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Quasilinearity of Some Functionals Associated to a
Weakened Davis-Choi-Jensen’s Inequality for
Positive Maps
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Abstract. In this paper we establish some quasilinearity properties of some functionals
associated to a weakened Davis-Choi-Jensen’s inequality for positive maps and convex
(concave) functions. Applications for power function are also provided.
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1. Introduction

Let H be a complex Hilbert space and B(H) be the Banach algebra of
bounded linear operators acting on H. We denote by By, (H) the semi-space of
all selfadjoint operators in B (H). We denote by B™ (H) the convex cone of all
positive operators on H and by Bt (H) the convex cone of all positive definite
operators on H.

Let H, K be complex Hilbert spaces. Following [2] (see also [15, p. 18]) we
can introduce the following definition:

Definition 1. A map ® : B(H) — B(K) is linear if it is additive and homoge-
neous, namely

O (MNA+ uB) =0 (A) + u® (B)
for any \, p € C and A, B € B(H). The linear map ® : B(H) — B(K) is
positive if it preserves the operator order, i.e. if A € Bt (H), then ®(A) €
Bt (K). We write ® € B[B(H),B(K)|. The linear map ® : B(H) — B(K)
is normalised if it preserves the identity operator, i.e. ® (ly) = 1x. We write

e Py [B(H),B(K)].
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We observe that a positive linear map ® preserves the order relation, namely
A < B implies ¢ (A) < & (B)

and preserves the adjoint operation ® (A*) = ® (A)". If ® € Py [B(H),B(K)]
and aly < A < fBly, then alg < @ (A) < Plk.

If the map ¥ : B(H) — B(K) is linear, positive and ¥ (1) € Bt (K), then
by putting ® = U1/2 (1) WU~ Y2 (1) we get that ® € Py [B(H),B(K)],
namely it is also normalised.

A real valued continuous function f on an interval I is said to be operator
convex (concave) on I if

fUL=ANA+AB) < (2)(1=A) f(A)+Af(B)

for all A € [0,1] and for every selfadjoint operators A, B € B(H) whose spectra
are contained in /.
The following Jensen’s type result is well known [2]:

Theorem 1 (Davis-Choi-Jensen’s Inequality). Let f : I — R be an operator
convez function on the interval I and ® € Py [B(H),B(K)]. Then for any
selfadjoint operator A whose spectrum is contained in I we have

f(@(A) <@ (f(A)). (1)
We observe that if ¥ € P [B(H),B(K)] with ¥ (1y) € B (K), then by
taking ® = U1/2 (1) 0012 (1) in (1) we get
FU2 ) ()0 (1)) < U2 (1) W (f (A) 02 (1)

If we multiply both sides of this inequality by ¥'/2 (1) we get the following
Davis-Choi-Jensen’s inequality for general positive linear maps:

U2 (1) £ (W2 (1) W (A) T2 (1) ) U (1) S W (S (A). (2)

In the recent paper [9] we established the following weakened version of Davis-
Choi-Jensen’s inequality that holds for the larger class of convex functions:

Theorem 2. Let f : I — R be a convex function on the interval I and ® :
B(H) — B(K) a normalised positive linear map. Then for any selfadjoint oper-
ator A whose spectrum Sp (A) is contained in I we have

£ (@ (A)y, 1)) < (@ ( (4)) ) (3)
for any y € K, |ly]| = 1.
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For the sake of completeness, we give here a simple proof as follows.

Let m < M and Sp(A) C [m,M] C I. Then mly < A < M1y and since
¢ Py [B(H),B(K)]wehave mlyx < ®(A) < M1k showing that (P (A) y,y) €
[m, M] for any y € K, ||y|| = 1.

By the gradient inequality for the convex function f we have fora = (® (A) y, y)
€ [m, M|

F@ = f(2A)y,m))+ (= (2(A)y,m) £} (2(A)y,y))

for any ¢t € I, where f' is the lateral derivative of f on I.
Using the continuous functional calculus for the operator A we have for a
fixed y € K with ||y|| =1

fA)Zf(@A)yy)ia+ (@A) yy)(A— (@A) y,y)1n). (4

Since ® € Py [B(H),B(K)], by taking the functional ® in the inequality (4)
we get,

O (f(A) = f{(2(A)y ) 1k + f1 (2 (A)y, 1) (2 (A) = (2 (A)y,y) 1k) (5)

for any y € K with |ly|| = 1.
This inequality is of interest in itself.
Taking the inner product in (5) we have for any y € K with |ly|| =1

(@ (£ (4)y.9)
> (@ (A),0) Iyll® + £1 (@ (A) ) (@ (A) ) = (@ (4) ) ]
= ({2 (A)y.9)

and the inequality (3) is proved.
If the normality condition is dropped, then we have:

D (A)y
D (A)y

Corollary 1. Let f : I — R be a convex function on the interval I and ¥ €
BB(H),B(K)] with ¥ (1) € BTt (K). Then for any selfadjoint operator A
whose spectrum Sp (A) is contained in I we have

(¥ (A)v,v) (U (f (A))v,v)
f<<‘1’(1H)v,v)> = (U (1g)v,v) (6)

for any v € K with v # 0.

For Jensen’s type operator inequalities see [1], [3]-[14] and the references
therein.
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We define by PB; [B(H),B(K)] the convex cone of all linear, positive maps
U with ¥ (1) € BTt (K), namely ¥ (1) is a positive invertible operator in K
and define the functional Ay 4, : Br [B(H),B(K)] = B(K) by

(W (4)v,v) >

Apan(¥) = (¥ (1) 0,0) f ((\1/ (L) v,v)

where f : I — R is a convex (concave) function on the interval I, A is a selfadjoint
operator whose spectrum is contained in I and v € K, v # 0.

In this paper we establish some quasilinearity properties of some function-
als associated to the weakened Davis-Choi-Jensen’s inequality (6) for positive
maps and convex (concave) functions. Applications for power function are also
provided.

2. The main results

The following result holds:

Theorem 3. Let f: I — R be a convex (concave) function on the interval I, A
a selfadjoint operator whose spectrum is contained in I and v € K, v # 0. If Uy,
Uy € P [B(H),B(K)| and X € [0,1], then

Apan(L=2A) W1 +AVs) < (>) (1= A) Apan (V1) + ADf a0 (V2),  (7)

namely Nf 4, is convex (concave) on Py [B(H),B (K)].
In particular, we have

Apaw (P14 V) <(Z)Af a0 (V1) +Dpaw (P2), (8)
namely Ny 4, is subadditive (superadditive) on Py [B(H),B (K)].

Proof. Assume that f : I — R is a convex function on the interval I and
ve K, v#DO.
Let Uy, Uy € P [B(H),B(K)] and X € [0,1]. Then

Agaw (1 =A) Wy + AVs) 9)
_ _ o (L =A) ¥y + AVs) (A) v,v)
= (=N 4 ) (1)) g (ST )
= [(1 — )\) <\I’1 (1H) ’U,’U> + A <\I’2 (1H) v, U)]
" f< (1 =) (¥1 (A)v,v) + A (Ts (A) v,v) >
(L= (T1 (1g)v,v) + A (T2 (1p)v,v) )
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Using the convexity of f we have
1= (T (A)v,v)+ ATy (A)v,v

(W2 (

1—=X) (V1 (1g)v,v) + A (Vs (15) v,v)

, (<1A> (W1 (Lr) v, v) Gt Wz( ) ><$’<‘A}3>>>)
( + A\

)
(1 =) (W1 (1g)v,v) +

(1 - >‘) <q]1 (1H)U ’U ( ‘111 lH)’UU ) \112 1H v U> f ((ﬁz((l?;;fz))
( )<\Ill (1H>U 1)) <\I/2 lH)’U 'U>

and by multiplying (10) by (1 — X) (¥ (1g) v,v) + A (W3 (1y)v,v) > 0 and by
using (9), we get

Af,A,v ((1 — )\) U, + /\\112)
< (1= ) (¥ (L) v,0) f (W} AWy (1) ,0) f (

=1 =N ADfpau (1) + A4, (P2),

<

(W2 (A) v, v) >
<\I/2 (1H) v, ’U>

which proves the convexity of Ay 4 ,.
We have by (7)

20, 42V A 2v A 20
Afap (U1 + Vo) = Af,A,v< 1—; 2) < Branl 1); fAw (292)
_ 28540 (Y1) + 28740 (P2)
2

for any W, Wy € B [B(H),B(K)|, which proves (8). «

For Uy, ¥y € Py [B(H),B(K)] we denote Wo »=; Wy if Uy — Uy € Py [B
(H),B(K)], see also [10]. This means that Wy — ¥ is a linear positive functional
and ¥y (1H) — Uy (1H) e Bt (K) .

We have:

=D a0 (W1) + Dfap (Y2)

Corollary 2. Let f : I — [0,00) be a concave function on the interval I, A a
selfadjoint operator whose spectrum is contained in I and v € K, v # 0.

(i) If U1, Uy € P [B(H) , B(K)] with Uy = Uy, then
ANfae(Wo) > ANpay, (V) (11)

namely Ng 4, i operator monotonic in the order” =1 of Py [B(H),B (K)].
(i) If U, Y € P;[B(H),B(K)|, t, T >0 withT >t and TY >=; U > tT,
then
TAf,A,v (T) > Af,A,v (qj) > tAf,A,v (T) : (12)
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Proof. (i) Let W1, ¥y € P [B(H),B(K)] with ¥y =7 ¥;. Then by (8) we
have

Apaw(W2) =ADpap (W1 +Wo =) > A ay (V1) +Ap a0 (P2 — V)
implying that
ANfap (W) —Apay (W) >Apa, (Uy—Ty).

Since f is positive and Wy — Uy € P [B(H), B (K)] with ¥o (1) — ¥y (1g) €
BTt (K), it follows that Af 4, (P2 — ¥y) > 0 and the inequality (11) is proved.

(ii) The proof follows by (11) on taking first ¥o = T, ¥; = ¥ and then
Uy = ¥, Uy =T and by the positive homogeneity of Ay 4,. <«

We consider now the functional Af 4, : By [B(H),B(K)] — B(K) defined
by

Ofa0 (W) = (U(f(A)v,0) = Apan(P) (13)

(W (A)v,v)
={(U(f(A — (¥ (1 T
(0 (7 () w0 = (0 (L)oo (b
where f : I — R is a convex (concave) function on the interval I, A is a selfadjoint
operator whose spectrum is contained in I and v € K, v # 0.
We can state the following result:

Theorem 4. Let f : I — R be a convex (concave) function on the interval I
and A a selfadjoint operator whose spectrum is contained in I and v € K, v # 0.
Then the functional ¢ 4, is positive (negative) on B [B(H),B(K)], and it is
positive homogeneous and concave (convex) on Pr [B(H),B (K)]. Of 4, is also
superadditive (subadditive) on Py [B(H),B(K)].

Proof. We consider only the convex case. The positivity of O¢ 4, on B [B(H),
B (K)] is equivalent to the inequality for general positive linear maps (6). The
positive homogeneity follows by the same property of Af 4, and the definition
of Ay Ay

If Oy, Wo € Pr[B(H),B(K)], A €[0,1] and v € K, v # 0, then by Theorem
3 we have

|:| (( — /\) Uy + )\\112)
<( —A) U1+ AUs) (f (A) v,0) = Dpaw (1= A) W1+ ATy)
> (1= A) (W1 (f (A) v,0) + A{(V2f (A)) v, v)

(1 )AfAv(\Ill) )‘Af,A,v (\112)

x.,
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= (1= X)) [(¥1(f(A)v,v) = Afan(¥1)]
+FA[(U2f (A) v,v) — A ap (V2)]
= (1= 0pa0 (¥1) +A0f 40 (V2)

that proves the operator concavity of [l 4 ,.
The operator superadditivity follows in a similar way and we omit the details.
<

Corollary 3. Let f : I — R be a convexr function on the interval I, A a self-
adjoint operator whose spectrum is contained in I and v € K, v # 0. If U,
YTeR[BH),BK),t, T>0withT >t and TY =7 ¥ = tY, then

TOfa0 (T) 2 Opa0 (V) 2 0540 (T) (14)
or, equivalently,

T (f (A)v,0) = Dyaw (1) 2 (W (f(A)v,0) = Afan (D) (15)
t

(T (f(A)v,v) = Apan (T)) 0.
Now, assume that A is a selfadjoint operator whose spectrum is contained in

[m, M] for some real constants M > m. If f is convex, then for any ¢ € [m, M|
we have

>
>

If A is a selfadjoint operator whose spectrum is contained in [m, M|, then mly <
A < M1y and by taking the map ¥ we get mVU (1) < ¥ (A) < MY (1g) for
U eP;[B(H),B(K)]. This is equivalent to

(W (A)v,v)
TS W () 0, 0)

<M

for any v € K, v # 0.

If we take t = 2 (Av.)

Wiy U €K v # 0 in (16), then we get

(e y 0 g+ (i ) s
(U (1g)v,v) ) —

that is equivalent to

where

<>f,A,v (\II) =
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for U € P;[B(H),B(K)], is a trapezoidal type functional. We observe that
Ot,4,0 is additive and positive homogeneous on By [B(H),B (K)].
We define the functional {4, : B; [B(H),B(K)] = B(K) by

Trae (V) = 0pau (V) = Apa, (V)
_ (MY (1g) =W (A))v,v) f(m) + (¥ (A) —m¥ (1g))v,v) f (M)

M —m
(W (A4)v,v)
— o f (g R,
We observe that if f is convex (concave) on [m, M| and mly < A < M1p, then
Traw(¥) > ()0 for any ¥ € Py [B(H),B(K)]. (17)

Theorem 5. Let f : I — R be a convexr (concave) function on the interval I
and A a selfadjoint operator whose spectrum is contained in [m, M] and v € K,
v # 0. Then the functional T 4, is positive (negative) on Py [B(H),B (K)], and
it is positive homogeneous and concave (convex) on Pr [B(H),B(K)]. Tra., is
also superadditive (subadditive) on Pr [B(H),B (K)].

The proof is similar to the one of Theorem 4 and we omit the details.

Corollary 4. Let f : I — R be a convex function on the interval I, A a self-
adjoint operator whose spectrum is contained in I and v € K, v # 0. If U,

YePr[BH),BK),t, T>0withT >t and TY =1V =1 tY, then

Traw(T)>T5a0((0) >t15a, (T) (18)

or, equivalently,

T[<<MT<1H>—T<A>>v,v>f<7§}+<m T(A) =X ()vo) FM) g
—(Y (1) v,v) f ((<TT1HUU)

><(M‘If(1H)—‘I’(A)) v) f(m) + (¥ (4) —mV (1g))v,v) f (M)

- M m

(v <1H>v,v>f<
., [«M’r(lH) < >>

_<T(1H)v,v>f<W)]

> 0.
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3. Some examples

Let A; be selfadjoint operators on H with Sp(4;) C I, i€ {1,....,n} and p =
(p1, ..., pn) an n-tuple of nonnegative weights with P, := > | p; > 0. We write
p € R, . Consider also the n-tuple of normalised positive maps ® = (¢1, ..., $n)
with ¢; € Py [B(H),B(H)| for i € {1,...,n}.

If we put

A, -~ 0

0 --- A,

then we have Sp ([1) C I. We can define the positive map
UV, :BH)®...0oB(H)— B(H)
by

V,0(A1®...0A,) = Zpi@ (Ai).
i=1

Using the functional calculus for continuous functions f on I we have

Wy (£ (4)) = S mi6e (7 (40) and 1 (0 (A)) = 1 (Zw (A») .
=1 =1

Since

Vo (lg®...0 1) = meﬁi (1g) = Puly
=1

and P, > 0 it follows that ¥, € PB;[B(H)® ... ®B(H),B(H)].
If p, g € R | with p > ¢, namely p; > ¢; for i € {1,...,n} and P,, > @y, then

\I/p7q> I \I/q@.

Assume also that 7 = min;egy ) {%}, R =max;jcq1,. n) {%} and r < % <R.
Then .
Ve (A) AR <A> = (pi —ra:) ¢i (A;) =0
i=1
for A >0,

n

Upo (1) =1V (1) = Z (pi —7qi) ¢i (lu) = (P —7Qn) 1g
=1
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and

n

RY, s (iH) — Z Rg; —pi) i (1g) = (RQn — Py) 1y

=1

showing that

R\I/(Lq) I \I/p,.:p I T'\I/q,.:p. (20)
Now, observe that for v € H, ||v|| = 1 we have
iy pigi (Ai) v,v)
By (W) = Puf (1220 ,

where p € R}, .

Let f : I — R be a convex (concave) function on the interval I, A a selfadjoint
operator whose spectrum is contained in I and v € H, |[v|| = 1. If p, ¢ € R},
then we have by Theorem 3 that

Dy (Tarpirgs) < ()L =N D, 1, (Tpe) 4 A0, 4, (Tge)  (21)

for any A € [0, 1] and, in particular,

B ie(Wprge) < (2) By, (Tpe) + Dy 5, (Ygo). (22)

By using (12) for p, ¢ € R, withr = minjeqy, n { } R =max;c(1,. n {%}
and r < % < R we have

i1 Qidi (Ai) v, i1 Didi (Aq) v,
Qn P,
Z Tan <<Zzl q@¢7f (A'L) U, /U>> ’
Q@n
provided f : I — [0,00) is a concave function on the interval I, A a selfadjoint
operator whose spectrum is contained in I and v € H, |jv] = 1.

If we take f(t) = t°, s € (0,1) and assume that A; > 0, ¢ € {1,...,n}, then
by (23) we have the power inequality

RYs@y/+ <Z qi®i (Ai) Uav> > py/e! <Zpi¢i (Ai) v, U> (24)
i=1

=1

> pl/sQl/s—1 <Z qidi (As) U,U> )

=1



Quasilinearity of Some Functionals 81

forve H, |lv|| =1.
By taking the supremum in this inequality over v € H, |jv|| = 1, we get the
norm inequality

Rl/sQl/S ! qu i > PI/S ! sz¢z (25)
> pl/sQp/s ZQi¢i (As)
i=1
We also have
1 i (Ai) v,
DﬂAU @ sz ¢Z 'U) _ Pnf <<Zz=1p ?;n( )’U 'U>> , (26)
where p € R} .
By utilising (15) we can state that
R Z qi (¢i (f (Ai))v,v) — Qnf <<Z?:1 ngi (4i)v, U>>] (27)
i=1 n
I

. (X0 i (A) v,0) ]
> | g (0 (f (A3) v, 0) — Quf
L;q < Qn )

for p, ¢ € Ry with 7 = min;cqy o) { } R = maxe(1,..n) {Pz} and r < 5n <
R.
If we take f (t) = |¢t|*, t € R with @ > 1, then for any selfadjoint operators

A;, i €{1,...,n} we have
<zm )]

o
]_

zrlzwmmw Q1a<§jm ) >

=1

R ZQi (61 (JAi|*) v,0) — Qp~°

>sz @i (1A4il*) v, v) —
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Finally, since

Trie (Ypo) = i 1_ - <<Mpan - Zpi¢i (Az')) v, U> f(m)

=1

+ < (ipz(ﬁz (Az> — mPn1H> ’U,'U> f (M)]

_p.f <<E?=1 piq]iin(Ai) v,v>> 7

by (19) we have

R { M 1_ m [< (MinH - ;%@ (A¢)> v, U> f(m)

_an ( Qn

> Ml—m K (Mpan—z;Pi@ (Ai)> U>U>f(m)

: P, f <<Z?1 pm;(Ai)v,m)

i=1

+ < (i qidi (Ai) — anlH) ’U,v> (M)]
a —O.f <(Z?:1 qi¢i (4i) v, U)) }

for p,q € R with r = minjeqy {%}, R =maxjeqy,. n) {%} and r < % <
R.

Several other inequalities may be obtained if one chooses the convex functions
f(t)=—Int, tint, t?, where t > 0 and 8 € (—00,0) U[1,00) or f(t) = exp (yt),
t, v € R and v # 0. The details are omitted.

- < (Minﬂ - ZQi¢i (Az')) v, v> f(m)
f
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