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On Some Properties of A’ —Summability and
A" —~Summability

O.H. Edely

Abstract. In this paper we define A" —summability and find its relationship with
AT —summability defined by Savas et al. [25]. Moreover we define and study the no-
tions of A’ —Cauchy summability and A’"—Cauchy summability and study some of their
properties.
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1. Introduction and preliminaries

Let I, and c¢ denote the spaces of all bounded and convergent sequences,
respectively, and R denote the set of all real numbers. Let A = (ank)ffk:l be an
infinite matrix and z = (z3);-; be a number sequence. By Az = (A4, (z)), we
denote the A—transform of the sequence x = (zy,), where A, (z) = > 72 ank®s.
We say that = is A—summable to L if lim, A,(x) = L. A matrix A is called
regular if it transforms a convergent sequence into a convergent sequence leaving
the limit invariant, i.e. A € (¢,¢)peq if A € (¢, ) and lim,, A, (z) = limy, 2, for all
x € c. The well-known necessary and sufficient conditions (Silverman-Toeplitz)
for A to be regular are:

o ||A]| =sup )] |ank| < oo;
n k
e lima,; = 0, for each k;
n

e lim> a,, =1
nok
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The idea of statistical convergence was introduced by Fast [11], which is a
natural generalization of the usual convergence of sequences. Let K C N, the set
of natural numbers. Then the natural density of K (cf. Niven and Zuckerman
[21]) is defined by

1
5(K):limﬁ|{/€§n:k‘€K}\,

if the limit exists, where the vertical bars denote the cardinality of the enclosed
set. Notice that
IK) = liTEn(ClxK)n,

where C1 = (C, 1) is the Cesaro matrix of order 1 and x, denotes the character-
istic sequence of K given by

[0, if i¢K,
(XK)i_{ 1,if ic K.

Definition 1. ([11]) A sequence x = (xi) of real numbers is said to be sta-
tistically convergent to the number L provided that for every ¢ > 0, the set
K(e) = {k € N : |z, — L| > €} has natural density zero; in this case we write
st —limz = L.

Notice that every convergent sequence is statistically convergent to the same
limit but not conversely. For example, let

o k , if k is a square,
7l o ,otherwise .

Here z is unbounded, even so it is statistically convergent to zero.

Fridy [12], Salat [22], Connor [6], Mursaleen and Edely [17] and many others
studied it as a summability method. In [10], Edely and Mursaleen generalized
these statistical summability methods by defining the statistical A—summability.
Other important variants of statistical convergence can be found in [3], [4], [5]
and [13].

Definition 2. ([10]) Let A = (ai;) be a non-negative regular matriz. A sequence
x is said to be statistically A—summable to L if for every e > 0, 6({i < n :
lyi — L| > €}) =0, i.e.

1
lim—|{i <n:ly;— L| >€}| =0,
non

where y; = Ai(x). Thus z is statistically A—summable to L if and only if Az is
statistically convergent to L. In this case we write L = (A)g—limz = st—lim Ax.
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The idea of I—convergence was introduced by Kostyrko et al. [15] as a gen-
eralization of statistical convergence. Several applications and generalizations of
this work can be found in ([1], [8], [9], [14], [16], [18], [19], [23], [24], [25]).

Definition 3. Let X # @. A non-empty class I C P(X) of subsets of X is said
to be an ideal in X provided that I is additive and hereditary, i.e. if

(1) @ el,

(ii) A, Bel = AUBe€,

(tit) AcI, BC A= Bel.

An ideal I is called a non-trivial if I # @ and X ¢ I. A non-trivial ideal I
in X is called admissible if {z} € I, for each x € X.

Definition 4. Let X # @&. A non-empty class F C P(X) of subsets of X is said
to be a filter in X if

() o ¢ F,

(ii) AA Be F = ANBEF,

(tit) Ac F, BOA=— BeF.

Let I be a non-trivial ideal in X. The filter F(I) = {M = X\A: A€ 1} is
called the filter associated with the ideal I.

In [15] Kostyrko et al. defined I—convergence and I*—convergence and gave
necessary and sufficient condition for the equivalency of both definitions.

Definition 5. ([15]). A real sequence x = (xy) is said to be I—convergent to
L € R if for every e > 0, the set

K(e)={k:|zx —L| > €} el
In this case we write I —limxy = L.

Remark 1. (a) If I = Iy, = {K C N: K is finite}, then I—convergence coin-
ctde with the usual convergence.

(b) If I = Is = {K CN:§(K) =0}, then I—convergence coincide with the
statistical convergence.

Definition 6. ([15]). A real sequence x = (1) is said to be I*—convergent to
L € R if there is a set H € I such that for M = N\ H = {my, ma,......}, where
m1 < mo < ... , we have limz,,, = L. In this case we write I* —limxy, = L.

7

Remark 2. Throughout the paper, I will be a non-trivial admissible ideal in N
and A = (any) will be a non-negative reqular matric.
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2. A'—summability and A" —summability

In this section we introduce the notion of AT —summability and find its rela-
tionship with A’ —summability. The following definition was introduced in [25]:

Definition 7. (/25]). A real sequence x = (x,) is said to be Al—summable
to L € R if the sequence A, (x) is I—convergent to L. In this case we write
Al “lima, =L

Remark 3. (a) If I = I5, then Al —summability reduces to statistical A— summa-
bility due to [10].
(b) Every convergent sequence is Al —summable to the same limit.

Definition 8. A real sequence x = (xy,) is said to be AT — summable to L if
there is a set H € I, such that M = N\ H = {my,ma, ...... } € F(I), where
m1 <mo < ... , and

hgn? AmkTh = lilmymi = L.
In this case we write A" —limzy, = L.
Now we give a relation between A/ —summability and A’ — summability.
Theorem 1. If AT —limay, = L, then Al —limxy, = L.

Proof. Let AT —limxj, = L. Then there exists H € I such that M = N\ H €
F(I), where M = {my,ma,...... }. Therefore for any € > 0 there exists N € N
such that

|Ym, — L| <€, fori> N.

Let K(e) = {n: |y, — L| > €} and {my,ma,.....,my} = B. Then we have
K(e) CHUB, so K(¢) € I, since H,B € I. Hence A —limz, = L. <

Remark 4. The converse of Theorem 1 is not true in general.

o
Example 1. Let B; be mutually disjoint infinite sets such that N = |J B;. Let
i=1
I be the class defined as

I= {B C N: B intersects only finite numbers of Bgs} .

Then I is a non-trivial admissible ideal in N. Define x = (zx) as

1
SUk:f,kEBZ’,
1
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and A = (an) as
I if k=n+1,
k=19 0 , otherwise.

So, we have

1
Yn = Zankxk = {; n+1¢eBhB;.
k
Here x is not A—summable, but x is Al—summable to zero, since for any
€ > 0, the set
{n:lyn| > €} el

Now let’s show that x is not A" —summable to zero. Suppose if it is pos-
sible that = is A" —summable to zero, then there exists a set M = N\ B =
{m1,ma,.....}, where B € I and limy,,, =0.

(2

Since B € I, then there exists r € N such that B C By U By U .... U B,.
So B,y1 € M. Therefore yp,, = TJ%l for infinitely many i’s. Hence x is not
A" —summable to zero.

In [15], a necessary and sufficient condition was given for the equivalency of I—
convergence and I*— convergence. We give similar results for A’ — summability
and A”"— summability. We need the following lemma due to [1].

Lemma 1. ([1]). Let I be a non-trivial admissible ideal in N. The following
conditions are equivalent:
(1) I satisfies (AP); if for every sequence (Ay) of pairwise disjoint sets from
I there are sets B, C N, n € N such that the symmetric difference A,AB,, is
finite for every n and |J B, € I.
n

(i) I satisfies (AP"); the same conditions on (AP) but pairwise disjointness
of A, is not required.

(#i7) I is a P— ideal; if for every sequence (Ay) of sets in I there is B € I
with Ay, \ B finite for every n.

Theorem 2. Let I be a non-trivial admissible ideal in N which satisfies the
condition (AP). If AT —limxy, = L, then AT" —limx;, = L.

Proof. Let Al —limz;, = L. Then for every € > 0, we have
{n:|ly,— L| > €} el

So for every n the sequence (A4,) of sets

1
An:{n:|ynLIZn}€I.
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Since I satisfies the condition (AP) and (A,) is a sequence of sets in I,
by Lemma 1, there exists a set B € I such that A, \ B is finite for each n. Let
M =N\ B = {my,ma, ...... }, so M must contain infinitely many terms, otherwise
B ¢ I. Now for any v > 0, there exists NV € N such that % < v. Then

1

Therefore the set

1

{n:yyn—L\<N}\{n:AN\B}eM.

Hence we have
|yn — L| < v,¥n > N,n € M,

ie. A" —limay=L. <«
Theorem 3. If Al —limx, = L implies AT —limxy, = L, then I satisfies the
condition (AP).

Proof. Let A" —limzy, = L whenever A’ —limxj, = L. We need to show
that I satisfies the condition (AP).
Let (A;) be a sequence of pairwise disjoint sets from I. Define x = () as

_— % , if k€ A;, k is nonsquare,
K 0 ,otherwise ,

and define a non-negative regular matrix A = (a,j) as

1 ,ifneA;, n=k,
Apg = 1 ,nEN\LEJAi,k:TLZ,
0 , otherwise.
Then

1 if n € A;, nis nonsquare
E AnkTf = Kt .
p 0 , otherwise.

We can see that z is A/ —summable to zero, since for any € > 0 , there exists
N € N such that % < €, so the set

Ke)={n:|lyn—0/>e} CAUAU...UApN,
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which belong to I, hence
AT —limay, = 0,

and consequently we have
AT —limay, = 0.

Now by definition of A", there exists a set D € I such that M = N \D =
{mq,ma, ...... } and limy,, = 0. Let us define a sequence of sets D; € I as
1

D; = A; N D. First we need to show that the symmetric difference A;AD; is
finite. Since limy,,, = 0, the set {m; : |ym,| > v} has only a finite number of

K3
terms for every v > 0, so for each i, A; N M is finite. Since

we have A;/AD,; is finite.
Lastly, since

UDi:U(AmD):Dm<UAi> CDel,

2

we have JD; € I. <
i

In the end of this section we give similar result for continuity as in [2] and
[15].

Theorem 4. A real valued function f : R — R is continuous if and only if
whenever I — limy, = L, we have I —lim f(y,) = f(L).

Proof. Let x = () be a real sequence and A’ —lim zj, = L,i.e. [—limy, = L.
So for any € > 0, we have

{n:lyn— Ll =€} e,

Le.
B={n:|y,— L| <€} € F(I).

Since f is continuous, for each v > 0 there exists n > 0 such that |z — L| <7
implies |f(z) — f(L)| < v. Therefore, for ¢ = 7 and for every v > 0, we have

B={n:ly.— Ll <n} < {n:|f(ya) - S(L)| < v} =C.
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Since B € F(I), we have C € F(I). Hence I —lim f(y,) = f(L).
Let us assume that f is not continuous in L € R. Then there exist a sequence
(z5,) which converges to L and n > 0 such that |f(z,) — f(L)| > n forn € N. So

{n:|f(xn) = f(L)| Z 0} =N.
Since lim z,, = L, and A is regular, we have I —limy,, = L. Now let A = (a,)

be defined as
{ 1, if n=k,
Ank =

0, otherwise.

Then we have a contradiction: since I is admissible non-trivial ideal, the set

{n:f(yn) = F(L) 20} =N ¢ I,
ie. I —lim f(yn) = I —lim f(z,) # f(L). Hence f is continuous. <

3. A’ —Cauchy and A" —Cauchy summability

The notion of I—Cauchy sequence was introduced by many authors, see [23],
[9] and [20], which is a generalization of Cauchy condition for statistical conver-
gence introduced by Fridy [12]. Moreover, they proved that I—convergence is
equivalent to I—Cauchy condition in R. In [20] the concept of I*—Cauchy se-
quence was introduced and the condition under which I—Cauchy is equivalent to
I*—Cauchy was found, see also [7].

Definition 9. (/9, 20]) A real sequence x = (xy,) is called an I— Cauchy sequence
if for every € > 0 there exists k = k(e) € N such that {n : |z, — x| > €} € I.

Definition 10. (/20]) A real sequence x = (zy,) is called an I*— Cauchy sequence
if there exists a set M = {m1 <mg <..<my < ...} CN, M € F(I) such that
the subsequence (xy,;) is an ordinary Cauchy sequence in R.

Now we introduce A’ —Cauchy and A”" —Cauchy summability.

Definition 11. A real sequence x = () is said to be A'— Cauchy summable if
for every € > 0 there exists N = N(e) € N such that

{n:|yn —yn| > €} €1.
Thus x is Al —Cauchy summable if and only if Az is an I— Cauchy sequence.

Definition 12. A real sequence x = (x,) is said to be A" —Cauchy summable
if there is a set M = {my,ma, ...}, and M € F(I) such that the subsequence
(Ym,;) s a Cauchy sequence in R.
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Remark 5. From Definition 8 and Definition 12, we can say that a real sequence
x is AT —summable to L if and only if x is AT — Cauchy summable.

Now we give similar results for A’ —Cauchy and A”"— Cauchy summability.

Theorem 5. A real sequence = is Al— summable to L if and only if x is
Al — Cauchy summable.

Proof. Let Al —limz;, = L. Then for every ¢ > 0, we have the set

A ={nilm-1lz5}er,

so the set .

Bl(e) = {n Ny — L] < 5} e F(I).

Since [ is a non-trivial admissible ideal, there exists N ¢ A(e). Now for fixed

N € B(e) and for each n € B(e) we have

[Yn = yn| < lyn = LI+ lyn — L <,
therefore the set

{n:lyn —yn| < €} € F(I).

Hence z is A’ —Cauchy summable.
For the converse, the construction is similar to Theorem 2(1) of [9] and so
omitted. <

We give a relation between A’ —Cauchy and A" —Cauchy summability.

Theorem 6. If a real sequence x = (x3) is A —Cauchy summable, then x is
Al — Cauchy summable.

Proof. The proof follows from Remark 5, Theorem 1 and Theorem 5. <«

Remark 6. The converse of Theorem 6 is not true in general.

Example 2. From Ezample 1, we have x is Al—summable to zero, but x is
not A" —summable to any number. Hence from Remark 5 and Theorem 5 we
conclude that x is AT'— Cauchy summable, but x is not A" — Cauchy summable.

We give a necessary and sufficient condition for the equivalency of A—
Cauchy and A”" — Cauchy summability.

Theorem 7. Let I be a non-trivial proper admissible ideal in N which satisfies the
condition (AP). If x is AT — Cauchy summable, then x is AT — Cauchy summable.
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Proof. The proof follows from Theorem 5, Theorem 2 and Remark 5. <«

Theorem 8. If every sequence x being A’ — Cauchy summable implies that x is
AT — Cauchy summable, then I satisfies the condition (AP).

Proof. The proof is similar to Theorem 3 and so omitted. <
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