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Unique Continuation of the Quasilinear Elliptic
Equation on Lebesgue Spaces Lp

R.E. Castillo, H. Rafeiro, E.M. Rojas*

Abstract. In this paper we make the convolution between φ, the fundamental solution
of the Laplace equation, and function V that belongs to the space Ln

p
(Rn). Since this

convolution solves Poisson’s equation −∆z = V , we use this result to derive Fefferman’s
inequality, which will be the cornerstone in the proof of our main result, which deals with
the unique continuation property of the nonnegative solution of the quasilinear elliptic
equation divA(x, u,∇u) = B(x, u,∇u), whose coefficients belong to the Ln

p
(Rn) space.
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1. Introduction

Let’s define all the function spaces to be used throughout this paper.
Let Ω ⊂ Rn. The Sobolev space W 1,p(Ω) consists of all integrable functions

u : Ω −→ R such that for each multiindex α with |α| ≤ 1, Dαu exists in the weak
sense and belongs to Lp(Ω). We write:

C2
c (Ω) ={u : Rn −→ R : u is two times continuously differentiable

with compact support},

and

C∞c (Ω) ={u : Rn −→ R : u is infinitely continuously differentiable

with compact support}.
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We denote by W 1,p
0 (Ω) the closure of C∞c (Ω) in W 1,p(Ω). On the other hand, as

usual, we write
H1

0 (Ω) = W 1,p
0 (Ω)

and

(a) H1(Ω) = W 1,2(Ω),

(b) H2(Ω) = W 2,2(Ω).

If u ∈W 1,p(Ω), we define its norm as

‖u‖W 1,p =

∑
|α|≤1

�

Ω

|Dαu|pdx

1/p

, if 1 ≤ p <∞

and
‖u‖W 1,∞ =

∑
|α|≤1

esssupΩ|Dαu|.

Let us start with some historical background. Let Ω ⊂ Rn be a bounded
connected open set, let P be a linear operator given by

Pu = ajk∂jku+ bj∂ju+ cu,

where the coefficients satisfy, for instance, ajk ∈ W 1,∞(Ω), bj ∈ L∞(Ω), c ∈
L∞(Ω) and (ajk) is a symmetric matrix satisfying the uniform ellipticity condition
for some constant λ > 0,

ajk(x)ξjξk ≥ λ|ξ|2, for all x ∈ Ω, and ξ ∈ Rn.

A simple example to keep in mind is the elliptic Schrödinger operator P =
−∆ + V , where V ∈ L∞(Ω). The unique continuation principle comes in several
different forms:

(c) (Weak) If u ∈ H2(Ω) satisfies Pu = 0 in Ω and u = 0 in some ball B
contained in Ω, then u = 0 in Ω.

(d) (Strong) If u ∈ H2(Ω) satisfies Pu = 0 in Ω and if u vanishes to infinite
order at x0 ∈ Ω, in the sense that

lim
r→0

1

rn

�

B(x0,r)

|u|2dx = 0, for all n ≥ 0,

then u = 0 in Ω.
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The purpose of this paper is to discuss the unique continuation principle for
non-negative solution of the quasilinear elliptic equation

divA(x, u,∇u) = B(x, u,∇u),

where the coefficients belong to the Lebesgue space Ln
p
(Rn) (1 ≤ p < n).

In order to do that, we combine the central step in the Moser proof of Har-
nack’s inequality with the Fefferman inequality (Theorem 3 below) and the dou-
bling condition (Corollary 3). To prove our main result (Theorem 5), it is impor-
tant to point out that in [11, 12, 13] some problems were studied in a different
setting and the authors used different techniques than the one we used here to
prove it.

2. Basic results

In what follows we gather some known results. However, for completeness and
convenience of the reader we include their proofs. We need to state the definition
of maximal function. The Hardy-Littlewood maximal function for x ∈ Rn is
defined as follows:

Mf(x) = sup
r>0

1

m(B(x, r))

�

B(x,r)

|f(y)|dy, f ∈ L1
loc(Rn).

Here m denotes the Lebesgue measure and B(x, r) is the ball centered at x with
radius r.

Lemma 1. Let µ be a Radon measure in Rn and α < n. Then

�

Rn

dµ(y)

|x− y|n−α
= (n− α)

∞�

0

rα−n−1µ(B(x, r))dr.

Proof. Using Cavalieri’s principle, we can write

�

Rn

dµ(y)

|x− y|n−α
=

∞�

0

µ
(
{y : |x− y|α−n > λ}

)
dλ

=

∞�

0

µ

({
y : |x− y| <

( 1

λ

) 1
n−α

})
dλ

=

∞�

0

µ

(
B
(
x,
( 1

λ

) 1
n−α
))

dλ.
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Making the change of variable
(

1
λ

) 1
n−α = r, we obtain

∞�

0

µ

(
B

(
x,

(
1

λ

) 1
n−α
))

dλ = (n− α)

∞�

0

rα−n−1µ
(
B(x, r)

)
dr.

Finally �

Rn

dµ(y)

|x− y|n−α
= (n− α)

∞�

0

rα−n−1µ
(
B(x, r)

)
dr. J

Theorem 1. If 0 < α < n, β > 0 and δ > 0, then for x ∈ Rn
�

B(x,δ)

|f(y)|
|x− y|n−α

dy ≤ CαδαMf(x),

where Cα = n
αm(B(0, 1)).

Proof. For x ∈ Rn and δ > 0 we use Lemma 1. Then we obtain

�

B(x,δ)

|f(y)|
|x− y|n−α

dy = (n− α)

∞�

0

 �

B(x,r)∩B(x,δ)

|f(y)|dy

 dr

rn−α+1

≤ (n− α)

m(B(0, 1))

δ�

0

Mf(x)rn
dr

rn−α+1
+m(B(0, 1))

∞�

δ

Mf(x)δn
dr

rn−α+1


=
n

α
m(B(0, 1))Mf(x)δα,

which ends the proof. J

Theorem 2 (Hedberg inequality). Let 0 < α < n and f ∈ Lp(Rn). Then for
1 ≤ p < n

α we have the following pointwise inequality:

|Iαf(x)| ≤ ‖f‖
pα
n
p (Mf(x))1− pα

n .

Proof. For x ∈ Rn and δ > 0 we have

|Iαf(x)| ≤
�

B(x,δ)

|f(y)|
|x− y|n−α

dy +

�

Rn\B(x,δ)

|f(y)|
|x− y|n−α

dy.
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By Theorem 1, we obtain

�

B(x,δ)

|f(y)|
|x− y|n−α

dy = (n− α)

∞�

0

 �

B(x,r)∩B(x,δ)

|f(y)|dy

 dr

rn−α+1

≤ (n− α)

m(B(0, 1))

δ�

0

Mf(x)rn
dr

rn−α+1

+m(B(0, 1))

∞�

δ

Mf(x)δn
dr

rn−α+1


≤ n

α
m(B(0, 1))Mf(x)δα. (1)

Now, for δ > 0 the Hölder inequality implies that

�

Rn\B(x,δ)

|f(y)|
|x− y|n−α

dy ≤ ‖f‖p

 �

Rn\B(x,δ)

|x− y|(α−n)qdy


1
q

= ‖f‖p

m(B(0, 1))

∞�

δ

rn−1−q(n−α)dr

 1
q

≤ m(B(0, 1))

n− q(n− α)
‖f‖pδα−

n
p . (2)

Finally, from (1) and (2), we get∣∣∣∣∣∣
�

Rn

|f(y)|
|x− y|n−α

dxy

∣∣∣∣∣∣ ≤ m(B(0, 1))

n− q(n− α)

(
δαMf(x) + ‖f‖pδα−

n
p

)
. (3)

If we choose δ =
(
Mf(x)
‖f‖p

)− p
n

, then (3) transforms into

|Iαf(x)| ≤ m(B(0, 1))

n− q(n− α)
(Mf(x))1−αp

n ‖f‖
αp
n
p . J
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3. The Poisson equation and Fefferman’s inequality

Let us consider the following problem (Dirichlet problem):{
−∆z = V on B

z = 0 on ∂B.
(4)

The equation −∆z = V is known as the Poisson equation. It is well-known that
the solution of the above problem is given by the convolution

z(x) =

�

Rn

φ(x− y)V (y)dy,

where φ is the fundamental solution of the Laplace equation, and if V ∈ C2
c (Rn),

it is clear that z ∈ C2
c (Rn) (see [9] for details).

Furthermore, z can be written as

z(x) =
1

wn−1

�

Rn

∇z(y) · (x− y)

|x− y|n
dy,

where wn−1 represents the (n−1)-dimensional measure of the sphere Sn−1. Then

∇z(x) =
1

wn−1

�

Rn

∇2z(y) · (x− y)

|x− y|n
dy.

Thus

|∇z(x)| ≤ 1

wn−1

�

Rn

|∇2z(y)|
|x− y|n−1

dy.

(It is known that ∇2z = ∆z.)

Definition 1. A function w(x) ≥ 0 is said to be of A1-class if

Mw(x) ≤ C1w(x)

for almost all x ∈ Rn and for some constant C1.

Our next task is going to be to state the Fefferman inequality, assuming that
V belongs to

A1 ∩ Ln
p
(Rn) ∩ C2

c (Rn) with 1 ≤ p < n

p
.

Note that, since Ω ⊂ Rn is a bounded subset, we have m(Ω) <∞, implying that
Ln
p
(Ω) ⊂ Lp(Ω) (1 ≤ p < n

p ).
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Zamboni proved in [15] the Fefferman inequality allowing V to be in a gener-
alized Kato class, see also [5]. On the other hand, Castillo, Ramos and Rojas in
[7] proved the Fefferman inequality allowing V to belong to the Kato class with
p = 2. For definitions and details see [4, 5, 6, 7, 15].

Based on the ideas given in [8], we prove the following result.

Theorem 3. Let Ω ⊂ Rn be a bounded set and let V ∈ A1 ∩ Ln
p
(Ω) ∩ C2

c (Ω),

1 ≤ p < n
p . Then

�

Ω

|u(x)|
n
p V (x)dx ≤ ‖V ‖Lp

�

Ω

|∇u(x)|
n
p dx.

Proof. For any u ∈ C∞c (Rn), let us consider a ball B such that u ∈ C∞c (B)
and consider the solution z of the problem (4). Next, using

I1V (x) =

�

B

|V (y)|
|x− y|n−1

dy,

and invoking the Hölder inequality, the Green formula and Theorem 2, one can
see that

�

Rn

|u(x)|
n
p V (x)dx =−

�

B

|u(x)|
n
p ∆z(x)dx =

�

B

∇|u(x)|
n
p∇z(x)dx

=
n

p

�

B

|u(x)|
n
p
−1∇|u(x)|∇z(x)dx

≤n
p

�

B

|u(x)|
n
p
−1|∇u(x)||∇z(x)|dx

≤n
p

�

B

|u(x)|
n
p
−1|∇u(x)| 1

wn−1

�

B

|∇2z(y)|
|x− y|n−1

dydx

=
n

p

�

B

|u(x)|
n
p
−1|∇u(x)| 1

wn−1

�

B

|∆z(y)|
|x− y|n−1

dydx

=
n

p

�

B

|u(x)|
n
p
−1|∇u(x)| 1

wn−1

�

B

|V (y)|
|x− y|n−1

dydx

=
n

p

�

B

|u(x)|
n
p
−1|∇u(x)|I1V (x)dx
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≤C(p, n)

wn−1

�

B

|u(x)|
n
p
−1|∇u(x)| (MV (x))1− p

n ‖V ‖
p
n
Lp
dx

=
C(p, n)

wn−1
‖V ‖

p
n
Lp

�

B

|u(x)|
n
p
−1

(MV (x))1− p
n |∇u(x)|dx

≤C(p, n)

wn−1
‖V ‖

p
n
Lp

�
B

|u(x)|
n
pMV (x)dx

1− p
n
�
B

|∇u(x)|pdx


p
n

≤C(p, n)

wn−1
‖V ‖

p
n
Lp

�
B

|u(x)|
n
p V (x)dx

1− p
n
�
B

|∇u(x)|pdx


p
n

.

Finally �
B

|u(x)|
n
p V (x)dx


p
n

≤ C(p, n)

wn−1
‖V ‖

p
n
Lp

�
B

|∇u(x)|p


p
n

.

Therefore,

�

B

|u(x)|
n
p V (x)dx ≤ C(p, n)

wn−1
‖V ‖Lp

�

B

|∇u(x)|
n
p dx. J

4. Space of functions of bounded mean oscillation (BMO)

In the same sense that the Hardy space H1(Rn) is a substitute for L1(Rn),
it will turn out that the space BMO(Rn) (the space of “bounded mean oscilla-
tion”) is the corresponding natural substitute for the space L∞(Rn) of bounded
functions on Rn.

A locally integrable function f belongs to BMO if

1

m(Br)

�

Br

|f(x)− fBr |dm ≤ A (5)

holds for all balls Br = B(x, r), where

fBr =
1

m(Br)

�

Br

fdm =

 

Br

fdm



144 R.E. Castillo, H. Rafeiro, E.M. Rojas

denotes the mean value of f over the ball and m stands for the Lebesgue measure
on Rn. The inequality (5) asserts that over any ball B, the average oscillation of
f is bounded. The smallest bound A for which (5) is satisfied is then taken to be
the norm of f in this space, and is denoted by ‖f‖BMO. Let us begin by making
some remarks about functions that are in BMO.

The following result is due to John-Niremberg. If f ∈ BMO, then there exist
positive constants C1 and C2 such that, for every r > 0 and every ball Br

m({x ∈ Br : |f(x)− fBr | > λ}) ≤ Ce−C2λ/‖f‖BMOm(Br).

One consequence of the above result is the following corollary.

Corollary 1. If f ∈ BMO, then there exist positive constants C1 and C2 such
that �

Br

eC|f(x)−fBr |dm ≤
( C1C

C2 − C
+ 1
)
m(Br)

for every ball Br and 0 < C < C2.

Proof. Let us define ϕ(x) = ex − 1. Notice that ϕ(0) = 0, and hence

�

Br

(eC|f(x)−fBr | − 1) =C

∞�

0

eCλm({x ∈ Br : |f(x)− fBr | > λ})dλ

≤CC1

[ ∞�
0

e−(C2−C)λdλ
]
m(Br).

From the above inequality we have�

Br

eC|f(x)−fBr |dm ≤
( CC1

C2 − C
+ 1
)
m(Br). J

5. Useful results

The following tools are the spinal cord of our main results.

Lemma 2. Let Ω ⊂ Rn be an open and bounded set and u ∈ W 1,p(Ω). Then we
have for any measurable set B ⊂ Ω with m(B) > 0�

Ω

|u(x)− uB|
p
ndx


p
n

≤ wn
[
m(Ω)

wn

]1/n (dim(Ω))n

m(B)
‖∇u‖Ln

p
.
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Theorem 4. Let BR ⊂ Rn, u ∈ W 1,p(BR) and assume that for all Br ⊂ BR,
there exists a constant k > 0 such that�

Br

|∇u(x)|
n
p dx


p
n

≤ krp−1.

Then there exist two constants β and c depending only on k, p and n such that�

BR

eβu(x)dx


�

BR

e−βu(x)dx

 ≤ c[m(BR)]2.

Proof. It is enough to take u ∈ C∞c (Rn) supported in Br = B(x0, r). From
Lemma 2 we know that 1

m(Br)

�

Br

|u(x)− uBr |
n
p dx


p
n

≤ nwn
(m(BR))n

m(Br)
‖∇u‖Ln

p
.

Thus by Hölder’s inequality we have

1

m(Br)

�

Br

|u(x)− uBr |dx ≤

 1

m(Br)

�

Br

|u(x)− uBr |
n
p dx


p
n

≤nwn
(m(BR))n

m(Br)
‖∇u‖Ln

p

=nwn
(m(BR))n

m(Br)

�
Br

|∇u(y)|
n
p dy


p
n

≤nwn
(m(BR))n

m(Br)
rp−1

≤nwn
(m(BR))n

m(Br)
krp−1,

which implies u ∈ BMO. Then by Corollary 1 we obtain

�

BR

eβ|u(x)−uBR |dx ≤ cm(BR), (6)
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where c is the constant that appeared in Corollary 1. Next, (6) implies that�

BR

e−β(u(x)−uBR )dx ≤
�

BR

eβ|u(x)−uBR |dx ≤ cm(BR)

and �

BR

eβ(u(x)−uBR )dx ≤
�

BR

eβ|u(x)−uBR |dx ≤ cm(BR).

Thus�

BR

eβu(x)dx


�

BR

e−βu(x)dx

 =

�

BR

eβ(u(x)−uBR )dx


�

BR

e−β(u(x)−uBR )dx


≤(cm(BR))2.

The theorem is proved. J

Corollary 2. If u ∈W 1,p(BR) is such that for all Br ⊂ BR there exits a constant
k > 0 which satisfy �

Br

|∇ log u(x)|
n
p dx


p
n

≤ krp−1, (7)

then there exist two positive constants β and c depending only on k, p and n such
that �

BR

|u|βdx


�

BR

|u|−βdx

 ≤ c(m(BR))2.

Proof. By Theorem 4 there exist two positive constants β and c depending
only on k, p and n such that�

BR

eβ log u(x)dx


�

BR

e−β log u(x)dx

 ≤ c[m(BR)]2,

which implies �

BR

|u|βdx


�

BR

|u|−βdx

 ≤ c(m(BR))2,

as was announced. J
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Corollary 3. Suppose that (7) holds. Then there exists a positive constant c
such that �

B2r

|u|βdx ≤ c
�

Br

|u|βdx,

where B2r ⊂ Ω. The above inequality is known as a doubling condition.

Proof. If (7) holds, then we have�
Br

|u|βdx

1/2�
Br

|u|−βdx

1/2

≤ c1/2(m(Br)).

From this we obtain�
Br

|u|−βdx

1/2

≤ c1/2(m(Br))

�
Br

|u|βdx

−1/2

. (8)

On the other hand, by the Schwartz inequality we have

m(Br) =

�

Br

|u|
β
2 |u|−

β
2 dx

≤

�
Br

|u|βdx

1/2�
Br

|u|−βdx

1/2

≤

�
Br

|u|βdx

1/2�

B2r

|u|−βdx

1/2

≤c1/2(m(Br))

�
Br

|u|βdx

1/2�

B2r

|u|βdx

−1/2

.

In the last inequality we use (8). Thus

m(Br) ≤ c1/2(m(Br))



�

Br

|u|βdx

�

B2r

|u|βdx


1/2

.
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Finally �

B2r

|u|βdx ≤ c
�

Br

|u|βdx. J

6. The unique continuation principle for elliptic partial
differential equations

This principle which states that any solution of an elliptic equation vanishing
in a small ball must be identically zero (see, (c) in page 137), is a fundamen-
tal property that has various applications e.g. in solvability questions, inverse
problems, and control theory.

Definition 2. Assume w ∈ L1
loc(Ω), w(x) 6= 0 for all x ∈ Ω. We say that w has

a zero of infinite order at x0 ∈ Ω if

lim
R→0

�

B(x0,R)

w(x)dx

(m(B(x0, R)))k
= 0, ∀k > 0.

Which is equivalent to say that a function u ∈ Lploc(Ω) vanishes of infinite order
at point x0 if for any natural number N there exists a constant CN such that�

B(x0,r)

|u(x)|p dx ≤ CNrN

for all N ∈ N and for a small positive number r. Here

B (x0, r) = {y ∈ Rn : |y − x0| < r} .

Let Ω ⊂ Rn be a bounded open set. It is not hard to check that the function

w(x) =
1

|x|n+1
e

1
|x| (x ∈ Rn)

vanishes of infinite order at x0 = 0.

Lemma 3. Assume w ∈ L1
loc(Ω) and w(x) 6= 0 for all x ∈ Ω. If there exists a

positive constant C such that�

B(x0,2R)

w(x)dx ≤ C
�

B(x0,R)

w(x)dx, ∀R > 0, (9)

where B(x0, 2R) ⊂ Ω, then w(x) has no zero of infinite order in Ω.
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Proof. Suppose that

lim
R→0

�

B(x0,R)

w(x)dx

(m(B(x0, R)))λ
= 0, λ > 0.

Next, applying (9) several times, we have

�

B(x0,R)

w(x)dx ≤C
�

B(x0,R2 )

w(x)dx ≤ C

C
�

B
(
x0,

R
22

) w(x)dx



≤C2

C
�

B
(
x0,

R
23

) w(x)dx


...

≤Ck

C
�

B
(
x0,

R

2k

) w(x)dx

 .

Thus �

B(x0,R)

w(x)dx ≤ Ck
�

B
(
x0,

R

2k

) w(x)dx.

Then�

B(x0,R)

w(x)dx ≤Ck
(
m

(
B(x0,

R

2k
)

))λ 1(
m(B

(
x0,

R
2k

)
)
)λ �

B
(
x0,

R

2k

) w(x)dx

=Ck(2−kR)nλ (m(B(0, 1)))λ
1(

m
(
B
(
x0,

R
2k

)))λ �

B
(
x0,

R

2k

) w(x)dx.

Now, let us choose λ in such a way that C2−λ = 1. Thus

�

B(x0,R)

w(x)dx ≤ c1R
nλ

(
1(

m
(
B
(
x, R

2k

)))λ
) �

B
(
x0,

R

2k

) w(x)dx→ 0
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if k →∞, where c1 = (m(B(0, 1)))λ. Therefore w = 0, which contradict the fact
that w(x) 6= 0 for all x ∈ Ω. J

Let Ω be a bounded open set in Rn. The equation we consider is of the form

divA(x, u,∇u) = B(x, u,∇u), (10)

where

A(x, u, ξ) : Ω× R× Rn −→ Rn

and

B(x, u, ξ) : Ω× Rn −→ R

are two continuous functions satisfying the conditions
|A(x, u, ξ)| ≤ a|ξ|

n
p
−1

+ b(x)|u|
n
p
−1

|B(x, u, ξ)| ≤ c(x)|ξ|
n
p
−1

+ d(x)|u|
n
p
−1

A(x, u, ξ) ≥ |ξ|
n
p − d(x)|u|

n
p

(11)

for almost all x ∈ Ω, ∀u ∈ R, ∀ξ ∈ Rn. We assume that p is a fixed point in
(1, n), a is a positive constant and b, c and d are measurable functions in Ω whose
extensions with zero values outside Ω are such that

b
n
n−p , c

n
p , d ∈ Ln

p
(Rn). (12)

For more applications such as some existence results for singular elliptic problems
see Mâagli and Zribi 2001, Bachar et al 2002, Bachar et al 2003, Zeddini 2003,
Bachar and Mâagli 2005, Mâagli and Zribi 2005 [1, 2, 3, 12, 16, 13]. For the study
of the unique continuation property on different framework see, for instance, the
works of Tao and Zhang 2007 and Granlund and Marola 2012 [10, 14].

Definition 3. We say that a function u ∈ H1,p
0 (Ω) is a local weak solution of

(10) in Ω if

�

Ω

{A(x, u(x),∇u(x))∇φ(x) +B(x, u(x),∇u(x))φ(x)}dx = 0 (13)

for every φ ∈ C∞c (Ω).

Theorem 5. Let u ∈ H1(Ω), u ≥ 0, u 6= 0, be a solution of (10) satisfying (11)
and (12). Then u has zero of infinite order in Ω.
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Proof. Let x0 ∈ Ω, and let B(x0, R) be a ball such that B(x0, 2R) is contained
in Ω. Consider any Bh contained in B(x0, R). Let η be a non negative smooth
function with support in B2h. Using φ = ηu1−p as a test function in (13) we get

�

Ω

|∇ log u(x)|
n
p η

n
p (x)dx ≤ C1(p, a)


�

Ω

|∇η(x)|
n
p dx+

�

Ω

V (x)η
n
p (x)dx

 , (14)

where V is defined by

V = b
n
n−p + c

n
p + d.

By Theorem 3, we have

�

Ω

V (x)η
n
p (x)dx ≤ C2

�

Ω

|∇η(x)|
n
p dx.

Inserting this in inequality (14), we obtain

�

Ω

η
n
p (x)|∇ log u(x)|

n
p dx ≤ C3

�

Ω

|∇η(x)|
n
p dx. (15)

Choosing η so that η = 1 in Bh and |∇η| ≤ 3/h, by (15) we have

�

Bh

|∇ log u(x)|
n
p dx ≤ C4h

n(p−1).

Therefore, by Corollary 2, we have

�

Bh

uδ(x)dx

�

Bh

u−δ(x) ≤ Cm(Bh)2.

Therefore, Corollary 3 implies

�

B2r

|u|δdx ≤ c
�

Br

|u|δdx.

That is, the assumption of Lemma 3 is satisfied, hence the conclusion follows for
uδ and thus for u. J
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