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Absolute and Uniform Convergence of the Spectral
Expansion in the Eigenfunctions of an Odd Order
Differential Operator

V.M. Kurbanov*, R.I. Shahbazov, A.I. Ismailova

Abstract. We study the absolute and uniform convergence of spectral expansions of
functions of the class W 1

p (G), p > 1, G = (0, 1), in the eigenfunctions of an ordinary
differential operator of odd order with integrable coefficients. Sufficient conditions for
absolute and uniform convergence are obtained and the rate of uniform convergence of
these expansions on the interval G = [0, 1] is found.
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1. Statement of results

On the interval G = (0, 1), consider the odd order differential operator

Lu = u(n) + P1(x)u(n−1) + ...+ Pn(x)u,

where n = 2m+ 1, m = 1, 2, ..., P1(x) ∈ L2(G), Pl(x) ∈ L1(G), l = 2, 2m+ 1.
By D2m+1(G) we denote the class of functions absolutely continuous together

with their derivatives of order ≤ 2m on the interval G = [0, 1].
An eigenfunction of L corresponding to an eigenvalue λ is understood as a

function y(x) ∈ D2m+1(G) that is not identically zero and satisfies the equation
Ly + λy = 0 almost everywhere in G (see [1]).

Let {uk(x)}k=1 be a complete orthonormal system in L2(G) consisting of
eigenfunctions of the operator L, and let {λk}∞k=1 be the corresponding system
of eigenvalues, Reλk = 0, k = 1, 2, .... Parallel with the spectral parameter λk,
we consider a parameter µk:
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µk =

{
(−iλk)1/(2m+1) for Imλk ≥ 0

(iλk)
1/(2m+1) for Imλk < 0.

We say that a function f(x) belongs to W 1
p (G), 1 ≤ p ≤ ∞, if f(x) is ab-

solutely continuous on G and f ′(x) belongs to Lp(G). The norm of function
f(x) ∈W 1

p (G) is given by the equality

‖f‖W 1
p (G) = ‖f‖p +

∥∥f ′∥∥
p
,

where ‖·‖p = ‖·‖Lp(G).

We now introduce a partial sum of the spectral expansion of the function
f(x) ∈W 1

p (G), p > 1, with respect to the system {uk(x)}∞k=1:

σν(x, f) =
∑
µk≤ν

fkuk(x), ν > 0,

where fk = (f, uk) =
∫
G

f(x)uk(x)dx, and the difference Rν(x, f) = f(x) −

σν(x, f).

In this paper, we prove the following results.

Theorem 1. Assume that P1(x) ≡ 0, Pl(x) ∈ L1(G), l = 2, 2m+ 1; a function
f(x) of the class W 1

p (G), where p > 1, and a system {uk(x)}∞k=1 satisfy the
condition∣∣∣f(x)u(2m)(x)

∣∣1
0

∣∣∣ ≤ C1(f)µαk ‖uk‖∞ , 0 ≤ α < 2m, µk ≥ 1, (1)

where C1(f) is a constant depending on f(x).

Then the spectral expansion of the function f(x) with respect to the system
{uk(x)}∞k=1 converges absolutely and uniformly on the interval G = [0, 1] and the
following estimate holds:

‖Rν(·, f)‖C[0,1] ≤ const
{
C1(f)να−2m + ν−β

∥∥f ′∥∥
p

+

+ν−1
(
‖f‖∞ +

∥∥f ′∥∥
p

) 2m+1∑
l=2

ν2−l ‖Pl‖1

}
, (2)

where ν ≥ 2, p−1 + q−1 = 1, β = min
{

2−1, q−1
}

; and the constant const is
independent of function f(x).
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Corollary 1. If the constant C1(f) in Theorem 1 is zero or 0 ≤ α < 2m − 1 −
β, β = min

{
2−1, q−1

}
, then the following estimate holds:

‖Rν(·, f)‖C[0,1] = o
(
ν−β

)
, ν → +∞. (3)

Corollary 2. If the function f(x) ∈ W 1
p (G), p > 1, in Theorem 1 satisfies the

relations f(0) = f(1) = 0, then condition (1) is necessarily satisfied and the
following estimate holds:

‖Rν(·, f)‖C[0,1] ≤ constν
−β ‖f‖W 1

p (G) , ν ≥ 2, (4)

where the constant const is independent of function f(x).

Theorem 2. Assume that P1(x) ∈ L2(G), Pl(x) ∈ L1(G), l = 2, 2m+ 1; a
function f(x) of the class W 1

2 (G) and a system {uk(x)}∞k=1 satisfy the condition
(1). Then the spectral expansion of the function f(x) with respect to the system
{uk(x)}∞k=1 converges absolutely and uniformly on the interval G = [0, 1], and the
following estimate holds:

‖Rν(·, f)‖C[0,1] ≤ const
{
C1(f)να−2m + ν−

1
2×

×
(
‖P1f‖2 +

∥∥f ′∥∥
2

)
+ ν−1 ‖f‖∞

2m+1∑
l=2

ν2−l ‖Pl‖1

}
, ν ≥ 2, (5)

where the constant const is independent of f(x).

Corollary 3. If the function f(x) in Theorem 2 satisfies condition f(0) = f(1) =
0, then condition (1) is necessarily satisfied and the following estimate is true:

‖Rν (·, f)‖C[0,1] ≤ constν
− 1

2
(
‖P1f‖2 +

∥∥f ′∥∥
2

)
, ν ≥ 2, (6)

where the constant const is independent of f(x).

Corollary 4. If C1(f) = 0 or 0 ≤ α < 2m − 1
2 , then the following estimate is

true:

‖Rν (·, f)‖C[0,1] = o
(
ν−

1
2

)
, ν → +∞, (7)

where the symbol ”o” depends on f(x).

Theorem 3. Suppose that P1(x) ∈ L2(G), Pl(x) ∈ L1(G), l = 2, 2m+ 1, f(x) ∈
W 1
p (G), 1 < p < 2, condition (1) is satisfied, and the system {uk(x)}∞k=1 is

uniformly bounded. Then the spectral expansion of the function f(x) with respect
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to the system {uk(x)}∞k=1 converges absolutely and uniformly on the interval G =
[0, 1], and the following estimate holds:

‖Rν (·, f)‖C[0,1] ≤ const
{
C1(f)να−2m + ν−

1
2 ‖P1f‖2 +

+ν−1/q
∥∥f ′∥∥

p
+ ν−1 ‖f‖∞

2m+1∑
l=2

ν2−l ‖Pl‖1

}
, ν ≥ 2, (8)

where p−1 + q−1 = 1 and the constant const is independent of f(x).

Corollary 5. If the constant C1(f) in Theorem 3 is zero or 0 ≤ α < 2m− 1/q,
then

‖Rν (·, f)‖C[0,1] = o
(
ν−1/q

)
, ν → +∞, (9)

where the symbol ”o” depends on function f(x).

Corollary 6. If the function f(x) in Theorem 3 satisfies the relations f(0) =
f(1) = 0, then condition (1) is necessarily satisfied and the following estimate
holds:

‖Rν (·, f)‖C[0,1] ≤ const
{
ν−1/2 ‖P1f‖2 + ν−1/q

∥∥f ′∥∥
p

}
, ν ≥ 2, (10)

where the constant const is independent of function f(x).

Similar results for the even order operators were obtained in [2-8], for the third
order operator in [9-10], for the arbitrary odd order operators in the case f(x) ∈
W 1

1 (G) (under some additional conditions) in [11-12]. Uniform convergence rate
was studied in [13].

Recall that the uniform convergence of the spectral expansion of a function
f(x) from the domain of definition of a self-adjoint differential operator has been
considered in the monograph [14] (chap III, sec. 9).

2. Some auxiliary lemmas

To prove our results, we must estimate the Fourier coefficients fk of the func-
tion f(x) ∈ W 1

p (G). To this end, we use representation of the eigenfunction
uk(x). Let as introduce

X±j ≡ X
±
jk(0) =

(i)n+1

nµn−1

n−1∑
r=0

(±iµk)r ωr+1
j u

(n−1−r)
k (0);



Absolute and Uniform Convergence of the Spectral Expansion in the Eigenfunctions 173

M (ξ, uk) =
(i)n−1

nµn−1k

n∑
l=1

Pl(ξ)u
(n−l)
k (ξ), i =

√
−1, n = 2m+ 1,

where the numbers ωj , j = 1, n, are distinct roots of the number (−1)n of n-th
degree.

Lemma 1. (see [11,12]). If λk 6= 0, then the following representation is valid for
the eigenfunction uk(x):

µ−lk u
(l)
k (t) =

∑
Imωj≤0

(−iωj)lX−jk(0)e−iωjµkt +
∑

Imωj>0

(−iωj)lB−jk(0)×

×eiωjµk(1−t) +
∑

Imωj≤0
(−i)lωl+1

j

t∫
0

M(ξ, uk)e
iωjµk(ξ−t)dξ−

−
∑

Imωj>0

(−i)lωl+1
j

1∫
t

M(ξ, uk)e
iωjµk(ξ−t)dξ, l = 0, n− 1, (11)

if n = 4q − 1, Imλk > 0 or n = 4q + 1, Imλk < 0;

µ−lk u
(l)
k (t) =

∑
Imωj≥0

(iωj)
lX+

jk(0)eiωjµkt +
∑

Imωj<0

(iωj)
lB+

jk(0)×

×e−iωjµk(1−t) +
∑

Imωj≥0
(i)lωl+1

j

t∫
0

M(ξ, uk)e
−iωjµk(ξ−t)dξ−

−
∑

Imωj<0

(i)lωl+1
j

1∫
t

M(ξ, uk)e
−iωjµk(ξ−t)dξ, l = 0, n− 1, (12)

if n = 4q − 1, Imλk < 0 or n = 4q + 1, Imλk > 0. In these relations

B+
jk(0) = X+

jk(0)eiωjµk + ωj

1∫
0

M(ξ, uk)e
−iωjµk(ξ−1)dξ,

B−jk(0) = X−jk(0)eiωjµk + ωj

1∫
0

M(ξ, uk)e
iωjµk(ξ−1)dξ.
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For the coefficients X±jk(0) and B±jk(0) the following estimates are true (see
[15], formulas (42)-(45)):∣∣∣X±jk(0)

∣∣∣ ≤ const ‖uk‖2 ≤ const, if Imωj = 0; (13)∣∣∣X±jk(0)
∣∣∣ ≤ const ‖uk‖∞ , if Imωj 6= 0; (14)∣∣∣B±jk(0)

∣∣∣ ≤ const ‖uk‖∞ . (15)

Lemma 2. Suppose that the function f(x) ∈ W 1
p (G), p > 1, and the system

{uk(x)}∞k=1 satisfy condition (1). Then the Fourier coefficients fk satisfy the
inequalities (µk ≥ 1)

|fk| ≤ const
{
C1(f)µα−2m−1k ‖uk‖∞ + µ−1k

∣∣∣(P1f, µ
−2m
k u

(2m)
k

)∣∣∣ +

+µ−1k

∣∣∣(f, µ−2mk u
(2m)
k

)∣∣∣+ µ−2k

(
2m+1∑
l=2

µ2−lk ‖Pl‖1

)
‖uk‖∞ ‖f‖∞

}
; (16)

|fk| ≤ constµ−1k


C1(f)µα−2m−1k +

∑
Imωj<0

∣∣∣∣∣∣
1∫

0

f ′(t)e−iωjµktdt

∣∣∣∣∣∣+
+

∑
Imωj>0

∣∣∣∣∣∣
1∫

0

f ′(1− t)eiωjµktdt

∣∣∣∣∣∣+ µ−1k
(
‖f‖∞ +

∥∥f ′∥∥
1

)
×

×
2m+1∑
l=2

µ2−lk ‖Pl‖1

]
‖uk‖∞ +

∣∣∣∣∣∣
1∫

0

f ′(t)eiµktdt

∣∣∣∣∣∣
 , (17)

if P1(x) ≡ 0 and n = 4q − 1, Imλk > 0 or n = 4q + 1, Imλk < 0;

|fk| ≤ constµ−1k


C1(f)µα−2m−1k +

∑
Imωj>0

∣∣∣∣∣∣
1∫

0

f ′(t)eiωjµktdt

∣∣∣∣∣∣ +

+
∑

Imωj<0

∣∣∣∣∣∣
1∫

0

f ′(1− t)e−iωjµktdt

∣∣∣∣∣∣+ µ−1k
(
‖f‖∞ +

∥∥f ′∥∥
1

)
×

×
2m+1∑
l=2

µ2−lk ‖Pl‖1

]
‖uk‖∞ +

∣∣∣∣∣∣
1∫

0

f ′(t)e−iµktdt

∣∣∣∣∣∣
 , (18)

if P1(x) ≡ 0 and n = 4q − 1, Imλk < 0 or n = 4q + 1, Imλk > 0.
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Proof. Since the eigenfunction is a solution of the equation Luk = −λkuk, we
represent the Fourier coefficient fk of µk ≥ 1 in the form

fk = (f, uk) =
(
f,−λ−1k Luk

)
= −λ−1k

(
f, u

(2m+1)
k

)
−

−λ−1k
2m+1∑
l=1

(
f, Plu

(2m+1−l)
k

)
= −λ−1k

(
f, u

(2m+1)
k

)
−

−λ−1k
(
f, P1u

(2m)
k

)
− λ−1k

2m+1∑
l=2

(
f, Plu

(2m+1−l)
k

)
. (19)

By virtue of the estimate (see [16], [17])∥∥∥u(s)k ∥∥∥∞ ≤ const(1 + µk)
s+1/p ‖uk‖p , p ≥ 1, s = 0, 2m, (20)

we obtain the following estimate for the third term on the right-hand side of (19):∣∣∣∣∣λ−1k
2m+1∑
l=2

(
f, Plu

(2m+1−l)
k

)∣∣∣∣∣ ≤ µ−(2m+1)
k ‖f‖∞

2m+1∑
l=2

‖Pl‖1×

×
∥∥∥u(2m+1−l)

k

∥∥∥
∞
≤ constµ−(2m+1)

k ‖f‖∞

(
2m+1∑
l=2

‖Pl‖1 µ
2m+1−l
k

)
×

×‖uk‖∞ ≤ constµ
−2
k ‖f‖∞ ‖uk‖∞

2m+1∑
l=2

µ2−lk ‖Pl‖1 . (21)

Integrating the first term on the right-hand side of equality (19) by parts and
using condition (1), we get

|λk|−1
∣∣∣(f, u(2m+1)

)∣∣∣ ≤ C1(f)µα−2m−1k ‖uk‖∞ + µ−2m−1k

∣∣∣(f ′, u(2m)
k

)∣∣∣ . (22)

Estimate (16) now follows from relations (19), (21), and (22).

We now estimate the expression µ−2m−1k

∣∣∣(f ′, u(2m)
k

)∣∣∣ in the case where P1(x) ≡
0. To this end, we use relations (11) and (12) depending on the sign of Imλk.
For certainty, we consider the case n = 2m+ 1 = 4q − 1, q ∈ N, Imλk > 0 and
apply relation (11) with l = 2m. Thus, by virtue of estimates (13)-(15), (20),
and

|M(ξ, uk)| ≤
µ−2mk

2m+ 1

2m+1∑
l=2

∣∣∣Pl(ξ)u(2m+1−l)
k (ξ)

∣∣∣ ≤
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≤ constµ−1k

(
2m+1∑
l=2

µ2−lk |Pl(ξ)|

)
‖uk‖∞ ,

we find

µ−2m−1k

∣∣∣(f ′, u(2m)
k

)∣∣∣ = µ−1k

∣∣∣(f ′, µ−2mk u
(2m)
k

)∣∣∣ ≤ µ−1k ∑
Imωj≤0

∣∣∣(f ′, X−jk(0)e−iωjµkt
)∣∣∣+

+µ−1k

∑
Imωj>0

∣∣∣(f ′, B−jk(0)eiωjµk(1−t)
)∣∣∣+µ−1k ∑

Imωj≤0

∣∣∣∣∣∣
f ′, t∫

0

M(ξ, uk)e
iωjµk(ξ−t)dξ

∣∣∣∣∣∣+
+µ−1k

∑
Imωj>0

∣∣∣∣∣∣
f ′, 1∫

t

M(ξ, uk)e
iωjµk(ξ−t)dξ

∣∣∣∣∣∣ ≤
≤ µ−1k

∑
Imωj≤0

∣∣∣X−jk(0)
∣∣∣ ∣∣(f ′, e−iωjµkt

)∣∣+ µ−1k

∑
Imω>0

∣∣∣B−jk(0)
∣∣∣ ∣∣∣(f ′, eiωjµk(1−t)

)∣∣∣+
+constµ−2k

(
2m+1∑
l=2

µ2−lk ‖Pl‖1

)
‖uk‖∞

∥∥f ′∥∥
1
≤

≤ constµ−1k

 ∑
Imωj<0

∣∣∣∣∣∣
1∫

0

f ′(t)e−iωjµktdt

∣∣∣∣∣∣ ‖uk‖∞ +

1∫
0

f ′(t)eiµktdt

+

+constµ−1k

∑
Imωj>0

1∫
0

f ′(1− t)eiωjµktdt ‖uk‖∞+

+constµ−2k

(
2m+1∑
l=2

µ2−lk ‖Pl‖1

)
‖uk‖∞ ‖f‖1 .

Taking into account the last estimate in equality (22) and combining the
result with estimate (21), we derive inequality (17) from equality (19). Lemma 2
is proved. J

Lemma 3. (see [17]). Assume that P1(x) ∈ L2(G), Pl(x) ∈ L1(G), l =
2, 2m+ 1. Then for the orthonormal system of eigenfunctions {uk(x)}∞k=1 and
the sequence {µk}∞k=1, the following estimates are true:∑

τ≤µk≤τ+1

1 ≤ const for any τ ≥ 0, (23)

∑
0≤µk≤τ

‖uk‖2∞ ≤ const(1 + τ) for any τ > 0. (24)
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Lemma 4. (see [15], [18]). If the conditions of Lemma 3 are satisfied, then{
µ−2mk u

(2m)
k (x)

}∞
k=1

, µk 6= 0,

is a Bessel system, i.e., for any function f(x) ∈ L2(G), the following inequality
is true: ∑

µk>0

∣∣∣(f, µ−2mk u
(2m)
k

)∣∣∣2
1/2

≤ const ‖f‖2 . (25)

Lemma 5. Under condition (23), the systems
{
eiµkt

}∞
k=1

and
{
e−iµkt

}∞
k=1

satisfy
the Riesz inequality for 1 < p ≤ 2.

Proof. Note that each of these systems is a Bessel system in L2(G) (see [19])
under condition (23) and in addition, the following inequality is true:∣∣∣∣∣∣

1∫
0

f(x)ϕk(x)dx

∣∣∣∣∣∣ ≤ const ‖f‖1 ,
for any f(x) ∈ L2(G), where {ϕk(x)} is any of the above-mentioned systems.
Thus, by virtue of the Riesz-Thorin theorem (see [20], chap. XII, sec. 1), the Riesz
inequality holds for these systems, i.e., for any function f(x) ∈ Lp(G), 1 < p ≤ 2,
the following inequality is true: ∞∑

k=1

∣∣∣∣∣∣
1∫

0

f(x)ϕk(x)dx

∣∣∣∣∣∣
q1/q

≤ const ‖f‖p , (26)

where q = p/(p− 1). Lemma 5 is proved. J

Lemma 6. Suppose that the conditions of Lemma 3 are satisfied. Then the
following estimates hold for the system {uk(x)}∞k=1 for any µ ≥ 2:∑

µk≥µ
µ
−(1+δ)
k ‖uk‖2∞ ≤ C2(δ)µ

−δ, δ > 0, (27)

∑
µk≥µ

µ−pk ‖uk‖
p
∞ ≤ C3(p)µ

1−p, 1 < p ≤ 2, (28)

where C2(δ) and C3(p) are positive constants.
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Proof. Take a positive integer n0. By the estimates (23), (24), using the Abel
transformation, we obtain the inequalities∑

µ≤µk≤[µ]+n0

µ
−(1+δ)
k ‖uk‖2∞ ≤

∑
[µ]≤µk≤[µ]+n0

µ
−(1+δ)
k ‖uk‖2∞ ≤

≤
[µ]+n0∑
n=[µ]

n−(1+δ)

 ∑
n≤µk<n+1

‖uk‖2∞

 ≤ [µ]+n0−1∑
n=[µ]

 ∑
1≤µk<n+1

‖uk‖2∞

×
×
(
n−(1+δ) − (n+ 1)−(1+δ)

)
+

 ∑
1≤µk<[µ]+n0+1

‖uk‖2∞

 ([µ] + n0)
−(1+δ) +

+

 ∑
1≤µk<[µ]

‖uk‖2∞

 [µ]−(1+δ) ≤ const
[µ]+n0−1∑
n=[µ]

(n+ 1)
(1 + δ)(1 + n)δ

(n(n+ 1))1+δ
+

+const
n0 + [µ] + 1

(n0 + [µ])1+δ
+ const

1 + [µ]

[µ]1+δ
≤

≤ const

(1 + δ)

∞∑
n=[µ]

n−(1+δ) + [µ]−δ

 ≤ C2(δ)µ
−δ,

whence, since the number n0 is arbitrary, we obtain the estimate (27).
Let us prove the estimate (28). Obviously, for p = 2 this estimate is a special

case of the estimate (27) for δ = 1.
Consider the case of 1 < p < 2. Then, applying the Holder inequality for

p′ = 2/p and q′ = 2/(2− p) we obtain∑
µk≥µ

µ−pk ‖uk‖
p
∞ =

∑
µk≥µ

µ
−1/2
k

(
µ
−p+1/2
k ‖uk‖p∞

)
≤

≤

∑
n=[µ]

µ
−1/(2−p)
k

(2−p)/2∑
µk≥µ

µ
−2+1/p
k ‖uk‖2∞

p/2

≤

≤

 ∞∑
n=[µ]

n−1/(2−p)

 ∑
n≤µk≤n+1

1

(2−p)/2∑
µk≥µ

µ
−2+1/p
k ‖uk‖2∞

p/2

.

Now we apply the estimate (27) with δ = 1− 1/p and the first estimate (i.e.,
estimate (23)) in Lemma 3 to obtain∑

µk≥µ
µ−pk ‖uk‖

p
∞ ≤ C(p)µ(1/p−1)p/2[µ](1−p)/2 ≤ C3(p)µ

1−p.
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The proof of Lemma 6 is complete. J

Lemma 7. (see [15]). Suppose that, for any number N = 1, 2, ..., a sequence
{αk}∞k=0, αk ≥ 0, satisfies the condition

N∑
k=0

αk ≤ const ·N.

Then, for any f(x) ∈ Lp(G), 1 < p ≤ 2, the following inequality is true: ∞∑
k=0

αk

∣∣∣∣∣∣
1∫

0

f(x)e−kβxdx

∣∣∣∣∣∣
q1/q

≤Mp ‖f‖p ,

where β is a complex number with Reβ > 0, p−1+q−1 = 1, and Mp is independent
of f(x).

Lemma 8. Under the conditions of Lemma 3, for any system{
‖uk‖2/q∞ eiωjµkt

}∞
k=1

, Imωj > 0

and {
‖uk‖2/q∞ e−iωjµkt

}∞
k=1

, Imωj < 0

for n = 4l − 1, Imλk < 0 or n = 4l + 1, Imλk > 0 and any system{
‖uk‖2/q∞ e−iωjµkt

}∞
k=1

, Imωj < 0

and {
‖uk‖2/q∞ eiωjµkt

}∞
k=1

, Imωj > 0

for n = 4l − 1, Imλk > 0 or n = 4l + 1, Imλk < 0 the Riesz inequality is true
for 1 < p ≤ 2, where p−1 + q−1 = 1.

Proof. Consider a number j with Imωj > 0 and denote γ = Imωj . Taking
into account the relation

∣∣eiωjµkt
∣∣ = e−γµkt, for any function f(x) ∈ Lp(G) we

obtain the chain of inequalities

∞∑
k=1

‖uk‖2/q∞
∣∣∣∣∣∣

1∫
0

f(t)eiωjµktdt

∣∣∣∣∣∣
q

≤
∞∑
k=1

‖uk‖2∞

 1∫
0

|f(t)| e−γµktdt

q

≤
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≤
∞∑
n=0

∑
n≤µk<n+1

‖uk‖2∞

 1∫
0

|f(t)| e−γµktdt

q

≤

≤
∞∑
n=0

 ∑
n≤µk<n+1

‖uk‖2∞

 1∫
0

|f(t)| e−γntdt

q

≤
∞∑
n=0

αn

 1∫
0

|f(t)| e−nγtdt

q

,

(29)
where αn =

∑
n≤µk<n+1

‖uk‖2∞.

By virtue of inequality (24), for any positive integer N we obtain the estimate

N∑
n=0

αn =
N∑
n=0

 ∑
n≤µk<n+1

‖uk‖2∞

 =
∑

0≤µk<N+1

‖uk‖2∞ ≤ const ·N,

and hence the assumption of Lemma 7 is satisfied.

Therefore, 
∞∑
n=0

αn

 1∫
0

|f(t)| e−γntdt

q
1/q

≤Mp ‖f‖p .

This, together which inequality (29), implies that the Riesz inequality holds
for the system {

‖uk‖2/q∞ eiωjµkt
}∞
k=1

, Imωj > 0.

The proof of the lemma is complete. J

3. Proof of the results

Proof of Theorem 1. Consider the case n = 2m + 1 = 4r − 1, r ∈ N, and
1 < p ≤ 2. We prove the uniform convergence of the series

∞∑
k=1

|fk| |uk(x)|

on G = [0, 1]. To this end, we split this series into the sums∑
0≤µk≤2

|fk| |uk(x)| and
∑
µk>2

|fk| |uk(x)| .
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By virtue of estimate (24), the first sum does not exceed the quantity const ‖f‖1.
To study the second series, we apply Lemma 2, i.e., estimates (17) and (18) de-
pending on the sign of Imλk. To this end, we represent this series in the form∑

µk>2

|fk| |uk(x)| =
∑
k∈I1

|fk| |uk(x)|+
∑
k∈I2

|fk| |uk(x)| = J1 + J2,

where I1 = {k : µk > 2, Imλk < 0} , I2 = {k : µk > 2, Imλk > 0}.
By virtue of estimate (18), we find

J1 =
∑
k∈I1

|fk| |uk(x)| ≤ const C1(f)
∑
k∈I1

µα−2m−1k ‖uk‖2∞+

+const
∑
k∈I1

µ−1k

∑
Imωj>0

∣∣∣∣∣∣
1∫

0

f ′(t)eiωjµktdt

∣∣∣∣∣∣ ‖uk‖2∞+

+const
∑
k∈I1

µ−1k

∑
Imωj<0

∣∣∣∣∣∣
1∫

0

f ′(1− t)e−iωjµktdt

∣∣∣∣∣∣ ‖uk‖2∞+

+const
(
‖f‖∞ +

∥∥f ′∥∥
1

)∑
k∈I1

µ−2k

(
2m+1∑
l=2

µ2−lk ‖Pl‖1

)
‖uk‖2∞+

+const
∑
k∈I1

µ−1k

∣∣∣∣∣∣
1∫

0

f ′(t)e−iµktdt

∣∣∣∣∣∣ ‖uk‖2∞ = const
(
J1
1 + J2

1 + J3
1 + J4

1 + J5
1

)
.

Further, we prove convergence of the series J j1 , j = 1, 5. By virtue of Lemma
6 and the condition 0 ≤ α < 2m, we get

J1
1 = C1(f)

∑
k∈I1

µα−2m−1k ‖uk‖2∞ = C1(f)
∑
k∈I1

‖uk‖2∞
µ
1+(2m−α)
k

≤

≤ CC1(f)2α−2m <∞. (30)

To estimate the series J2
1 , we first apply the Holder inequality to this sum

and then Lemmas 6 and 8. This yields

J2
1 =

∑
k∈I1

µ−1k

∑
Imωj>0

∣∣∣∣∣∣
1∫

0

f ′(t)eiωjµktdt

∣∣∣∣∣∣ ‖uk‖2∞ =
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=
∑

Imωj>0

∑
k∈I1

µ−1k

∣∣∣∣∣∣
1∫

0

f ′(t)eiωjµktdt

∣∣∣∣∣∣ ‖uk‖2/p+2/q
∞ ≤

∑
Imωj>0

∑
k∈I1

‖uk‖2∞
µpk

1/p

×

×

∑
k∈I1

‖uk‖2∞

∣∣∣∣∣∣
1∫

0

f ′(t)eiωjµktdt

∣∣∣∣∣∣
q1/q

≤ constMp2
−1/pm

∥∥f ′∥∥
p
<∞.

The series J3
1 is estimated similar to the series J2

1 . To estimate the series J4
1 ,

we apply Lemma 6 and obtain

J4
1 = const

(
‖f‖∞ +

∥∥f ′∥∥
1

)∑
k∈I1

‖uk‖2∞
µ2k

2m+1∑
l=2

µ2−lk ‖Pl‖1 ≤

≤ const
(
‖f‖∞ +

∥∥f ′∥∥
1

) 2m+1∑
l=2

21−l ‖Pl‖1 <∞. (31)

Finally, we estimate the series J5
1 . To this end, we first apply the Holder

inequality and then Lemmas 5 and 6. This yields

J5
1 = const

∑
k∈I1

µ−1k

∣∣∣∣∣∣
1∫

0

f ′(t)e−iµktdt

∣∣∣∣∣∣ ‖uk‖∞ ≤ const
∑
k∈I1

‖uk‖p∞
µpk

1/p

×

×

∑
k∈I1

∣∣∣∣∣∣
1∫

0

f ′(t)e−iµktdt

∣∣∣∣∣∣
q

1/q

≤ const2−1/q
∥∥f ′∥∥

p
<∞.

Thus, the series J1 is uniformly convergent on G. By using estimate (17) for
the coefficients fk, in exactly the same way, we prove the uniform convergence of

the series J2 on G. Hence, the series
∞∑
k=1

|fk| |uk(x)| uniformly converges on G.

In view of the completeness of the system {uk(x)}∞k=1 in L2(G) and continuity of

function f(x) on G, the series
∞∑
k=1

fkuk(x) uniformly converges to f(x), i.e., the

equality

f(x) =

∞∑
k=1

fkuk(x) (32)

is true.
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We now check the validity of estimate (2). By virtue of equality (32), we find

|Rν(x, f)| = |f(x)− σν(x, f)| =

∣∣∣∣∣∑
µk>ν

fkuk(x)

∣∣∣∣∣ ≤
≤
∑
µk≥ν

|fk| ‖uk‖∞ =
∑

k∈B1(ν)

|fk| |uk(x)|+
∑

k∈B2(ν)

|fk| |uk(x)| = K1(ν) +K2(ν),

where B1(ν) = {k : µk ≥ ν, Imλk < 0} and B2(ν) = {k : µk ≥ ν, Imλk > 0}.
Further, the series K1(ν) and K2(ν) are estimated by using the same proce-

dure as in estimating the series J1 and J2. As a result, we get

Kj(ν) ≤ const
{
C1(f)να−2m + ν

− 1
q
∥∥f ′∥∥

p
+ ν−1

(
‖f‖∞ +

∥∥f ′∥∥
1

)
×

×
2m+1∑
l=2

ν2−l ‖Pl‖1

}
, j = 1, 2.

Hence, estimate (2) is true for 1 < p ≤ 2. Thus, Theorem 1 is proved for
1 < p ≤ 2. For p > 2, the validity of Theorem 1 follows from the embedding
Lp(G) ⊂ L2(G).

Theorem 1 is proved. J
Proof of Theorem 2. Let P1(x) ∈ L2(G), Pl(x) ∈ L1(G), l = 2, 2m+ 1,

f(x) ∈ W 1
2 (G) and let condition (1) be satisfied. We now prove the uniform

convergence of the series
∑
µk≥2

|fk| |uk(x)| on G.

By virtue of estimate (16), we get

∑
µk≥2

|fk| |uk(x)|∞ ≤ const

C1(f)
∑
µk≥2

µα−2m−1k ‖uk‖2∞+

+
∑
µk≥2

µ−1k

∣∣∣(P 1f, µ
−2m
k u

(2m)
k

)∣∣∣ ‖uk‖∞ +
∑
µk≥2

µ−1k ‖uk‖∞×

×
∣∣∣(f ′, µ−2mk u

(2m)
k

)∣∣∣+ ‖f‖∞
∑
µk≥2

µ−2k ‖uk‖
2
∞×

×

(
2m+1∑
l=2

µ2−lk ‖Pl‖1

)}
= const {T1 + T2 + T3 + T4} .

We estimate the series T1 and T4 similar to the the series J1
1 and J4

1 . The
series T1 satisfies estimate (30) and the series T4 satisfies estimate (31) with
replacement of the factor (‖f‖∞ + ‖f ′‖1) by the factor ‖f‖∞.
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To estimate the series T2 and T3 we apply Lemma 4 to the system{
µ−2mk u

(2m)
k (x)

}
, µk ≥ 2, and also Lemma 6 with δ = 1 and µ = 2. As a

result, we obtain

T2 =
∑
µk≥2

µ−1k ‖uk‖∞
∣∣∣(P 1f, µ

−2m
k u

(2m)
k

)∣∣∣ ≤

≤

∑
µk≥2

µ−2k ‖uk‖
2
∞

1/2∑
µk≥2

∣∣∣(P 1f, µ
−2m
k u

(2m)
k

)∣∣∣2
1/2

≤ const 2−1/2
∥∥P 1f

∥∥
2
,

T3 =
∑
µk≥2

µ−1k ‖uk‖∞
∣∣∣(f ′, µ−2mk u

(2m)
k

)∣∣∣ ≤
≤

∑
µk≥2

µ−2k ‖uk‖
2
∞

1/2∑
µk≥2

∣∣∣(f ′, µ−2mk u
(2m)
k

)∣∣∣2
1/2

≤ const 2−1/2
∥∥f ′∥∥

2
.

Hence, the series
∞∑
k=1

|fk| |uk(x)| is uniformly convergent on G. This implies the

uniform convergence of the series
∞∑
k=1

fkuk(x). In view of the completeness of the

system {uk(x)}∞k=1 in L2(G) and the continuity of the function f(x), we obtain

f(x) =

∞∑
k=1

fkuk(x), x ∈ G.

Note that the remainder Rν(x, f) of this series (in the remainder, summation
is carried out over the numbers k for which µk > ν) can be estimated as follows:

‖Rν (·, f)‖C[0,1] ≤ const
{
C1(f)να−2m + ν−1/2 (‖P1f‖2 +

+
∥∥f ′∥∥

2
+ ν−1 ‖f‖∞

2m+1∑
l=2

ν2−l ‖Pl‖1

}
, ν ≥ 2.

Theorem 2 is proved. J
To substantiate estimate (7), it suffices to take into account the fact that, in

the proof of Theorem 2 the sequence of remainders of the convergent series tends
to zero, i.e., ∑

µk≥ν

∣∣∣(P 1f, µ
−2m
k u

(2m)
k

)∣∣∣2 = o(1), ν → +∞,
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µk≥ν

∣∣∣(f ′, µ−2mk u
(2m)
k

)∣∣∣2 = o(1), ν → +∞,

where the symbol ”o” depends on function f(x).

Proof of Theorem 3. Let P1(x) ∈ L2(G), Pl(x) ∈ L1(G), l = 2, 2m+ 1,
f(x) ∈W 1

p (G), 1 < p < 2, condition (1) be satisfied, and the system {uk(x)}∞k=1

be uniformly bounded.

By virtue of the orthonormality of the system {uk(x)}∞k=1 in L2(G), condition
(23) is satisfied. On the other hand,

1 = |(uk, uk)| ≤ ‖uk‖p ‖uk‖q ≤ ‖uk‖∞ ‖uk‖q .

This yields ‖uk‖−qq ≤ ‖uk‖
q
∞.

In view of inequality (23) and the uniform boundedness of the system {uk(x)}∞k=1,
for any τ > 0, we get∑

0≤µk≤τ
‖uk‖q∞ ‖uk‖

−q
q ≤

∑
0≤µk≤τ

‖uk‖2q∞ ≤ const
∑

0≤µk≤τ
1 ≤ const τ.

Thus, the system {uk(x)}∞k=1 satisfies all conditions of the sufficient part of

Theorem 3 in [15,18]. Therefore the system
{
µ−2mk u

(2m)
k (x)

}
, µk ≥ 1, satisfies

the Riesz inequality for 1 < p < 2.

To prove Theorem 3, it suffices to estimate the series T3 (the other series T1, T2
and T4 have been estimated in Theorem 2 without the restriction of uniform
boundedness of the system {uk(x)}∞k=1). By using the Holder inequality and

Riesz inequality for the system
{
µ−2mk u

(2m)
k (x)

}
, µk ≥ 1, and Lemma 6 we arrive

at the following results for the series T3 and its remainder:

T3 =
∑
µk≥2

µ−1k ‖uk‖∞
∣∣∣(f ′, µ−2mk u

(2m)
k

)∣∣∣ ≤
∑
µk≥2

µ−pk ‖uk‖
p
∞

1/p

×

×

∑
µk≥2

∣∣∣(f ′, µ−2mk u
(2m)
k

)∣∣∣q
1/q

≤ const 2−1/q
∥∥f ′∥∥

p
,

∑
µk≥ν

µ−1k ‖uk‖∞
∣∣∣(f ′, µ−2mk u

(2m)
k

)∣∣∣ ≤
∑
µk≥ν

µ−pk ‖uk‖
p
∞

1/p

×
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×

∑
µk≥ν

∣∣∣(f ′, µ−2mk u
(2m)
k

)∣∣∣q
1/q

≤ const ν−1/q
∥∥f ′∥∥

p
.

Theorem 3 is proved.
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