—|—l) cos 2(/{7—|—l)
Hence we can write
sin <7T—2|9|>
k+1
q = . 17
S (D (x—2[0) 1
2(k+1)

We notice that 0 < |0] < 5 is true for ¢* > 0, so necessary and sufficient condition
is only reduced to 0 < q < q*.

Proof. Both ¢_1 and gg have similar proofs, thus the proof will be provided for
g—1. It is enough to show that the inequality ¢, > ¢_1 is satisfied for every ¢, > 0,
namely:

sin wy, sinw_1
2sin (kw, — 6) — 2sin (kw_1 — )

for 0 < 6 < (18)

Do S

Since w_1 = 0, (17) is obvious for § = g Thus, we will provide the proof for
0<b< T Furthermore, the following cases are considered for the proof:

(1)0 < wy < % for ¥ > 0. Then, the following equalities hold:

kw, —0 = (2V+1)7T<577 >
14
kw_1—0 = —7m+n+0,
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Zv;:lflap;iri;: —w_1 = W_TQQ 0 = % n : (M —Fk)p and § = w, =
—y k+1= M. So, (17) can be rewritten as
sin & sin ¢
5 sin <§77 _0> ~ 2sin(n+6)
P
Then we have
sin & sin (n + 0) > sin @sin (i; — ) : (19)
Since 1 <1 < k,
M < 28<2M -2
@ S(M—@¢§jf
p<n< -0 (20)
and ™+ 26 m
i <w, < 5
2 p<e<t (21)

M

2
We take H (£,71) = sinésin (n + 6) — sin ¢ sin (&7 - ) . Thus the proof of (18),
P

on the rectangular region

260 T T
D= R?: == <E< ., p<n<=—40
{(5’77)6 M+900_€_2590—n—2 }’

is reduced to inequality
H(&n) = 0. (22)

For the proof of (21), investigations on D and 9D will be conducted, respectively.
Stepl: H(&,n)>0onCr(H):={(&n) € D:dH (&n)=0}. FromdH (§,n)
=0, we get

OH . . &n >n
— = cosésin(n+ 0) — sin ¢ cos ( —-0)—=0
o€ Esin (n +0) @ - "
on = sinécos(n+ 0) — sinpcos <&70>£—0.
on ® ®
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§ 1
tané  tan(n+6)
¢ can be expressed as a function ® of 7. Then ¢ = ®(n) can be written for

From the above two equalities, we have on Cr(H). Hence

u
¢ <n < 5—0. Since the function
anu

13 n—+0

tané  tan(n+6)’
(21) again. Then

b
is monotonically decreasing for 0 < u < 5

and

® (n) > n+ 0 is obtained for ¢ <7 < § — 0. Consider

H(®(n),n) = sin®(n)sin(n+6)—sinpsin <¢(77)77 —9) ,

@
([ ®(m)n
H@0).m) sin@(n)sm(mmsiwsm( o)
® () (n+0) ® () (n+0) ®(n)(n+0)
ByM>1,wehave
@
_(®(m)n
H(®(n),n) - sin ® (n) sin (n + 0) B singpSHl( 9)
() (n+0)— 2 (n+0) @ emn _,
@

Since

is monotonically decreasing for 0 < u < 7,

sin (n + 0) - sin® (n)

10 = o) for @ (n) >n+6. (23)
From (22), we obtain
(27
sin® (n)\* _ sing S < 0) T
(56) =% oy, esrER sl 3

¥
Thus (21) is reduced to (23). The proof of (23) will be made as follows. Since

o
M —0>®(n) —60 > ¢ >0, the following three cases are available:
12

®(n)n

u
case (1) 0 < — 60 < 7 : Since the function is monotonically

decreasing for 0 < u < 7, we can write
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2
. sin <‘I)(77)77_9> sin(é(n)n—G)

@ emn _, emn _, 2
12 ¥
Consider em)n _ 6 — @ (n). Then we obtain @ (n) (17 - 1> — 60 > 0. Thus we
¥ ¥
get
P
o (n) < (Z)” —0. (26)

sinu
Since the function is monotonically decreasing for 0 < u < 7, by (25), the
proof is completed.

@ P
case (2) w< (Z)n — 6 <27 : It is obvious that sin ( () _ 0) <0.

@
®(n)n

—0>2r:

case (3)

(2,
sin ® (1) \ 2 singosm o S 4 1 -0 f cn<™ _yg
orpsnsg :

(1) o ®mn _, “m

Thus, the proof of Step 1 is completed.
Step 2 : H (§,n) > 0 on 0D; For this, investigations at n = g -0, ¢ = g,

20
n=¢pand = M+<p0 on 0D are made one by one.
Asnz%—@on@D,

H(&E—H) = sin{sin(z—Q#—@)—sin sin €<72T_0>—0
> siné —sinp > 0.
AsgzgonﬁD,
m LT o fmm
H(z,n) = sm2sm(n+9) smgosm(z(p 9)

v

sin (n + 6) +sinp > 0.
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If we investigate the case n = ¢ on 9D, then

H(p) = Siﬂﬁsm(so-l-@)—simpsin(if— >
= sinésin (¢ + 6) — sin psin (€ — )

= sin& cos sinf + sin psinf cos € > 0.

2
ASf:MH—FSOoOIlaD,

Ci
M %0 77_9

20 26
H < + 900,77> = sin (M + g00> sin (n 4 6) — sin ¢ sin

M ®
We need to examine
<2¢9+ )
-7 T %o N
2
M gt = 29(”—1)
2 ¥
20
= —2n—M
M@(n )
20 T
< = Z_9) - —
< gp, (2(3-0) - we) =0

Thus, we have

Hence, we can write

sin

(29+90>?7
s 0
M)y < sin (

n+0).
2

7T—29ad T
1 = —_—
PO

Since ¢ =

<%+ <z
12 M 800_2-

20
Hence, H (§,7) > 0 on 9D as £ = i + ©o.
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T sin w,,
i) —— < wy, f . k h y = ————— with
) 5 S W < 0 for v < 0. We know that ¢ Ssin (wnl — 0) wit
2 1 26
W, = w— Also we get
20 — < 20 -7
2l = M h
sinu L . .
We define h(u) = s (lu—8) which is monotonically decreasing for u €
207_”,0 . We obtain
21
20 —m
h( 57 ) > h(w-1). (27)
20 —
Firstly, we consider w, € ( 5] W,O). Then
wy < W-1,

@ =h(w,)>h(w_1)=q-1.

Secondly, we consider w, € [—;r, 20 2; W]. Besides, for
o, € ((20—(2m+2)7r> (29—(2m+1)7r>)
21 ’ 21
with m = 1,2, ..., using w, € [—;T, 20;;77] and (26), we have
|sin wy, |

W 2 [sin (I, — 0))|

. 20 —
sin
21

- 2

20 —
= h
(%)

> h(w-1) =q-1

Thus, the proof is completed. «

Hence, the proof of Theorem 1 is completed with the proof of Lemma, 5.
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3. A higher dimensional linear delay difference system with two
delays

Finally, a higher dimensional linear delay difference system with two delays
is considered:
Tpt1 — atp + A(Tp_p + ) =0, (28)

where A is a d X d constant matrix, a € [—1,1] — {0} and [, k are positive integers
such that 1 <[ < k.

Theorem 3. Let qjewj (1 =1,2,...,d) be the eigenvalues of A. Then the system
(28) is asymptotically stable iff

<7T—2|9j|>
"Rt
0<g< j:1727“'7d7
5 eos [(F =0 (T =2]6;])
2k 1 1)

where g, 0; are real numbers and |6;| <

ol 3

Proof. Since qjewi (j =1,2,...,d) are the eigenvalues of A, the characteristic
equation of the system (28) is given by

ey :jﬁl (A1 = axt 4 gei® (W14 1)) =0,

Thus, Theorem 3 can be seen as a result of Theorem 1 and Theorem 2. «
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