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Estimates of the Approximations by Zygmund Sums
in Morrey-Smirnov Classes of Analytic Functions

S.Z. Jafarov

Abstract. In the present work, we investigate the approximation of the functions by
Zygmund means of Fourier series in Morrey spaces Lp,λ (T) , 0 < λ ≤ 2 , 1 < p < ∞ in
the terms of the modulus of smoothness. The obtained results are applied to estimate the
approximation of functions by Zygmund sums of Faber series in Morrey-Smirnov classes
defined on simply connected domains of the complex plane. In this case, the obtained
estimation depends on the sequence of the best approximation in Morrey-Smirnov classes.
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1. Introduction, some auxiliary results and main results

Let T denote the interval [0, 2π]. Let Lp(T), 1 ≤ p < ∞ be the Lebesgue
space of all measurable 2π−periodic functions defined on T such that

‖f‖p :=

∫
T

|f(x)|p dx

 1
p

<∞.

The Morrey spaces Lp,λ0 (T) for a given 0 ≤ λ ≤ 2 and p ≥ 1, are defined as
the set of functions f ∈ Lploc (T) such that

‖f‖
Lp,λ0 (T)

:=

sup
I

1

|I|1−
λ
2

∫
I

|f (t)|p dt


1
p

<∞,

http://www.azjm.org 110 c© 2010 AZJM All rights reserved.



Approximation in Morrey-Smirnov Classes 111

where the supremum is taken over all intervals I ⊂ [0, 2π]. Note that Lp,λ0 (T) is a
Banach space, for λ = 2 it coincides with Lp (T) and for λ = 0 with L∞ (T) . If 0

≤ λ1 ≤ λ2 ≤ 2, then Lp,λ10 (T) ⊂ Lp,λ20 (T) . Also, if f ∈ Lp,λ0 (T) , then f ∈ Lp (T)
and hence f ∈ L1 (T) . The Morrey spaces were first introduced by C. B. Morrey
in 1938. The properties of these spaces have been investigated by many authors
and, together with weighted Lebesgue spaces Lpω , they play an important role
in the theory of partial differential equations, in the study of local behavior of
the solitions of elliptic differential equations and describe local reqularity more
precisely than Lebesgue spaces Lp. The detailed information about properties of
the Morrey spaces can be found in [7-11, 14-17, 19, 20, 26, 29, 30, 33, 35, 37, 39,
42, 44].

In what follows, by Lp,λ (T) we denote the closure of the linear subspace of

Lp,λ0 (T) functions, whose shifts are continuous in Lp,λ0 (T) . Suppose that x, h
are real, and let’s consider the following series:

∆α
hf(x) :=

∞∑
k=0

(−1)k
(
α
k

)
f (x+ (α− k)h) , α > 0, f ∈ Lp,λ(T).

Then, by [34, Theorem 11, pp.135] the last series converges absolutely almost
everywhere (a. e.) on T. Hence the operator ∆α

h by [25] is bounded in the space
Lp,λ(T). Namely,

∆α
hf(x) =

∞∑
k=0

(−1)k
(
α
k

)
f (x+ (α− k)h)

=
α∑
k=0

(−1)α−k
(
α
k

)
f (x+ kh) .

The function

ωαp,λ(f, δ) := sup
|h|≤δ

‖∆α
h (f, ·)‖Lp,λ(T) , α ∈ Z

+

is called α-th modulus of smoothness of f ∈ Lp,λ (T) , 0 ≤ λ ≤ 2, p ≥ 1.

The modulus of smoothness ωαp,λ(f, δ)M has the following properties [24, 25]:

1) ωαp,λ(f, δ) is an increasing function;

2) lim
δ→0

ωαp,λ (f, δ) = 0 for every f ∈ Lp,λ (T) , 0 ≤ λ ≤ 2 and p ≥ 1;

3) ωαp,λ (f + g, δ) ≤ ωαp,λ (f, δ) + ωαp,λ (g, δ) for f, g ∈ Lp,λ (T) ;

4) ωαp,λ(f, nδ) ≤ nαωαp,λ(f, δ), n ∈ N;

5) ωαp,λ(f, sδ) ≤ (s+ 1)α ωαp,λ(f, δ);
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6) ωαp,λ(f, δ) ≤ [(n+ 1) δ + 1]α ωαp,λ(f, 1
n+1), n ∈ N.

Let
a0

2
+

∞∑
k=1

Ak(x, f) (1)

be the Fourier series of the function f ∈ L1(T), where Ak(x, f) := (ak (f) cos kx+
bk (f) sin kx), ak(f) and bk(f) are Fourier coefficients of the function f ∈ L1(T).

The n-th partial sums, Zygmund means of order k (k ∈ N) of the series (1)
are defined, respectively, as

Sn(x, f) =
a0

2
+

n∑
ν=1

Aν(x, f),

Zn,k(x, f) =
a0

2
+

n∑
ν=1

(1− νk

(n+ 1)k
)Aν(x, f), k = 1, 2, ...

It is clear that
S0(x, f) = Z0,k(x, f) =

a0

2
.

The best approximation to f ∈ Lp,λ (T) , 0 < λ ≤ 2 , 1 < p <∞ in the class∏
n of trigonometric polynomials of degree not exceeding n is defined by

En (f)
Lp,λ(T)

:= inf
{
‖f − Tn‖Lp,λ(T) : Tn ∈

∏
n

}
.

Let G be a finite domain in the complex plane C, bounded by a rectifiable Jordan
curve Γ, and let G− := extΓ. Further, let

T := {w ∈ C : |w| = 1} , D := intT and D− := extT.

Let w = ϕ(z) be the conformal mapping of G− onto D− normalized by

ϕ(∞) =∞, lim
z→∞

ϕ(z)

z
> 0,

and let ψ stand for the inverse of ϕ.
Let w = ϕ1(z) denote a function that maps the domain G conformally onto

the disk |w| < 1. The inverse mapping of ϕ1 will be denoted by ψ1. Let Γr be
the image of the circle |ϕ1(z)| = r, 0 < r < 1 under the mapping z = ψ1(w).

Let us denote by Ep, where p > 0, the class of all functions f(z) 6= 0 that are
analytic in G and have the property that the integral∫

Γr

|f(z)|p |dz|



Approximation in Morrey-Smirnov Classes 113

is uniformly bounded for 0 < r < 1. We shall call the Ep-class the Smirnov class.
If the function f(z) belongs to Ep, then f(z) has limiting values f(z′) almost
everywhere on Γ over all nontangential paths, |f(z′)| is summable on Γ, and

lim
r→1

∫
Γr

|f(z)|p |dz| =
∫
Γ

∣∣f(z′)
∣∣p ∣∣dz′∣∣ .

It is known that ϕ′ = E1(G−) and ψ′ ∈ E1(D−). General information about
Smirnov classes can be found in [12, pp. 168-185].

Let Γ be a rectifiable Jordan curve in the complex plane C. The Morrey
spaces Lp,λ (Γ) for a given 0 ≤ λ ≤ 2 and p ≥ 1, are defined as the set of
functions f ∈ Lploc (Γ) such that

‖f‖Lp,λ(Γ) :=

sup
F

1

|F ∩ Γ|1−
λ
2

∫
F

|f (z)|p dz


1
p

<∞,

where the supremum is taken over all disks F centered on Γ. Let G := intΓ and
Lp,λ (Γ) , 0 < λ ≤ 2 , 1 < p < ∞, be a Morrey space defined on Γ. We define
the Morrey-Smirnov classes Ep,λ (G) as

Ep,λ (G) :=
{
f ∈ E1 (G) : f ∈ Lp,λ (Γ)

}
.

For f ∈ Ep,λ (G) , we define the Ep,λ (G) norm as

‖f‖Ep,λ(G) := ‖f‖Lp,λ(Γ) .

Note that if G = D = {z : |z| < 1} , then we have the spaceHp,λ (D) := Ep,λ (D) .
The space Hp,λ (D) is called Morrey-Hardy space on the unit disk D. For
f ∈ Lp,λ (Γ) we define the function

f0(t) := f (ψ(t)) , t ∈ T.

Let h be a continuous function on [0, 2π]. Its modulus of continuity is defined
by

ω (t, h) := sup {|h (t1)− h (t2)| : t1, t2 ∈ [0, 2π] , |t1 − t2| ≤ t} , t ≥ 0.

The curve Γ is called Dini-smooth if it has a parametrization

Γ : ϕ0(s), 0 ≤ s ≤ 2π
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such that ϕ′0(s) is Dini-continuous, i.e.

π∫
0

ω (ϕ′0, t)

t
dt <∞

and ϕ′0 (s) 6= 0 [36, p. 48].
If Γ is a Dini-smooth curve, then there exist [43] the constants c1 and c2 such

that
0 < c1 ≤

∣∣ψ′ (t)∣∣ ≤ c2 <∞, |t| > 1.

Note that if Γ is a Dini-smooth curve, then according to the above property
we have f0 ∈ Lp,λ (T) if f ∈ Lp,λ (Γ).

Let ϕk(z), k = 0, 1, 2, ... be the Faber polynomials for G. The Faber polyno-
mials ϕk(z), associated with G ∪ Γ, are defined through the expansion

ψ′ (w)

ψ (w)− z
=

∞∑
k=0

ϕk (z)

tk+1
, z ∈ G, t ∈ D− (2)

and the equalities

ϕk (z) =
1

2πi

∫
T

wkψ′ (w)

ψ (w)− z
dw , z ∈ G, (3)

ϕk (z) = ϕk (z) +
1

2πi

∫
Γ

ϕk (s)

s− z
ds , z ∈ G−, k = 0, 1, 2, ... (4)

[38, p. 33-38].
Let f ∈ Ep,λ (G). Since f ∈ E1 (G) , we have

f(z) =
1

2πi

∫
Γ

f(s)ds

s− z
=

1

2πi

∫
T

f(ψ(w))ψ′(w)

ψ(w)− z
dw ,

for every z ∈ G. Considering this formula and expansion (2), we can associate
with f the formal series [25]

f(z) ∼
∞∑
k=0

ak(f)ϕk(z) , z ∈ G , (5)

where

ak(f) :=
1

2πi

∫
T

f(ψ(w))

wk+1
dw, k = 0, 1, 2, ...
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This series is called the Faber series expansion of f, and the coefficients ak(f), k =
0, 1, 2, ... are called Faber coefficients of f.

The n-th partial sums and Zygmund sums of the series (5) are defined, re-
spectively, as

Sn(z, f) =
n∑
k=o

ak(f)ϕk(z) ,

Zn,k(x, f) =
a0

2
+

n∑
ν=1

(1− νk

(n+ 1)k
)ak(f)ϕk(z).

Note that if f ∈ Ep,λ (G) , 0 < λ ≤ 2 , 1 < p <∞, then by [24] and [25] the
function

f+
0 (w) . =

1

2πi

∫
T

f0 (t) dt

t− w
, w ∈ D

belongs to Hp,λ (D) .
Let Γ be a Dini-smooth curve. We define the k-th modulus of smoothness

of f ∈ Ep,λ (G) , 0 < λ ≤ 2 , 1 < p <∞, as

Ωk
Γ, p,λ( f, δ) := ωkp,λ( f+

0 , δ), δ > 0,

for l = 1, 2, 3...
Let P :={all polynomials (with no restriction on the degree)}, and let P(D)

be the set of traces of members of P on D. We define the operator T as follows:

T : = P(D) −→ Ep,λ (G) ,

T (P )(z) : =
1

2πi

∫
T

P (w)ψ′(w)

ψ(w)− z
dt, z ∈ G.

Then taking into account (4) and (5) we have

T

(
n∑
k=0

bkw
k

)
=

n∑
k=0

bkϕk(z), z ∈ G.

We use the constants c, c1, c2, ... (which can be different in different places)
which depend only on the quantities that are not important for the questions of
interest

The approximation of the functions by trigonometric polynomials in non-
weighted and weighted Morrey spaces have been investigated in [4-6, 18, 24, 25,
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31, 32]. In this work, we study the deviation of functions from their Zygmund
means in terms of the modulus of smoothness ωkp,λ(f, ·) and best approxima-

tion En(f)Lp,λ(T) of these functions in the Morrey spaces Lp,λ (T) , 0 < λ ≤ 2,
1 < p <∞. Also, we investigate the approximation of the functions by Zygmund
sums of Faber series in Morrey-Smirnov classes Ep,λ(G), 0 < λ ≤ 2, 1 < p < ∞
defined in the domains with a Dini-smooth boundary of the complex plane in
terms of the best approximation En(f)Ep,λ(G). Similar problems in different spaces
have been studied in, for example, [1-3, 13, 21-23, 27-28, 40].

Using Bernstein inequality for trigonometric polynomials Tn of degree ≤ n in
the Morrey spaces Lp,λ (0, 2π) , 0 < λ ≤ 2, 1 < p < ∞, and taking into account
the above properties of modulus of smoothness ωkp,λ(f, ·) and the proof scheme
developed in [40] (see also [13], p. 210), we can prove the following theorem.

Theorem 1. Let f ∈ Lp,λ (T) , 0 < λ ≤ 2 and 1 < p < ∞. Then for k ∈ N+

the estimate

ωkp,λ(f,
1

n
) ≤ c3

nk

{
n∑
ν=1

νβk−1Eβν (f)
Lp,λ(T)

} 1
β

, n ∈ N+ , β = min {p, 2}

holds with a constant c3 = c3 (p, k, λ) > 0 independent of n, where β =
min {p, 2} .

Theorem 2. Let G be a finite, simply connected domain with a Dini-smooth
boundary Γ and f ∈ Ep,λ(G), 0 < λ ≤ 2, p > 1. Then the inequality

Ωk
Γ, p,λ(δ, f) ≤ c4

nk

{
n∑
ν=0

νβk−1Eβν (f)Ep,λ(G)

} 1
β

, n ∈ N+

holds with a constant c4 > 0 independent of n, where β = min {p, 2} .

Proof. Let f ∈ Ep,λ(G), 0 < λ ≤ 2, p > 1. According to [25], T
(
f+

0

)
= f.

The operator T : Hp,λ (D)→ Ep,λ(G) is linear, bounded , one-to-one and onto.
Then T−1 : Ep,λ(G)→ Hp,λ (D) is linear and bounded. We take a p∗n ∈ Pn as
the best approximating algebraic polynomial for f in Ep,λ(G). That is

En (f)Lp,λ(G) = ‖f − p∗n‖Lp,λ(Γ) .

Then by [25] we have T−1 (p∗n) ∈ Pn (D) . Since the operator T−1 is bounded,
the inequality
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En
(
f+

0 , D
)
Hp,λ(D)

≤
∥∥f+

0 − T
−1 (p∗n)

∥∥
Lp,λ(T)

=
∥∥−T−1 (f)− T−1 (p∗n)

∥∥
Lp,λ(T)

=
∥∥−T−1 (f − p∗n−)

∥∥
Lp,λ(T)

≤
∥∥−T−1

∥∥ ‖f − p∗n‖Lp,λ(�)

=
∥∥−T−1

∥∥En (f)Lp,λ(G)

holds. Finally, considering the last inequality and Theorem 1 we obtain

Ωk
Γ, p,λ( f,

1

n
) :=ωkp,λ( f+

0 ,
1

n
) ≤ c5

nk

{
n∑
ν=1

νβk−1Eβν (f)Hp,λ(D)

} 1
β

≤ c6

nk
∥∥−T−1

∥∥{ n∑
ν=1

νβk−1Eβν (f)Ep,λ(G)

} 1
β

≤ c7

nk
∥∥−T−1

∥∥{ n∑
ν=1

νβk−1Eβν (f)Ep,λ(G)

} 1
β

≤ c8

nk

{
n∑
ν=1

νβk−1Eβν (f)Ep,λ(G)

} 1
β

,

which completes the proof of Theorem 2. J

Our main results are the following.

Theorem 3. Let f ∈ Lp,λ (T) , 0 < λ ≤ 2 and 1 < p <∞. Then the inequality

‖f − Zn,k(·, f)‖Lp,λ(T) ≤ c9ω
k
p,λ(f,

π

n
)

holds with a constant c9 > 0 independent of n.

Theorem 4. Under the conditions of Theorem 3, there is a constant c = c (p, k, λ) >
0 independent of n such that the inequality

‖f − Zn,k(·, f)‖Lp,λ(T) ≤
c10

nk

{
n∑
ν=0

νβk−1Eβν (f)
Lp,λ(T)

} 1
β

(6)

holds, where β = min {p, 2} .
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Theorem 5. Let Γ be a Dini-smooth curve. Then for f ∈ Ep,λ(G), 0 < λ ≤
2, p > 1 the inequality

‖f − Zn,k(·, f)‖Lp,λ(Γ) ≤
c11

nk

{
n∑
ν=0

νβk−1Eβν (f)Ep,λ(G)

} 1
β

, n ∈ N+

holds with a constant c11 > 0 independent of n, where β = min {p, 2} .

Note that Theorems 3 and 4 in the Lebesgue spaces Lp(T), p ≥ 1 have been
obtained in [21] and [41], respectively.

2. Proofs of the results

Proof of Theorem 3 Let f ∈ LM (T). Then the following inequality holds:

‖f − Zn,k(·, f)‖Lp,λ(T) ≤‖f − Sn(·, f)‖Lp,λ(T)

+ (n+ 1)−k
∥∥∥νkAν(·, f)

∥∥∥
Lp,λ(T)

=U1 + U
(k)
2 . (7)

From [24] we get

U1 = ‖f − Sn(·, f)‖Lp,λ(T) ≤ c12En(f)Lp,λ(T). (8)

According to [25] the inequality

En(f)
Lp,λ(T)

≤ c13(k,M)ωkp,λ(f,
1

n
) (9)

holds. Using (8) and (9) we have

U1 = ‖f − Sn(·, f)‖Lp,λ(T) ≤ c14(k,M)ωkp,λ(f,
1

n
). (10)

If k is even
n∑
ν=1

νkAν(x, f) = (−1)k/2S(k)
n (x, f),

if k is odd
n∑
ν=1

νkAν(x, f) = (−1)(k+3)/2S̃n
(k)

(x, f),
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where g̃(x) is the function that is trigonometricaly conjugate to g(x). Then we
can write

U
(k)
2 =


(n+ 1)−k

∥∥∥S(k)
n (·, f)

∥∥∥
Lp,λ(T)

, k − even

(n+ 1)−k
∥∥∥∥S̃n(k)

(·, f)

∥∥∥∥
Lp,λ(T)

, k − odd.
(11)

If k is even, then, according to the definition of modulus of smoothness, Bernstein
inequality for the Morrey spaces [25] and (11), we have

U
(k)
2 =(n+ 1)−k

∥∥∥S(k)
n (·, f)

∥∥∥
Lp,λ(T)

≤c15(n+ 1)−k2−kn−k
∥∥∥∆k

π/nSn(·, f)
∥∥∥
Lp,λ(T)

≤2−kc16

∥∥∥∆k
π/nSn(·, f)

∥∥∥
Lp,λ(T)

=2−kc16

∥∥∥∆k
π/n(Sn(·, f)− f + f)

∥∥∥
Lp,λ(T)

≤c17(M,k)

{
‖f − Sn(·, f)‖Lp,λ(T) +

∥∥∥∆k
π/n(f)

∥∥∥
Lp,λ(T)

}
≤c18(M,k)ωkp,λ(f,

π

n
). (12)

By [25] (see also [24]), we have∥∥∥∥S̃n(k)
(·, f)

∥∥∥∥
Lp,λ(T)

≤ c19

∥∥∥S(k)
n (·, f)

∥∥∥
Lp,λ(T)

. (13)

If k is odd, then, combining (11), (13) and (12), we obtain the following inequality:

U
(k)
2 =(n+ 1)−k

∥∥∥∥S̃n(k)
(·, f)

∥∥∥∥
Lp,λ(T)

≤c20(n+ 1)−k
∥∥∥S(k)

n (·, f)
∥∥∥
Lp,λ(T)

≤c21(M,k)ωkp,λ(f,
π

n
). (14)

Taking into account (7), (10), (12) and (14), we obtain the inequality in Theorem
3. The proof of Theorem 3 is completed. J

Proof of Theorem 4. From Theorem 3 and Theorem 1 we obtain Theorem 4.
J

Proof of Theorem 5. Let f ∈ Ep,λ(G), 0 < λ ≤ 2 and 1 < p < ∞. Since
Γ is a Dini smooth curve, by virtue of [25] (see also [24]), the operator T :
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Hp,λ(D) −→ Ep,λ(G), 0 < λ ≤ 2 , 1 < p <∞ is bounded, one-to-one and onto,
and T (f+

0 ) = f. For the function f ∈ Ep,λ(G) , we have the following Faber
series [25]:

f(z) v
∞∑
k=0

ak(f)ϕk(z), z ∈ G,

where

ak (f) :=
1

2πi

∫
T

f0 (w)

wk+1
dw, k ∈ N.

By [25] we get f+
0 ∈ Hp,λ(D). Then for the function f+

0 we have the following
Taylor expansion:

f+
0 (w) =

∞∑
k=0

ak(f)wk.

Note that f+
0 ∈ E1(D) and boundary function f+

0 ∈ Lp,λ(T). Then according to
[12, Theorem 3.4, pp.38] the function f+

0 (w) has the following Fourier expansion:

f+
0 (t) v

∞∑
k=0

ak(f)eitk.

Taking into account the boundedness of the operator T, Theorems 3 and 2, we
have

‖ f − Zn,k(., f) ‖Lp,λ(Γ)= ‖ T (f+
0 )− T (Vn,m(., f+

0 )) ‖Lp,λ(Γ)

≤c22 ‖ f+
0 − Zn,k(., f

+
0 ) ‖Lp,λ(T)

≤c23ω
k
p,λ(f+

0 ,
1

n
)

=c23Ωk
Γ, p,λ( f,

1

n
)

≤c24

nk

{
n∑
ν=1

νβk−1Eβν (f)Ep,λ(G)

} 1
β

.

which proves Theorem 5. J
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