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On Some Properties of AI−Summability and
AI∗−Summability
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Abstract. In this paper we define AI∗−summability and find its relationship with
AI−summability defined by Savas et al. [25]. Moreover we define and study the no-
tions of AI−Cauchy summability and AI∗−Cauchy summability and study some of their
properties.
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1. Introduction and preliminaries

Let l∞ and c denote the spaces of all bounded and convergent sequences,
respectively, and R denote the set of all real numbers. Let A = (ank)

∞
n,k=1 be an

infinite matrix and x = (xk)
∞
k=1 be a number sequence. By Ax = (An (x)) , we

denote the A−transform of the sequence x = (xk), where An (x) =
∑∞

k=1 ankxk.
We say that x is A−summable to L if limnAn(x) = L. A matrix A is called
regular if it transforms a convergent sequence into a convergent sequence leaving
the limit invariant, i.e. A ∈ (c, c)reg if A ∈ (c, c) and limnAn(x) = limk xk for all
x ∈ c. The well-known necessary and sufficient conditions (Silverman-Toeplitz)
for A to be regular are:

� ||A|| = sup
n

∑
k

|ank| <∞;

� lim
n
ank = 0, for each k;

� lim
n

∑
k

ank = 1.
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The idea of statistical convergence was introduced by Fast [11], which is a
natural generalization of the usual convergence of sequences. Let K ⊆ N, the set
of natural numbers. Then the natural density of K (cf. Niven and Zuckerman
[21]) is defined by

δ(K) = lim
n

1

n
| {k ≤ n : k ∈ K} |,

if the limit exists, where the vertical bars denote the cardinality of the enclosed
set. Notice that

δ(K) = lim
n

(C1χK )n,

where C1 = (C, 1) is the Cesàro matrix of order 1 and χK denotes the character-
istic sequence of K given by

(χK)i =

{
0 , if i /∈ K,
1 , if i ∈ K.

Definition 1. ([11]) A sequence x = (xk) of real numbers is said to be sta-
tistically convergent to the number L provided that for every ε > 0, the set
K(ε) = {k ∈ N : |xk − L| ≥ ε} has natural density zero; in this case we write
st− limx = L.

Notice that every convergent sequence is statistically convergent to the same
limit but not conversely. For example, let

xk =

{
k , if k is a square,
0 , otherwise .

Here x is unbounded, even so it is statistically convergent to zero.
Fridy [12], Salat [22], Connor [6], Mursaleen and Edely [17] and many others

studied it as a summability method. In [10], Edely and Mursaleen generalized
these statistical summability methods by defining the statistical A−summability.
Other important variants of statistical convergence can be found in [3], [4], [5]
and [13].

Definition 2. ([10]) Let A = (aij) be a non-negative regular matrix. A sequence
x is said to be statistically A−summable to L if for every ε > 0, δ({i ≤ n :
|yi − L| ≥ ε}) = 0, i.e.

lim
n

1

n
|{i ≤ n : |yi − L| ≥ ε}| = 0,

where yi = Ai(x). Thus x is statistically A−summable to L if and only if Ax is
statistically convergent to L. In this case we write L = (A)st−limx = st−limAx.
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The idea of I−convergence was introduced by Kostyrko et al. [15] as a gen-
eralization of statistical convergence. Several applications and generalizations of
this work can be found in ([1], [8], [9], [14], [16], [18], [19], [23], [24], [25]).

Definition 3. Let X 6= ∅. A non-empty class I ⊆ P (X) of subsets of X is said
to be an ideal in X provided that I is additive and hereditary, i.e. if

(i) ∅ ∈ I,
(ii) A,B ∈ I =⇒ A ∪B ∈ I,
(iii) A ∈ I, B ⊆ A =⇒ B ∈ I.

An ideal I is called a non-trivial if I 6= ∅ and X /∈ I. A non-trivial ideal I
in X is called admissible if {x} ∈ I, for each x ∈ X.

Definition 4. Let X 6= ∅. A non-empty class F ⊆ P (X) of subsets of X is said
to be a filter in X if

(i) ∅ /∈ F,
(ii) A,B ∈ F =⇒ A ∩B ∈ F,
(iii) A ∈ F, B ⊇ A =⇒ B ∈ F.

Let I be a non-trivial ideal in X. The filter F (I) = {M = X\A : A ∈ I} is
called the filter associated with the ideal I.

In [15] Kostyrko et al. defined I−convergence and I∗−convergence and gave
necessary and sufficient condition for the equivalency of both definitions.

Definition 5. ([15]). A real sequence x = (xk) is said to be I−convergent to
L ∈ R if for every ε > 0, the set

K(ε) = {k : |xk − L| ≥ ε} ∈ I.

In this case we write I − limxk = L.

Remark 1. (a) If I = Ifin = {K ⊆ N : K is finite}, then I−convergence coin-
cide with the usual convergence.

(b) If I = Iδ = {K ⊆ N : δ(K) = 0}, then I−convergence coincide with the
statistical convergence.

Definition 6. ([15]). A real sequence x = (xk) is said to be I∗−convergent to
L ∈ R if there is a set H ∈ I such that for M = N \H = {m1,m2, ......}, where
m1 < m2 < ....., we have lim

i
xmi = L. In this case we write I∗ − limxk = L.

Remark 2. Throughout the paper, I will be a non-trivial admissible ideal in N
and A = (ank) will be a non-negative regular matrix.
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2. AI−summability and AI∗−summability

In this section we introduce the notion of AI
∗−summability and find its rela-

tionship with AI−summability. The following definition was introduced in [25]:

Definition 7. ([25]). A real sequence x = (xk) is said to be AI−summable
to L ∈ R if the sequence An(x) is I−convergent to L. In this case we write
AI − limxk = L

Remark 3. (a) If I = Iδ, then AI−summability reduces to statistical A− summa-
bility due to [10].

(b) Every convergent sequence is AI−summable to the same limit.

Definition 8. A real sequence x = (xk) is said to be AI
∗− summable to L if

there is a set H ∈ I, such that M = N \ H = {m1,m2, ......} ∈ F (I), where
m1 < m2 < ....., and

lim
i

∑
k

amikxk = lim
i
ymi = L.

In this case we write AI
∗ − limxk = L.

Now we give a relation between AI−summability and AI
∗− summability.

Theorem 1. If AI
∗ − limxk = L, then AI − limxk = L.

Proof. Let AI
∗− limxk = L. Then there exists H ∈ I such that M = N\H ∈

F (I), where M = {m1,m2, ......}. Therefore for any ε > 0 there exists N ∈ N
such that

|ymi − L| < ε, for i > N.

Let K(ε) = {n : |yn − L| ≥ ε} and {m1,m2, .....,mN} = B. Then we have
K(ε) ⊆ H ∪B, so K(ε) ∈ I, since H,B ∈ I. Hence AI − limxk = L. J

Remark 4. The converse of Theorem 1 is not true in general.

Example 1. Let Bi be mutually disjoint infinite sets such that N =
∞⋃
i=1

Bi. Let

I be the class defined as

I =
{
B ⊂ N : B intersects only finite numbers of B′is

}
.

Then I is a non-trivial admissible ideal in N. Define x = (xk) as

xk =
1

i
, k ∈ Bi,
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and A = (ank) as

ank =

{
1 , if k = n+ 1,
0 , otherwise.

So, we have

yn =
∑
k

ankxk =
1

i
, n+ 1 ∈ Bi.

Here x is not A−summable, but x is AI−summable to zero, since for any
ε > 0, the set

{n : |yn| ≥ ε} ∈ I.

Now let’s show that x is not AI
∗−summable to zero. Suppose if it is pos-

sible that x is AI
∗−summable to zero, then there exists a set M = N \ B =

{m1,m2, .....}, where B ∈ I and lim
i
ymi = 0.

Since B ∈ I, then there exists r ∈ N such that B ⊆ B1 ∪ B2 ∪ .... ∪ Br.
So Br+1 ⊆ M . Therefore ymi = 1

r+1 for infinitely many i’s. Hence x is not

AI
∗−summable to zero.

In [15], a necessary and sufficient condition was given for the equivalency of I−
convergence and I∗− convergence. We give similar results for AI− summability
and AI

∗− summability. We need the following lemma due to [1].

Lemma 1. ([1]). Let I be a non-trivial admissible ideal in N. The following
conditions are equivalent:

(i) I satisfies (AP ); if for every sequence (An) of pairwise disjoint sets from
I there are sets Bn ⊂ N, n ∈ N such that the symmetric difference An∆Bn is
finite for every n and

⋃
n
Bn ∈ I.

(ii) I satisfies (AP
′
); the same conditions on (AP ) but pairwise disjointness

of An is not required.
(iii) I is a P− ideal; if for every sequence (An) of sets in I there is B ∈ I

with An \B finite for every n.

Theorem 2. Let I be a non-trivial admissible ideal in N which satisfies the
condition (AP ). If AI − limxk = L, then AI

∗ − limxk = L.

Proof. Let AI − limxk = L. Then for every ε > 0, we have

{n : |yn − L| ≥ ε} ∈ I.

So for every n the sequence (An) of sets

An =

{
n : |yn − L| ≥

1

n

}
∈ I.



194 O.H. Edely

Since I satisfies the condition (AP ) and (An) is a sequence of sets in I,
by Lemma 1, there exists a set B ∈ I such that An \ B is finite for each n. Let
M = N\B = {m1,m2, ......}, so M must contain infinitely many terms, otherwise
B /∈ I. Now for any ν > 0, there exists N ∈ N such that 1

N < ν. Then

AN =

{
n : |yn − L| ≥

1

N

}
∈ I.

Therefore the set{
n : |yn − L| <

1

N

}
\ {n : AN \B} ∈M.

Hence we have

|yn − L| < ν,∀n > N, n ∈M,

i.e. AI
∗ − limxk = L. J

Theorem 3. If AI − limxk = L implies AI
∗ − limxk = L, then I satisfies the

condition (AP ).

Proof. Let AI
∗ − limxk = L whenever AI − limxk = L. We need to show

that I satisfies the condition (AP ).

Let (Ai) be a sequence of pairwise disjoint sets from I. Define x = (xk) as

xk =

{
1
i , if k ∈ Ai, k is nonsquare,
0 , otherwise ,

and define a non-negative regular matrix A = (ank) as

ank =


1 , if n ∈ Ai, n = k,
1 , n ∈ N \

⋃
i
Ai, k = n2,

0 , otherwise.

Then ∑
k

ankxk =

{
1
i , if n ∈ Ai, n is nonsquare
0 , otherwise.

We can see that x is AI−summable to zero, since for any ε > 0 , there exists
N ∈ N such that 1

N < ε, so the set

K(ε) = {n : |yn − 0| ≥ ε} ⊆ A1 ∪A2 ∪ .... ∪AN ,
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which belong to I, hence

AI − limxk = 0,

and consequently we have

AI
∗ − limxk = 0.

Now by definition of AI
∗
, there exists a set D ∈ I such that M = N \ D =

{m1,m2, ......} and lim
i
ymi = 0. Let us define a sequence of sets Di ∈ I as

Di = Ai ∩ D. First we need to show that the symmetric difference Ai4Di is
finite. Since lim

i
ymi = 0, the set {mi : |ymi | ≥ ν} has only a finite number of

terms for every ν > 0, so for each i, Ai ∩M is finite. Since

Ai4Di ⊆ Ai ∩M,

we have Ai4Di is finite.

Lastly, since

⋃
i

Di =
⋃
i

(Ai ∩D) = D ∩

(⋃
i

Ai

)
⊆ D ∈ I,

we have
⋃
i
Di ∈ I. J

In the end of this section we give similar result for continuity as in [2] and
[15].

Theorem 4. A real valued function f : R → R is continuous if and only if
whenever I − lim yn = L, we have I − lim f(yn) = f(L).

Proof. Let x = (xk) be a real sequence and AI−limxk = L, i.e. I−lim yn = L.
So for any ε > 0, we have

{n : |yn − L| ≥ ε} ∈ I,

i.e.

B = {n : |yn − L| < ε} ∈ F (I).

Since f is continuous, for each ν > 0 there exists η > 0 such that |x− L| < η
implies |f(x)− f(L)| < ν. Therefore, for ε = η and for every ν > 0, we have

B = {n : |yn − L| < η} ⊆ {n : |f(yn)− f(L)| < ν} = C.
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Since B ∈ F (I), we have C ∈ F (I). Hence I − lim f(yn) = f(L).
Let us assume that f is not continuous in L ∈ R. Then there exist a sequence

(xn) which converges to L and η > 0 such that |f(xn)− f(L)| ≥ η for n ∈ N. So

{n : |f(xn)− f(L)| ≥ η} = N.

Since limxn = L, and A is regular, we have I− lim yn = L. Now let A = (ank)
be defined as

ank =

{
1, if n = k,
0, otherwise.

Then we have a contradiction: since I is admissible non-trivial ideal, the set

{n : |f(yn)− f(L)| ≥ η} = N /∈ I,

i.e. I − lim f(yn) = I − lim f(xn) 6= f(L). Hence f is continuous. J

3. AI−Cauchy and AI∗−Cauchy summability

The notion of I−Cauchy sequence was introduced by many authors, see [23],
[9] and [20], which is a generalization of Cauchy condition for statistical conver-
gence introduced by Fridy [12]. Moreover, they proved that I−convergence is
equivalent to I−Cauchy condition in R. In [20] the concept of I∗−Cauchy se-
quence was introduced and the condition under which I−Cauchy is equivalent to
I∗−Cauchy was found, see also [7].

Definition 9. ([9, 20]) A real sequence x = (xn) is called an I−Cauchy sequence
if for every ε > 0 there exists k = k(ε) ∈ N such that {n : |xn − xk| ≥ ε} ∈ I.

Definition 10. ([20]) A real sequence x = (xn) is called an I∗− Cauchy sequence
if there exists a set M = {m1 < m2 < .. < mk < ....} ⊂ N, M ∈ F (I) such that
the subsequence (xmi) is an ordinary Cauchy sequence in R.

Now we introduce AI−Cauchy and AI
∗−Cauchy summability.

Definition 11. A real sequence x = (xk) is said to be AI−Cauchy summable if
for every ε > 0 there exists N = N(ε) ∈ N such that

{n : |yn − yN | ≥ ε} ∈ I.

Thus x is AI−Cauchy summable if and only if Ax is an I−Cauchy sequence.

Definition 12. A real sequence x = (xk) is said to be AI
∗−Cauchy summable

if there is a set M = {m1,m2, ......}, and M ∈ F (I) such that the subsequence
(ymi) is a Cauchy sequence in R.
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Remark 5. From Definition 8 and Definition 12, we can say that a real sequence
x is AI

∗−summable to L if and only if x is AI
∗−Cauchy summable.

Now we give similar results for AI−Cauchy and AI
∗− Cauchy summability.

Theorem 5. A real sequence x is AI− summable to L if and only if x is
AI−Cauchy summable.

Proof. Let AI − limxk = L. Then for every ε > 0, we have the set

A (ε) =
{
n : |yn − L| ≥

ε

2

}
∈ I,

so the set
B (ε) =

{
n : |yn − L| <

ε

2

}
∈ F (I).

Since I is a non-trivial admissible ideal, there exists N /∈ A(ε). Now for fixed
N ∈ B(ε) and for each n ∈ B(ε) we have

|yn − yN | ≤ |yn − L|+ |yN − L| < ε,

therefore the set
{n : |yn − yN | < ε} ∈ F (I).

Hence x is AI−Cauchy summable.
For the converse, the construction is similar to Theorem 2(1) of [9] and so

omitted. J

We give a relation between AI−Cauchy and AI
∗−Cauchy summability.

Theorem 6. If a real sequence x = (xk) is AI
∗−Cauchy summable, then x is

AI−Cauchy summable.

Proof. The proof follows from Remark 5, Theorem 1 and Theorem 5. J

Remark 6. The converse of Theorem 6 is not true in general.

Example 2. From Example 1, we have x is AI−summable to zero, but x is
not AI

∗−summable to any number. Hence from Remark 5 and Theorem 5 we
conclude that x is AI−Cauchy summable, but x is not AI

∗−Cauchy summable.

We give a necessary and sufficient condition for the equivalency of AI−
Cauchy and AI

∗− Cauchy summability.

Theorem 7. Let I be a non-trivial proper admissible ideal in N which satisfies the
condition (AP ). If x is AI−Cauchy summable, then x is AI

∗−Cauchy summable.
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Proof. The proof follows from Theorem 5, Theorem 2 and Remark 5. J

Theorem 8. If every sequence x being AI−Cauchy summable implies that x is
AI
∗−Cauchy summable, then I satisfies the condition (AP ).

Proof. The proof is similar to Theorem 3 and so omitted. J
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