Azerbaijan Journal of Mathematics V. 11, No 1, 2021, January ISSN 2218-6816

On Some Properties of A^I –Summability and A^{I^*} -Summability

O.H. Edely

Abstract. In this paper we define A^{I^*} -summability and find its relationship with A^I -summability defined by Savas et al. [25]. Moreover we define and study the notions of A^I – Cauchy summability and A^I – Cauchy summability and study some of their properties.

Key Words and Phrases: I-convergence, I^* -convergence, A^I -summability, A^{I^*} summability, A^I – Cauchy summability, A^I ^{*} – Cauchy summability.

2010 Mathematics Subject Classifications: 40A05, 40G15,40D25

1. Introduction and preliminaries

Let l_{∞} and c denote the spaces of all bounded and convergent sequences, respectively, and R denote the set of all real numbers. Let $A = (a_{nk})_{n,k=1}^{\infty}$ be an infinite matrix and $x = (x_k)_{k=1}^{\infty}$ be a number sequence. By $Ax = (A_n(x))$, we denote the A–transform of the sequence $x = (x_k)$, where $A_n(x) = \sum_{k=1}^{\infty} a_{nk}x_k$. We say that x is A-summable to L if $\lim_{n} A_n(x) = L$. A matrix A is called regular if it transforms a convergent sequence into a convergent sequence leaving the limit invariant, i.e. $A \in (c, c)_{reg}$ if $A \in (c, c)$ and $\lim_{n} A_n(x) = \lim_{k} x_k$ for all $x \in c$. The well-known necessary and sufficient conditions (Silverman-Toeplitz) for A to be regular are:

- \bullet $||A|| = \sup$ n \sum k $|a_{nk}| < \infty;$
- $\lim_{n} a_{nk} = 0$, for each k;
- $\lim_{n} \sum_{k}$ k $a_{nk} = 1.$

http://www.azjm.org 189 (C) 2010 AZJM All rights reserved.

The idea of statistical convergence was introduced by Fast [11], which is a natural generalization of the usual convergence of sequences. Let $K \subseteq \mathbb{N}$, the set of natural numbers. Then the natural density of K (cf. Niven and Zuckerman [21]) is defined by

$$
\delta(K) = \lim_{n} \frac{1}{n} | \{ k \le n : k \in K \} |,
$$

if the limit exists, where the vertical bars denote the cardinality of the enclosed set. Notice that

$$
\delta(K) = \lim_{n} (C_1 \chi_K)_n,
$$

where $C_1 = (C, 1)$ is the Cesaro matrix of order 1 and χ_K denotes the characteristic sequence of K given by

$$
(\chi_K)_i = \left\{ \begin{array}{ll} 0, & \text{if } i \notin K, \\ 1, & \text{if } i \in K. \end{array} \right.
$$

Definition 1. ([11]) A sequence $x = (x_k)$ of real numbers is said to be statistically convergent to the number L provided that for every $\epsilon > 0$, the set $K(\epsilon) = \{k \in \mathbb{N} : |x_k - L| \geq \epsilon\}$ has natural density zero; in this case we write $st - \lim x = L.$

Notice that every convergent sequence is statistically convergent to the same limit but not conversely. For example, let

$$
x_k = \left\{ \begin{array}{ll} k \\ 0 \end{array} \right., \text{ if } k \text{ is a square,}
$$

Here x is unbounded, even so it is statistically convergent to zero.

Fridy [12], Salat [22], Connor [6], Mursaleen and Edely [17] and many others studied it as a summability method. In [10], Edely and Mursaleen generalized these statistical summability methods by defining the statistical A−summability. Other important variants of statistical convergence can be found in [3], [4], [5] and [13].

Definition 2. ([10]) Let $A = (a_{ij})$ be a non-negative regular matrix. A sequence x is said to be statistically A–summable to L if for every $\epsilon > 0$, $\delta(\{i \leq n :$ $|y_i - L| \geq \epsilon$ } $) = 0, \text{ i.e.}$

$$
\lim_{n} \frac{1}{n} |\{i \le n : |y_i - L| \ge \epsilon\}| = 0,
$$

where $y_i = A_i(x)$. Thus x is statistically A-summable to L if and only if Ax is statistically convergent to L. In this case we write $L = (A)_{st}$ – lim $x = st$ – lim Ax.

The idea of I−convergence was introduced by Kostyrko et al. [15] as a generalization of statistical convergence. Several applications and generalizations of this work can be found in ([1], [8], [9], [14], [16], [18], [19], [23], [24], [25]).

Definition 3. Let $X \neq \emptyset$. A non-empty class $I \subseteq P(X)$ of subsets of X is said to be an ideal in X provided that I is additive and hereditary, i.e. if

 $(i) \varnothing \in I$, (ii) $A, B \in I \Longrightarrow A \cup B \in I$, (iii) $A \in I, B \subseteq A \Longrightarrow B \in I.$

An ideal I is called a non-trivial if $I \neq \emptyset$ and $X \notin I$. A non-trivial ideal I in X is called admissible if $\{x\} \in I$, for each $x \in X$.

Definition 4. Let $X \neq \emptyset$. A non-empty class $F \subseteq P(X)$ of subsets of X is said to be a filter in X if

 $(i) \varnothing \notin F$,

(ii) $A, B \in F \Longrightarrow A \cap B \in F$,

(iii) $A \in F$, $B \supseteq A \Longrightarrow B \in F$.

Let I be a non-trivial ideal in X. The filter $F(I) = \{M = X \setminus A : A \in I\}$ is called the filter associated with the ideal I.

In [15] Kostyrko et al. defined I -convergence and I^* -convergence and gave necessary and sufficient condition for the equivalency of both definitions.

Definition 5. ([15]). A real sequence $x = (x_k)$ is said to be I–convergent to $L \in \mathbb{R}$ if for every $\epsilon > 0$, the set

$$
K(\epsilon) = \{k : |x_k - L| \ge \epsilon\} \in I.
$$

In this case we write $I - \lim x_k = L$.

Remark 1. (a) If $I = I_{fin} = \{K \subseteq \mathbb{N} : K \text{ is finite}\},\$ then I-convergence coincide with the usual convergence.

(b) If $I = I_{\delta} = \{K \subseteq \mathbb{N} : \delta(K) = 0\}$, then I-convergence coincide with the statistical convergence.

Definition 6. ([15]). A real sequence $x = (x_k)$ is said to be I^{*}-convergent to $L \in \mathbb{R}$ if there is a set $H \in I$ such that for $M = \mathbb{N} \setminus H = \{m_1, m_2, \dots\}$, where $m_1 < m_2 < \dots,$ we have $\lim_i x_{m_i} = L$. In this case we write $I^* - \lim_i x_k = L$.

Remark 2. Throughout the paper, I will be a non-trivial admissible ideal in $\mathbb N$ and $A = (a_{nk})$ will be a non-negative regular matrix.

2. A^I -summability and $A^{I[*]}$ -summability

In this section we introduce the notion of A^{I^*} –summability and find its relationship with A^I -summability. The following definition was introduced in [25]:

Definition 7. ([25]). A real sequence $x = (x_k)$ is said to be A^I -summable to $L \in \mathbb{R}$ if the sequence $A_n(x)$ is I−convergent to L. In this case we write A^I – lim $x_k = L$

Remark 3. (a) If $I = I_{\delta}$, then A^I -summability reduces to statistical A– summability due to [10].

(b) Every convergent sequence is A^I -summable to the same limit.

Definition 8. A real sequence $x = (x_k)$ is said to be A^{I^*} – summable to L if there is a set $H \in I$, such that $M = \mathbb{N} \setminus H = \{m_1, m_2, \dots \} \in F(I)$, where $m_1 < m_2 < \dots$, and

$$
\lim_{i} \sum_{k} a_{m_{i}k} x_{k} = \lim_{i} y_{m_{i}} = L.
$$

In this case we write $A^{I^*} - \lim x_k = L$.

Now we give a relation between A^I -summability and $A^{I[*]}$ – summability.

Theorem 1. If A^{I^*} – $\lim x_k = L$, then A^I – $\lim x_k = L$.

Proof. Let A^{I^*} – $\lim x_k = L$. Then there exists $H \in I$ such that $M = \mathbb{N} \setminus H \in$ $F(I)$, where $M = \{m_1, m_2, \dots\}$. Therefore for any $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$
|y_{m_i} - L| < \epsilon, \text{ for } i > N.
$$

Let $K(\epsilon) = \{n : |y_n - L| \geq \epsilon\}$ and $\{m_1, m_2, \dots, m_N\} = B$. Then we have $K(\epsilon) \subseteq H \cup B$, so $K(\epsilon) \in I$, since $H, B \in I$. Hence $A^I - \lim x_k = L$.

Remark 4. The converse of Theorem 1 is not true in general.

Example 1. Let B_i be mutually disjoint infinite sets such that $\mathbb{N} = \bigcup_{i=1}^{\infty}$ $i=1$ B_i . Let I be the class defined as

 $I = \{B \subset \mathbb{N} : B \text{ intersects only finite numbers of } B_i's\}.$

Then I is a non-trivial admissible ideal in N. Define $x = (x_k)$ as

$$
x_k = \frac{1}{i}, k \in B_i,
$$

and $A = (a_{nk})$ as

$$
a_{nk} = \begin{cases} 1, & \text{if } k = n+1, \\ 0, & \text{otherwise.} \end{cases}
$$

So, we have

$$
y_n = \sum_k a_{nk} x_k = \frac{1}{i}, \quad n+1 \in B_i.
$$

Here x is not A-summable, but x is A^I -summable to zero, since for any $\epsilon > 0$, the set

$$
\{n: |y_n| \ge \epsilon\} \in I.
$$

Now let's show that x is not $A^{I*}-summable$ to zero. Suppose if it is possible that x is A^{I*} -summable to zero, then there exists a set $M = \mathbb{N} \setminus B =$ ${m_1, m_2,}$, where $B \in I$ and $\lim_{i \to \infty} y_{m_i} = 0$.

Since $B \in I$, then there exists $r \in \mathbb{N}$ such that $B \subseteq B_1 \cup B_2 \cup ... \cup B_r$. So $B_{r+1} \subseteq M$. Therefore $y_{m_i} = \frac{1}{r+1}$ for infinitely many i's. Hence x is not A^I –summable to zero.

In [15], a necessary and sufficient condition was given for the equivalency of I− convergence and I^* – convergence. We give similar results for A^I – summability and A^{I^*} – summability. We need the following lemma due to [1].

Lemma 1. ([1]). Let I be a non-trivial admissible ideal in \mathbb{N} . The following conditions are equivalent:

(i) I satisfies (AP) ; if for every sequence (A_n) of pairwise disjoint sets from I there are sets $B_n \subset \mathbb{N}$, $n \in \mathbb{N}$ such that the symmetric difference $A_n \Delta B_n$ is finite for every n and $\bigcup B_n \in I$.

(ii) I satisfies (AP') ; the same conditions on (AP) but pairwise disjointness of A_n is not required.

(iii) I is a P – ideal; if for every sequence (A_n) of sets in I there is $B \in I$ with $A_n \setminus B$ finite for every n.

Theorem 2. Let I be a non-trivial admissible ideal in $\mathbb N$ which satisfies the condition (AP). If A^I – $\lim x_k = L$, then A^{I^*} – $\lim x_k = L$.

Proof. Let $A^I - \lim x_k = L$. Then for every $\epsilon > 0$, we have

$$
\{n: |y_n - L| \ge \epsilon\} \in I.
$$

So for every *n* the sequence (A_n) of sets

$$
A_n = \left\{ n : |y_n - L| \ge \frac{1}{n} \right\} \in I.
$$

Since I satisfies the condition AP) and (A_n) is a sequence of sets in I, by Lemma 1, there exists a set $B \in I$ such that $A_n \setminus B$ is finite for each n. Let $M = \mathbb{N} \backslash B = \{m_1, m_2, \dots\}$, so M must contain infinitely many terms, otherwise $B \notin I$. Now for any $\nu > 0$, there exists $N \in \mathbb{N}$ such that $\frac{1}{N} < \nu$. Then

$$
A_N = \left\{ n : |y_n - L| \ge \frac{1}{N} \right\} \in I.
$$

Therefore the set

$$
\left\{n: |y_n - L| < \frac{1}{N} \right\} \setminus \{n: A_N \setminus B\} \in M.
$$

Hence we have

$$
|y_n - L| < \nu, \forall n > N, n \in M
$$

i.e. $A^{I^*} - \lim x_k = L$.

Theorem 3. If A^I – $\lim x_k = L$ implies A^{I^*} – $\lim x_k = L$, then I satisfies the condition (AP).

Proof. Let A^{I^*} – $\lim x_k = L$ whenever A^I – $\lim x_k = L$. We need to show that I satisfies the condition AP).

Let (A_i) be a sequence of pairwise disjoint sets from I. Define $x = (x_k)$ as

$$
x_k = \begin{cases} \frac{1}{i} , & \text{if } k \in A_i, k \text{ is nonsquare,} \\ 0 , & \text{otherwise} , \end{cases}
$$

and define a non-negative regular matrix $A = (a_{nk})$ as

$$
a_{nk} = \begin{cases} 1, & \text{if } n \in A_i, n = k, \\ 1, n \in \mathbb{N} \setminus \bigcup_i A_i, k = n^2, \\ 0, & \text{otherwise.} \end{cases}
$$

Then

$$
\sum_{k} a_{nk} x_k = \begin{cases} \frac{1}{i} & , \text{ if } n \in A_i, n \text{ is nonsquare} \\ 0 & , \text{ otherwise.} \end{cases}
$$

We can see that x is A^I -summable to zero, since for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $\frac{1}{N} < \epsilon$, so the set

$$
K(\epsilon) = \{ n : |y_n - 0| \ge \epsilon \} \subseteq A_1 \cup A_2 \cup \cup A_N,
$$

which belong to I , hence

$$
A^I - \lim x_k = 0,
$$

and consequently we have

$$
A^{I^*} - \lim x_k = 0.
$$

Now by definition of A^{I^*} , there exists a set $D \in I$ such that $M = \mathbb{N} \setminus D =$ ${m_1, m_2, \ldots}$ and $\lim_{i} y_{m_i} = 0$. Let us define a sequence of sets $D_i \in I$ as $D_i = A_i \cap D$. First we need to show that the symmetric difference $A_i \triangle D_i$ is finite. Since $\lim_{i} y_{m_i} = 0$, the set $\{m_i : |y_{m_i}| \geq \nu\}$ has only a finite number of terms for every $\nu > 0$, so for each i, $A_i \cap M$ is finite. Since

$$
A_i \triangle D_i \subseteq A_i \cap M,
$$

we have $A_i \triangle D_i$ is finite.

Lastly, since

$$
\bigcup_i D_i = \bigcup_i (A_i \cap D) = D \cap \left(\bigcup_i A_i\right) \subseteq D \in I,
$$

we have \bigcup i $D_i \in I$. \blacktriangleleft

In the end of this section we give similar result for continuity as in [2] and [15].

Theorem 4. A real valued function $f : \mathbb{R} \to \mathbb{R}$ is continuous if and only if whenever $I - \lim y_n = L$, we have $I - \lim f(y_n) = f(L)$.

Proof. Let $x = (x_k)$ be a real sequence and A^I -lim $x_k = L$, i.e. I -lim $y_n = L$. So for any $\epsilon > 0$, we have

$$
\{n: |y_n - L| \ge \epsilon\} \in I,
$$

i.e.

$$
B = \{n : |y_n - L| < \epsilon\} \in F(I).
$$

Since f is continuous, for each $\nu > 0$ there exists $\eta > 0$ such that $|x - L| < \eta$ implies $|f(x) - f(L)| < \nu$. Therefore, for $\epsilon = \eta$ and for every $\nu > 0$, we have

$$
B = \{n : |y_n - L| < \eta\} \subseteq \{n : |f(y_n) - f(L)| < \nu\} = C.
$$

Since $B \in F(I)$, we have $C \in F(I)$. Hence $I - \lim f(y_n) = f(L)$.

Let us assume that f is not continuous in $L \in \mathbb{R}$. Then there exist a sequence (x_n) which converges to L and $\eta > 0$ such that $|f(x_n) - f(L)| \geq \eta$ for $n \in \mathbb{N}$. So

$$
\{n: |f(x_n) - f(L)| \geq \eta\} = \mathbb{N}.
$$

Since $\lim x_n = L$, and A is regular, we have $I - \lim y_n = L$. Now let $A = (a_{nk})$ be defined as

$$
a_{nk} = \begin{cases} 1, & \text{if } n = k, \\ 0, & \text{otherwise.} \end{cases}
$$

Then we have a contradiction: since I is admissible non-trivial ideal, the set

$$
\{n: |f(y_n) - f(L)| \geq \eta\} = \mathbb{N} \notin I,
$$

i.e. $I - \lim f(y_n) = I - \lim f(x_n) \neq f(L)$. Hence f is continuous.

3. A^I -Cauchy and $A^{I[*]}$ -Cauchy summability

The notion of I−Cauchy sequence was introduced by many authors, see [23], [9] and [20], which is a generalization of Cauchy condition for statistical convergence introduced by Fridy [12]. Moreover, they proved that I –convergence is equivalent to I-Cauchy condition in \mathbb{R} . In [20] the concept of I^* -Cauchy sequence was introduced and the condition under which I−Cauchy is equivalent to I [∗]−Cauchy was found, see also [7].

Definition 9. ([9, 20]) A real sequence $x = (x_n)$ is called an I–Cauchy sequence if for every $\epsilon > 0$ there exists $k = k(\epsilon) \in \mathbb{N}$ such that $\{n : |x_n - x_k| \geq \epsilon\} \in I$.

Definition 10. ([20]) A real sequence $x = (x_n)$ is called an I^* – Cauchy sequence if there exists a set $M = \{m_1 < m_2 < ... < m_k < ... \} \subset \mathbb{N}, M \in F(I)$ such that the subsequence (x_{m_i}) is an ordinary Cauchy sequence in $\mathbb R$.

Now we introduce A^I – Cauchy and A^I ^{*} – Cauchy summability.

Definition 11. A real sequence $x = (x_k)$ is said to be A^I – Cauchy summable if for every $\epsilon > 0$ there exists $N = N(\epsilon) \in \mathbb{N}$ such that

$$
\{n: |y_n - y_N| \ge \epsilon\} \in I.
$$

Thus x is $A^I - Cauchy$ summable if and only if Ax is an I-Cauchy sequence.

Definition 12. A real sequence $x = (x_k)$ is said to be A^{I*} – Cauchy summable if there is a set $M = \{m_1, m_2, \dots\}$, and $M \in F(I)$ such that the subsequence (y_{m_i}) is a Cauchy sequence in \mathbb{R} .

Remark 5. From Definition 8 and Definition 12, we can say that a real sequence x is A^{I^*} -summable to L if and only if x is A^{I^*} -Cauchy summable.

Now we give similar results for A^I -Cauchy and $A^{I[*]}$ -Cauchy summability.

Theorem 5. A real sequence x is A^I – summable to L if and only if x is $A^I–Cauchy summable.$

Proof. Let $A^I - \lim x_k = L$. Then for every $\epsilon > 0$, we have the set

$$
A(\epsilon) = \left\{ n : |y_n - L| \ge \frac{\epsilon}{2} \right\} \in I,
$$

so the set

$$
B(\epsilon) = \left\{ n : |y_n - L| < \frac{\epsilon}{2} \right\} \in F(I).
$$

Since I is a non-trivial admissible ideal, there exists $N \notin A(\epsilon)$. Now for fixed $N \in B(\epsilon)$ and for each $n \in B(\epsilon)$ we have

$$
|y_n - y_N| \le |y_n - L| + |y_N - L| < \epsilon,
$$

therefore the set

$$
\{n: |y_n - y_N| < \epsilon\} \in F(I).
$$

Hence x is A^I – Cauchy summable.

For the converse, the construction is similar to Theorem $2(1)$ of [9] and so omitted. \triangleleft

We give a relation between A^I – Cauchy and A^I ^{*} – Cauchy summability.

Theorem 6. If a real sequence $x = (x_k)$ is A^{I*} – Cauchy summable, then x is A^I – Cauchy summable.

Proof. The proof follows from Remark 5, Theorem 1 and Theorem 5. \triangleleft

Remark 6. The converse of Theorem 6 is not true in general.

Example 2. From Example 1, we have x is A^I -summable to zero, but x is not A^{I^*} – summable to any number. Hence from Remark 5 and Theorem 5 we conclude that x is $A^I - Cauchy$ summable, but x is not $A^I - Cauchy$ summable.

We give a necessary and sufficient condition for the equivalency of A^I Cauchy and A^{I^*} – Cauchy summability.

Theorem 7. Let I be a non-trivial proper admissible ideal in $\mathbb N$ which satisfies the condition (AP). If x is $A^I - Cauchy$ summable, then x is $A^I - Cauchy$ summable.

Proof. The proof follows from Theorem 5, Theorem 2 and Remark 5.

Theorem 8. If every sequence x being A^I – Cauchy summable implies that x is $A^{I^*}-Cauchy$ summable, then I satisfies the condition (AP) .

Proof. The proof is similar to Theorem 3 and so omitted.

References

- [1] M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl., 328(1), 2007, 715-729.
- [2] R. G. Bartle, J.I. Joichi, The preservation of convergence of measurable functions under composition, Proceedings of the American Mathematical Society, 12(1), 1961, 122-126.
- [3] B.T. Bilalov, T.Y. Nazarova, Statistical convergence of functional sequences, Rocky Mountain J. Math., 45(5), 2015, 1413-1423.
- [4] B.T. Bilalov, T.Y. Nazarova, On statistical type convergence in uniform spaces, Bull. Iranian Math. Soc., 42(4), 2016, 975–986.
- [5] B.T. Bilalov, S.R. Sadigova, $\textit{On }\mu\text{-}statistical\,\,convergence, Proceedings of the$ American Mathematical Society, 143(9), 2015, 3869–3878.
- [6] J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32, 1989, 194-198.
- [7] P. Das, S.K. Ghosal, Some further results on I-Cauchy sequences and condition (AP), Computers & Mathematics with Applications, $59(8)$, 2010, 2597-2600.
- [8] K. Demirci, I-limit superior and limit inferior, Math. Commun,6(2), 2001, 165-172.
- [9] K. Dems, On I-Cauchy sequences, Real Anal. Exchange, 30(1), 2004/2005, 123-128.
- [10] O.H.H. Edely, M. Mursaleen, On statistical A-summability, Mathematical and Computer Modelling, 49(3), 2009, 672-680.
- [11] H. Fast, Sur la convergence statistique, Colloq. Math., 2, 1951, 241-244.

- [12] J.A. Fridy, On statistical convergence, Analysis, 5, 1985, 301-313.
- [13] A.D. Gadjiev, Simultaneous statistical approximation of analytic functions and their derivatives by k-positive linear operators, Azerbaijan Journal of Mathematics, **1(1)**, 2011, 57-66.
- [14] H. Gümüş, Ö. Kişi, E. Savas, *Some results about* ΔI −statistically pre-Cauchy sequences with an Orcilz function, Journal of Computational Analysis & Applications, 28(1), 2020, 180-188.
- [15] P. Kostyrko, T. Šalát, W. Wilczyńki, *I-convergence*, Real Anal. Exchange, 26(2), 2000/2001, 669-686.
- [16] M. Mursaleen, A. Alotaibi, On I-convergence in random 2-normed spaces, Math. Slovaca, 61(6), 2011, 933-940.
- [17] M. Mursaleen, O.H.H. Edely, Generalized statistical convergence, Information Sciences, 162(3-4), 2004, 287-294.
- [18] M. Mursaleen, S.A. Mohiuddine, O.H.H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Computers & Mathematics with Applications, $59(2)$, 2010, 603-611.
- [19] M. Mursaleen, S.A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62, 2012, 49-62.
- [20] A. Nabiev, S. Pehlivan, M. Gurdal, On I-Cauchy sequences, Taiwanese J. Math., **11(2)**, 2007, 569-576.
- [21] I. Niven, H.S. Zuckerman, An introduction to the theory of numbers, John Wiley and Sons, New York, 1980.
- [22] T. Salát, On statistically convergent sequences of real numbers, Math. Slovaca, 30, 1980, 139-150.
- [23] T. Salát, B.C. Tripathy, M. Ziman, On some properties of I-convergence, Tatra Mt. Math., 28(5), 2004, 279-286.
- [24] E. Savas, P. Das, A generalized statistical convergence via ideals, Applied Mathematics Letters, 24(6), 2011, 826-830.
- [25] E. Savas, P. Das, S. Dutta, A note on some generalized summability methods, Acta Math. Univ. Comenianae, 82(2), 2013, 297-304.

Osama H. H. Edely Department of Mathematics, Tafila Technical University, P.O.Box 179, Tafila (66110) - Jordan E-mail: osamaedely@yahoo.com

Received 25 September 2020 Accepted 20 November 2020