Azerbaijan Journal of Mathematics V. 11, No 1, 2021, January ISSN 2218-6816

On Conditions of the Completeness of Some Systems of Bessel Functions in the Space $L^2((0; 1); x^{2p} dx)$

R.V. Khats'

Abstract. We establish the necessary and sufficient conditions for the completeness of the system $(x^{-p-1}\sqrt{x\rho_k}J_{\nu}(x\rho_k): k \in \mathbb{N})$ in the space $L^2((0;1); x^{2p}dx)$, where J_{ν} is the Bessel function of the first kind of index $\nu \geq 1/2$, $p \in \mathbb{R}$ and $(\rho_k: k \in \mathbb{N})$ is an arbitrary sequence of distinct nonzero complex numbers.

Key Words and Phrases: Bessel function, entire function, completeness, minimality, basis, Jensen formula.

2010 Mathematics Subject Classifications: 42A65, 42C30, 33C10, 30B60, 30D20, 44A15

1. Introduction

Let $L^2((0;1); t^{\alpha}dt)$, $\alpha \in \mathbb{R}$, denote the weighted Lebesgue space of all measurable functions $f: (0;1) \to \mathbb{C}$, for which

$$\int_0^1 t^\alpha |f(t)|^2 \, dt < +\infty.$$

Let

$$J_{\nu}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k (x/2)^{\nu+2k}}{k! \Gamma(\nu+k+1)}$$

be the Bessel function of the first kind of index ν . For $\nu > -1$ the function J_{ν} has an infinite set $\{\rho_k : k \in \mathbb{Z}\}$ of real roots, among which $\rho_k, k \in \mathbb{N}$, are the positive roots and $\rho_{-k} := -\rho_k, k \in \mathbb{N}$, are the negative roots (see [5, p. 94], [8, p. 350]). All roots are simple except, perhaps, the root $\rho_0 = 0$. A system ($e_k : k \in \mathbb{N}$) of elements of the Banach space H is called complete if the closure of the linear span of this system coincides with the whole H (see [6, p. 131], [7, p. 4258]). A

© 2010 AZJM All rights reserved.

http://www.azjm.org

³

R.V. Khats'

system of elements $(e_k : k \in \mathbb{N}) \in H$ is said to be minimal if for each $k \in \mathbb{N}$ the element e_k does not belong to the closure of the linear span of all other elements (see [6, p. 131], [7, p. 4258]).

It is known that the approximation properties of the system $(\sqrt{x}J_{\nu}(x\rho_k) : k \in \mathbb{N})$ with $\nu > -1$ depends on the properties of the sequence $(\rho_k : k \in \mathbb{N})$. The classical results relate mainly to the case where $(\rho_k : k \in \mathbb{N})$ is a sequence of positive zeros of the function J_{ν} (see, for instance, [1], [2], [4], [8]). In particular, it is well known that the system $(\sqrt{x}J_{\nu}(x\rho_k) : k \in \mathbb{N})$ is an orthogonal basis for the space $L^2(0; 1)$ when $\nu > -1$ and $(\rho_k : k \in \mathbb{N})$ is a sequence of positive zeros of J_{ν} (see [1], [4], [8, pp. 355–357]). From this it follows that if $\nu > -1$ and $(\rho_k : k \in \mathbb{N})$ is a sequence of positive zeros of J_{ν} , then the system $(\sqrt{x}J_{\nu}(x\rho_k) : k \in \mathbb{N})$ is complete and minimal in $L^2((0; 1); x^{2\nu+1}dx)$. The system $(\sqrt{x}J_{\nu}(x\rho_k) : k \in \mathbb{N})$ is also complete in $L^2(0; 1)$ if $(\rho_k : k \in \mathbb{N})$ is a sequence of zeros of the function J'_{ν} (see [8, pp. 347, 356]). From [2] it follows that if $\nu > -1/2$ and $(\rho_k : k \in \mathbb{N})$ is a sequence of distinct positive numbers such that $\rho_k \leq \pi(k+\nu/2)$ for all sufficiently large $k \in \mathbb{N}$, then the system $(\sqrt{x}J_{\nu}(x\rho_k) : k \in \mathbb{N})$ is complete in $L^2(0; 1)$.

It is important to study the approximation properties of the above systems of Bessel functions if $(\rho_k : k \in \mathbb{N})$ is an arbitrary sequence of complex numbers. The necessary and sufficient conditions have been obtained in [9] for the completeness and minimality of system $(\sqrt{x\rho_k}J_\nu(x\rho_k) : k \in \mathbb{N})$ in the space $L^2(0;1)$ if $\nu \geq -1/2$ and $(\rho_k : k \in \mathbb{N})$ is a sequence of distinct nonzero complex numbers. In [10], some sufficient conditions for the basis property of this system in $L^2(0;1)$ have been found. In [11], a criterion for the completeness and minimality of more general systems $(\Theta_{k,\nu,p} : k \in \mathbb{N}), \Theta_{k,\nu,p}(x) := x^{-p-1}\sqrt{x\rho_k}J_\nu(x\rho_k)$, in the space $L^2((0;1); x^{2p}dx)$ has been established, where J_ν is the Bessel function of the first kind of index $\nu \geq 1/2$, $p \in \mathbb{R}$ and $(\rho_k : k \in \mathbb{N})$ is a sequence of distinct nonzero complex numbers. For $\nu = 3/2$ and p = 1 such criterion is also available in [9]. Those results are formulated in terms of sequences of zeros of functions from some classes of entire functions.

In this paper, using the methods of [7, §§ 3.3, 4.1], [11], we establish some new necessary and sufficient conditions for the completeness of systems $(\Theta_{k,\nu,p} : k \in \mathbb{N})$ in $L^2((0;1); x^{2p}dx)$ depending on the properties of the sequence $(\rho_k : k \in \mathbb{N})$ of distinct nonzero complex numbers (see Theorems 1–3). This complements the results of papers [9]–[11].

2. Preliminaries

Let $\log^+ x = \max(0; \log x)$ for x > 0. By C_1, C_2, \ldots we denote arbitrary positive constants. To prove our main results we need the following auxiliary lemmas.

Lemma 1. (see [7, p. 4263]) Let F be an entire function of exponential type $\sigma \leq 1$ for which the integral

$$\int_{-\infty}^{+\infty} \frac{\log^+ |F(x)|}{1+x^2} \, dx$$

exists and let $(z_k : k \in \mathbb{N})$ be a sequence of nonzero roots of the function F(z). Then

$$\sum_{k\in\mathbb{N}} \left| \operatorname{Im} \frac{1}{z_k} \right| < +\infty.$$

Lemma 2. (see [7, p. 4304]) Let $(\lambda_n : n \in \mathbb{N})$ be a sequence of distinct nonzero complex numbers such that

$$\sum_{n=1}^{\infty} \frac{1}{|\lambda_n|} < +\infty.$$

Then the infinite product

$$G(z) = z^m \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{\lambda_n^2} \right), \quad m \in \mathbb{Z}_+,$$

defines an entire function of minimal type of order 1 with $|G(x)| \leq \exp(\theta(|x|))$, $x \in \mathbb{R}$, where $\theta(x)$ is a positive increasing function satisfying

$$\int_0^{+\infty} \frac{\theta(x)}{x^2} \, dx < +\infty.$$

Lemma 3. (see [7, p. 4303]) Let $\omega(x)$ be a positive nondecreasing function on $[0; +\infty)$ satisfying $\int_0^{+\infty} x^{-2}\omega(x) dx < +\infty$. Then, for all a > 0, there exists an entire function

$$F(z) = \int_{-a}^{a} e^{izt} \, d\sigma(t)$$

satisfying $|F(x)| \leq \exp(-\omega(|x|))$, $|x| > x_0$, where $\sigma(t)$ is a function of bounded variation on the segment [-a; a].

Lemma 4. (see [3], [11]) Let $\nu \geq -1/2$. A function f has the representation

$$f(z) = z^{-\nu} \int_0^1 \sqrt{t} J_\nu(zt) \gamma(t) dt$$

with some function $\gamma \in L^2(0;1)$ if and only if it is an even entire function of exponential type $\sigma \leq 1$ such that $z^{\nu+1/2}f(z) \in L^2(0;+\infty)$.

R.V. Khats'

Lemma 5. (see [11]) Let $\nu \geq 1/2$ and $p \in \mathbb{R}$. An entire function Ω has the representation

$$\Omega(z) = z^{-\nu} \int_0^1 \sqrt{t} J_{\nu}(tz) t^{p-1} h(t) dt$$
(1)

with $h \in L^2((0;1); x^{2p} dx)$ if and only if it is an even entire function of exponential type $\sigma \leq 1$ such that $z^{-\nu+1/2}(z^{2\nu}\Omega(z))' \in L^2(0; +\infty)$. In this case,

$$h(t) = t^{-p} \int_0^{+\infty} \sqrt{tz} J_{\nu-1}(tz) z^{-\nu+1/2} (z^{2\nu} \Omega(z))' dz.$$

Lemma 6. (see [11]) Let $\nu \geq 1/2$, $p \in \mathbb{R}$ and $(\rho_k : k \in \mathbb{N})$ be a sequence of nonzero complex numbers such that $\rho_k^2 \neq \rho_n^2$ if $k \neq n$. For a system $(\Theta_{k,\nu,p} : k \in \mathbb{N})$ to be incomplete in the space $L^2((0;1); x^{2p}dx)$ it is necessary and sufficient that the sequence $(\rho_k : k \in \mathbb{Z} \setminus \{0\})$, $\rho_{-k} := -\rho_k$, $k \in \mathbb{N}$, be a subsequence of zeros of some nonzero even entire function Ω of exponential type $\sigma \leq 1$ satisfying $z^{-\nu+1/2}(z^{2\nu}\Omega(z))' \in L^2(0; +\infty)$.

Lemma 7. (see [11]) Let $\nu \ge 1/2$, $p \in \mathbb{R}$ and an entire function Ω be defined by the formula (1). Then for all $z = x + iy = re^{i\varphi} \in \mathbb{C}$, we have

$$|\Omega(z)| \le C_1 (1+|z|)^{-\nu} \exp(|\operatorname{Im} z|).$$

3. Main results

Theorem 1. Let $\nu \geq 1/2$, $p \in \mathbb{R}$ and $(\rho_k : k \in \mathbb{N})$ be a sequence of distinct nonzero complex numbers such that $|\operatorname{Im} \rho_k| \geq \delta |\rho_k|$ for all $k \in \mathbb{N}$ and some $\delta > 0$. For a system $(\Theta_{k,\nu,p} : k \in \mathbb{N})$ to be complete in $L^2((0;1); x^{2p}dx)$ it is necessary and sufficient that

$$\sum_{k=1}^{\infty} \frac{1}{|\rho_k|} = +\infty.$$
⁽²⁾

Proof. Necessity. Suppose, to the contrary, that the system $(\Theta_{k,\nu,p} : k \in \mathbb{N})$ is not complete in $L^2((0;1); x^{2p} dx)$. Then, by Lemma 6, there exists a nonzero even entire function Ω of exponential type $\sigma \leq 1$ which vanishes at the points ρ_k and satisfies $z^{-\nu+1/2}(z^{2\nu}\Omega(z))' \in L^2(0; +\infty)$. By Lemma 5, the function Ω is of the kind (1). Due to Lemma 7, we have $|\Omega(x)| \leq C_1(1+|x|)^{-\nu}$ for $\nu \geq 1/2$ and all $x \in \mathbb{R}$. This implies

$$\int_{-\infty}^{+\infty} \frac{\log^+ |\Omega(x)|}{1+x^2} \, dx < +\infty.$$

Therefore, by Lemma 1, we get

$$\sum_{k \in \mathbb{N}} \left| \operatorname{Im} \frac{1}{\rho_k} \right| < +\infty.$$

Since $|\operatorname{Im} \rho_k| \ge \delta |\rho_k|, \delta > 0$, for all $k \in \mathbb{N}$, and

$$\left|\operatorname{Im} \frac{1}{\rho_k}\right| = \frac{|\operatorname{Im} \rho_k|}{|\rho_k|^2} \ge \frac{\delta}{|\rho_k|},$$

we have $\sum_{k=1}^{\infty} \frac{1}{|\rho_k|} < +\infty$. This contradicts condition (2).

Sufficiency. Let the condition (2) not be fulfilled. Let us prove that the system $(\Theta_{k,\nu,p}: k \in \mathbb{N})$ is not complete in $L^2((0;1); x^{2p}dx)$. Let

$$G(z) = \prod_{k=1}^{\infty} \left(1 - \frac{z^2}{\rho_k^2} \right).$$

Since $\sum_{k=1}^{\infty} \frac{1}{|\rho_k|} < +\infty$, then by Lemma 2, the function *G* is an even entire function of minimal type of order 1 and $|G(x)| \leq \exp(\theta(|x|)), x \in \mathbb{R}$, where $\theta : [0; +\infty) \to [0; +\infty)$ is an increasing function satisfying $\int_0^{+\infty} t^{-2}\theta(t) dt < +\infty$. Further,

$$\int_0^{+\infty} t^{-2} (1+\nu+1/2) \log(1+t) \, dt < +\infty.$$

Furthermore, according to Lemma 3, there exists an even entire function F of exponential type $\sigma \leq 1$ satisfying

$$|F(x)| \le \exp(-\theta(|x|) - (1 + \nu + 1/2)\log(1 + |x|)), \quad |x| > x_0.$$

Consider the function f(z) = G(z)F(z). The function f is an even entire function of exponential type $\sigma \leq 1$ vanishing at the points ρ_k and satisfying the estimate

$$|x^{\nu+1/2}f(x)| \le |x|^{\nu+1/2} \exp(-(1+\nu+1/2)\log(1+|x|)) \le (1+|x|)^{-1}, \quad x \in \mathbb{R}.$$

Hence $z^{\nu+1/2}f(z) \in L^2(0; +\infty)$ and by Lemma 4 the function f can be represented in the form $f(z) = z^{-\nu} \int_0^1 \sqrt{t} J_{\nu}(zt) \gamma(t) dt$ with some function $\gamma \in L^2(0; 1)$. Since $h(t) := t^{1-p} \gamma(t) \in L^2((0; 1); t^{2p} dt)$, we have the representation $f(z) = z^{-\nu} \int_0^1 \sqrt{t} J_{\nu}(tz) t^{p-1} h(t) dt$ with $h \in L^2((0; 1); x^{2p} dx)$. Thus, by Lemmas 5 and 6, the system $(\Theta_{k,\nu,p} : k \in \mathbb{N})$ is incomplete in $L^2((0; 1); x^{2p} dx)$. The theorem is proved. R.V. Khats'

Let n(t) be the number of points of the sequence $(\rho_k : k \in \mathbb{N}) \subset \mathbb{C}$ satisfying the inequality $|\rho_k| \leq t$, i.e., $n(t) := \sum_{|\rho_k| \leq t} 1$, and let

$$N(r) := \int_0^r \frac{n(t)}{t} dt, \quad r > 0.$$

Theorem 2. Let $\nu \ge 1/2$, $p \in \mathbb{R}$ and $(\rho_k : k \in \mathbb{N})$ be an arbitrary sequence of distinct nonzero complex numbers. If

$$\lim_{r \to +\infty} \left(N(r) - \frac{2r}{\pi} + \nu \log(1+r) \right) = +\infty,$$

then the system $(\Theta_{k,\nu,p}: k \in \mathbb{N})$ is complete in $L^2((0;1); x^{2p}dx)$.

Proof. It suffices to assume the incompleteness of the system $(\Theta_{k,\nu,p} : k \in \mathbb{N})$ and prove that

$$\overline{\lim_{r \to +\infty}} \left(N(r) - \frac{2r}{\pi} + \nu \log(1+r) \right) < +\infty.$$
(3)

◀

By Lemmas 5 and 6, there exists a nonzero even entire function Ω of the form (1) of exponential type $\sigma \leq 1$ such that $z^{-\nu+1/2}(z^{2\nu}\Omega(z))' \in L^2(0; +\infty)$ and for which the sequence $(\rho_k : k \in \mathbb{N})$ is a subsequence of zeros. We may suppose $\Omega(0) = 1$. Then, consecutively applying the Jensen formula (see [6], [7, p. 4316]) and Lemma 7, we obtain

$$\begin{split} N(r) &\leq \frac{1}{2\pi} \int_0^{2\pi} \log |\Omega(re^{i\varphi})| \, d\varphi \leq C_2 + \frac{1}{2\pi} \int_0^{2\pi} (r|\sin\varphi| - \nu \log(1+r)) \, d\varphi = \\ &= \frac{2r}{\pi} - \nu \log(1+r) + C_2, \quad r > 0, \end{split}$$

whence it follows (3). The theorem is proved.

Theorem 3. Let $\nu \geq 1/2$, $p \in \mathbb{R}$ and $(\rho_k : k \in \mathbb{N})$ be an arbitrary sequence of distinct nonzero complex numbers. Let $|\rho_k| \leq \Delta k + \beta$ for $0 < \Delta \leq \pi/2$, $-\Delta < \beta < \Delta(\nu - 1/2)$ and all sufficiently large $k \in \mathbb{N}$. Then the system $(\Theta_{k,\nu,p} : k \in \mathbb{N})$ is complete in $L^2((0;1); x^{2p}dx)$.

Proof. Let
$$\mu_k = \Delta k + \beta$$
, $k \in \mathbb{N}$, $n_1(t) = \sum_{\mu_k \leq t} 1$ and $N_1(r) = \int_0^r t^{-1} n_1(t) dt$.
Then $n(t) \geq n_1(t)$, $N(r) \geq N_1(r)$ and $n_1(t) = m$ for $\Delta m + \beta \leq t < \Delta(m+1) + \beta$.

8

 $(n_1(t) = 0 \text{ on } (0; \mu_1))$. Let $r \in [\mu_s; \mu_{s+1})$. Then $s = \frac{r}{\Delta} + O(1)$ as $r \to +\infty$. Therefore, using formula $\log(1+x) = x - \frac{x^2}{2} + O(x^3), x \to 0$, we obtain

$$\begin{split} N_1(r) &= \sum_{k=1}^{s-1} \int_{\mu_k}^{\mu_{k+1}} \frac{n_1(t)}{t} \, dt + \int_{\mu_s}^r \frac{n_1(t)}{t} \, dt = \sum_{k=1}^{s-1} k \int_{\mu_k}^{\mu_{k+1}} \frac{dt}{t} + \int_{\mu_s}^r \frac{s}{t} \, dt = \\ &= \sum_{k=1}^{s-1} k \log \frac{\mu_{k+1}}{\mu_k} + s \log \frac{r}{\mu_s} = \sum_{k=1}^{s-1} k \log \frac{\Delta(k+1) + \beta}{\Delta k + \beta} + s \log \frac{r}{\Delta s + \beta} = \\ &= \sum_{k=1}^{s-1} k \log \left(1 + \frac{\Delta}{\Delta k + \beta} \right) + O(1) = \\ &= \sum_{k=1}^{s-1} ((\Delta k + \beta) - \beta) \left(\frac{1}{\Delta k + \beta} - \frac{\Delta}{2(\Delta k + \beta)^2} \right) + O(1) = \\ &= s - \left(\frac{\Delta}{2} + \beta \right) \sum_{k=1}^{s-1} \frac{1}{\Delta k + \beta} + O(1) = s - \left(\frac{1}{2} + \frac{\beta}{\Delta} \right) \log(\Delta s + \beta) + O(1) = \\ &= \frac{r}{\Delta} - \left(\frac{1}{2} + \frac{\beta}{\Delta} \right) \log r + O(1) \quad \text{as} \quad r \to +\infty. \end{split}$$

Hence, for $0 < \Delta \leq \pi/2$ and $-\Delta < \beta < \Delta(\nu - 1/2)$, we get

$$\lim_{r \to +\infty} \left(N(r) - \frac{2r}{\pi} + \nu \log(1+r) \right) \ge \lim_{r \to +\infty} \left(N_1(r) - \frac{2r}{\pi} + \nu \log(1+r) \right) \ge \\
\ge \lim_{r \to +\infty} \left(\frac{r}{\Delta} - \left(\frac{1}{2} + \frac{\beta}{\Delta} \right) \log r - \frac{2r}{\pi} + \nu \log r + O(1) \right) = +\infty.$$

Thus, according to Theorem 2, we obtain the required proposition. The proof of theorem is completed. \checkmark

References

- L.D. Abreu, Completeness, Special Functions and Uncertainty Principles Over q-linear Grids, J. Phys. A: Math. Gen., 39(47), 2006, 14567–14580.
- [2] R.P. Boas, H. Pollard, Complete Sets of Bessel and Legendre Functions, Ann. of Math. (2), 48(2), 1947, 366–384.
- J.L. Griffith, Hankel Transforms of Functions Zero Outside a Finite Interval, J. Proc. Roy. Soc. New South Wales, 89, 1955, 109–115.

- [4] H. Hochstadt, The Mean Convergence of Fourier-Bessel Series, SIAM Rev., 9, 1967, 211–218.
- [5] B.G. Korenev, Bessel Functions and Their Applications, Taylor Francis, Inc., London-New York, 2002.
- [6] B.Ya. Levin, Lectures on Entire Functions, Transl. Math. Monogr. Amer. Math. Soc., Providence, R.I., 150, 1996.
- [7] A.M. Sedletskii, Analytic Fourier Transforms and Exponential Approximations, I. J. Math. Sci., 129(6), 2005, 4251–4408.
- [8] V.S. Vladimirov, Equations of Mathematical Physics, Nauka, Moscow, 1981. (in Russian)
- [9] B.V. Vynnyts'kyi, R.V. Khats', Completeness and Minimality of Systems of Bessel Functions, Ufa Math. J., 5(2), 2013, 131–141.
- [10] B.V. Vynnyts'kyi, R.V. Khats', A Remark on Basis Property of Systems of Bessel and Mittag-Leffler Type Functions, J. Contemp. Math. Anal., 50(6), 2015, 300–305.
- [11] B.V. Vynnyts'kyi, R.V. Khats', On the Completeness and Minimality of Sets of Bessel Functions in Weighted L²-spaces, Eurasian Math. J., 6(1), 2015, 123–131.

Ruslan V. Khats'

Institute of Physics, Mathematics, Economics and Innovation Technologies, Drohobych Ivan Franko State Pedagogical University, 3 Stryiska Str., 82100, Drohobych, Ukraine E-mail: khats@ukr.net

Received 30 May 2017 Accepted 11 May 2020