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Elementary Proof of Nagell’s Theorem

R.R. Andruszkiewicz∗, N. Andruszkiewicz

Abstract. We give an elementary proof of the fact that the only solutions of the Dio-
phantine equation x2 + 2 = yn for n > 1 are x± 5, y = 3, n = 3.
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1. Introduction

The Diophantine equation x2 + 2 = y3 was studied by Fermat, who claimed,
that it had exactly two solutions: x = ±5 and y = 3. The first complete proof of
this hypothesis was given by Euler in the second volume of his Algebra. Then in
1923, T. Nagell provided incomplete proof of the following theorem:

Theorem 1. For any integer n > 3 the Diophantine equation x2 + 2 = yn has
no solution.

The first full proof of this theorem was given by W. Ljunggren [2] in 1943.
Then, T. Nagell [4] in 1954 gave another proof, which, like W. Ljunggren’s proof,
was not elementary and was based on K. Mahler’s results concerning binary
quadratic forms. Therefore the equation

x2 + 2 = yn (1)

is called the Nagell’s equation, and Theorem 1 is called the Nagell’s Theo-
rem.

In 2000 B. Sury [6] attempted to present the first elementary proof of the
Nagell’s theorem. An important achievement of the author was to show that if for
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some integer n > 1 the Nagell equation has a solution, then n ≡ 3 (mod 4). Then
Sury applied the identity he had discovered and arrived at the contradiction claim
that for some integer n > 3 the Nagell’s equation has a solution. Unfortunately,
at the end of his reasoning there is a factual mistake. Namely, he considered an
element β = 1 +

√
−2 of the ring Z[

√
−2] and he stated that for positive integers

a and b, according to the binomial theorem, β2
ab = 1 + 2abβ + 2a+1µ for some

µ ∈ Z[
√
−2]. However, β2 = −3 + 2β, so β4 = −3− 4β, which shows that this is

not the case even for a = 2 and b = 1.

In this paper we will present the elementary proof of Nagell’s theorem based
on three things: the analysis of this equation in the Euclidean ring Z[

√
−2], the

analysis of the binomial coefficients and on the description of all solutions of the
Diophantine equations x2− (a2 + 2)y2 = −2 for a ∈ N. It is worth noting that all
means used by us are natural techniques used in solving Diophantine equations of
the form x2 +C = yn (cf. [1], [3]). A significant part of the results was presented
in [6], so our proof is in fact a correction of a mistake that was committed in
there. However, for the sake of completeness, we have decided to give reasons for
these results, and our goal is not to detract Sury’s achievements.

2. The analysis in the ring Z[
√
−2]

It is well-known that the subring Z[
√
−2] = {a+ b

√
−2 : a, b ∈ Z} of the field

of complex numbers is an Euclidean ring with the norm N , where N(a+b
√
−2) =

a2 + 2b2 for a, b ∈ Z. Hence, that ring is a unique factorization domain and its
group of units is (Z[

√
−2])∗ = {1,−1}.

Lemma 1. Let x2 + 2 = yn for some x, y, n ∈ Z, n ≥ 2. Then x, y, n are odd,
n ≥ 3, and in the ring Z[

√
−2]: x+

√
−2 = (a+

√
−2)n for some odd a ∈ Z. In

particular y = a2 + 2 and

1 =

n−1
2∑
j=0

(−2)j
(

n

2j + 1

)
an−2j−1 and x =

n−1
2∑
j=0

(−2)j
(
n

2j

)
an−2j .

Proof. Suppose that n is even. Then a2 + 2 = b2 for some a, b ∈ N and the
integers a and b have the same parity. Thus, the integers b−a and b+a are even
and 4 | (b − a)(b + a) = 2, a contradiction. Therefore n is odd. But n ≥ 2, so
n ≥ 3.

Next, the integers x and y have the same parity. If both of these numbers are
even, then 4 | x2 and 4 | yn, since n ≥ 2. Hence 4 | yn − x2 = 2, a contradiction.
Therefore x and y are odd.
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We claim that in the ring Z[
√
−2] the elements x +

√
−2 are x −

√
−2 are

coprime. Assume otherwise. By the uniqueness assumption, there exists a prime
element π being a common divisor of these elements. Then π | (x+

√
−2)− (x−√

−2) = 2
√
−2 = −(

√
−2)3. Since 2 = (−

√
−2) ·

√
−2, we have π |

√
−2 and

π | 2. But π | x +
√
−2, so π | x. As we have shown x = 2k + 1 for some k ∈ Z

and π | 2, so π | 1, a contradiction. Therefore the elements x+
√
−2 and x−

√
−2

are coprime.

Moreover, in the ring Z[
√
−2] we have: (x +

√
−2) · (x −

√
−2) = yn, so by

the uniqueness assumption, x+
√
−2 = u ·αn for some u ∈ (Z[

√
−2])∗ = {1,−1},

and for some α ∈ Z[
√
−2]. But n is odd, so x +

√
−2 = (a + b

√
−2)n for some

a, b ∈ Z. Hence x2 + 2 = |x +
√
−2|2 = |a + b

√
−2|2n = (a2 + 2b2)n, this means

that yn = (a2 + 2b2)n and since n is odd, we have y = a2 + 2b2. But y is also
odd, so a is odd.

By the binomial theorem (a+ b
√
−2)n =

n∑
k=0

(
n

k

)
an−kbk(

√
−2)k, so

(a+ b
√
−2)n =

n−1
2∑
j=0

(−2)j
(
n

2j

)
an−2jb2j +

√
−2 ·

n−1
2∑
j=0

(−2)j
(

n

2j + 1

)
an−2j−1b2j+1.

Therefore

x =

n−1
2∑
j=0

(−2)j
(
n

2j

)
an−2jb2j (2)

and

1 = b ·

n−1
2∑
j=0

(−2)j
(

n

2j + 1

)
an−2j−1b2j . (3)

By (3), b | 1, so b = ±1. Multiplying both sides of the latter equation by b we find

that b =

n−1
2∑
j=0

(−2)j
(

n

2j + 1

)
an−2j−1. Hence b ≡ nan−1− 2

(
n
3

)
an−3 (mod 4). But

the two integers n and a are odd, so an−1 ≡ 1 (mod 4) and an−3 ≡ 1 (mod 4).
Thus b ≡ n − 2

(
n
3

)
(mod 4) and 3b ≡ 3n − n(n − 1)(n − 2) (mod 4). Since n is

odd, n2 ≡ 1 (mod 4). Hence 3b ≡ 3n− (1− n)(n− 2) = n2 + 2 ≡ 3 (mod 4), so
3b ≡ 3 (mod 4) and b ≡ 1 (mod 4). Moreover b = ±1, so finally b = 1. Hence
y = a2 + 2, x+

√
−2 = (a+

√
−2)n and by (2) and (3) the result follows. J
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Using Lemma 1 for n = 3 one gets the equation: 1 = 3a2 − 2, hence y = 3
and x2 = 25, and consequently x = ±5. From what has already been proved, we
deduce the following Euler theorem:

Theorem 2. The only solutions of the Diophantine equation x2 + 2 = y3 are
x = ±5, y = 3.

Lemma 2. If β = 1 +
√
−2, then β2 = −3 + 2β, β3 = −6 + β, and for any

a, b ∈ N, a ≥ 2:

β2
ab = (1 + 2ab) + 2abβ + 2a+1µ for some µ ∈ Z[

√
−2]. (4)

Proof. Note that β2 = (1 +
√
−2)2 = 1 + 2

√
−2 + (−2) = −3 + 2(1 +

√
−2) =

−3 + 2β. Hence β3 = β(−3 + 2β) = −3β + 2β2 = −3β + 2(−3 + 2β) = −6 + β.
Therefore β4 = β(−6 + β) = −6β + β2 = −6β + (−3 + 2β) = −3 − 4β ≡
(1 + 22) + 22β (mod 23). Suppose that β2

a ≡ (1 + 2a) + 2aβ (mod 2a+1) for
some integer a ≥ 2. Then β2

a
= (1 + 2a) + 2aβ + 2a+1µ for some µ ∈ Z[

√
−2].

Hence β2
a+1

= [(1 + 2a) + 2aβ+ 2a+1µ]2 = (1 + 2a)2 + 22aβ2 + 22a+2µ2 + 2a+1(1 +
2a)β + 2a+2(1 + 2a)µ + 22a+1βµ. But a ≥ 2, so 2a + 1 > 2a ≥ a + 3 and
β2

a+1 ≡ (1+2a)2+2a+1β = 1+2a+1+22a+2a+1β ≡ (1+2a+1)+2a+1β (mod 2a+2).
The principle of induction allows us to conclude that β2

a ≡ (1 + 2a) + 2aβ
(mod 2a+1) for every integer a ≥ 2.

Now, let a, b ∈ N and a ≥ 2. By the first part of the proof we have β2
a

=
1 + 2a(1 + β) + 2a+1µ for some µ ∈ Z[

√
−2]. Hence, by the binomial theorem

β2
ab = [1+2a(1+β)+2a+1µ]b ≡ [1+2a(1+β)]b ≡ 1+b·2a(1+β) ≡ (1+2ab)+2abβ

(mod 2a+1), which ends the proof. J

Lemma 3. Let n, t ∈ N, n > 3 and t ≥ 2 are such that 2t | n−3 and 2t+1 - n−3.
Then

n−1
2∑
j=0

(−2)j
(

n

2j + 1

)
≡ 1 + 2t (mod 2t+1).

Proof. By the assumptions n = 2tb + 3 for some t, b ∈ N, where t ≥ 2 and
2 - b. In the ring Z[

√
−2] for β = 1 +

√
−2, by Lemma 2 and the fact that b is

odd, we have β2
tb ≡ (1+2tb)+2tbβ ≡ (1+2t)+2tβ (mod 2)t+1. But β3 = β−6,

so βn ≡ (β − 6)[(1 + 2t) + 2tβ] ≡ (1 + 2t)β + 2tβ2 − 6 ≡ (1 + 2t)β + 2t(−3 +
2β)− 6 ≡ (2t− 6) + (1 + 2t)β (mod 2t+1). Thus βn = (2t− 6) + (1 + 2t)β+ 2t+1µ
for some µ ∈ Z[

√
−2]. Hence β

n
= (2t − 6) + (1 + 2t)β + 2t+1µ. Therefore

βn − βn = (1 + 2t)(β − β) + 2t+1(µ − µ). But µ = u + v
√
−2 for some u, v ∈ Z

and β − β = 2
√
−2, so µ− µ = 2v

√
−2. Consequently

βn − βn

2
√
−2

= 1 + 2t + 2t+1v. (5)
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By the binomial theorem

βn =

n−1
2∑
j=0

(−2)j
(
n

2j

)
+
√
−2 ·

n−1
2∑
j=0

(−2)j
(

n

2j + 1

)
,

so

β
n

=

n−1
2∑
j=0

(−2)j
(
n

2j

)
−
√
−2 ·

n−1
2∑
j=0

(−2)j
(

n

2j + 1

)
.

Hence βn−βn

2
√
−2 =

n−1
2∑
j=0

(−2)j
(

n

2j + 1

)
, and the assertion follows from (5). J

3. The analysis of the binomial coefficients

Next important lemma was proved by Sury in [6]. For completeness, we
present the original proof of Sury in a slightly modified form.

Lemma 4. If for every integer n > 3 the equation x2 + 2 = yn has a solution,
then n ≡ 3 (mod 4).

Proof. From Lemma 1 it follows that n is odd and there exists an odd integer
a such that y = a2 + 2 and

1 =

n−1
2∑
j=0

(−2)j
(

n

2j + 1

)
an−2j−1. (6)

Assume that n 6≡ 3 (mod 4). Then n ≡ 1 (mod 4). Hence there exists a greatest
integer t such that 2t | n − 1. But 4 | n − 1, so t ≥ 2 and 2t+1 - n − 1. Hence
n−1 = 2t(2S+1) for some S ∈ N0 and, in a consequence, n ≡ 1+2t (mod 2t+1).
Consider any integer k ≥ 3 such that 2k + 1 ≤ n. Then

2k
(

n

2k + 1

)
=

2k

2k
· (n− 1) · n

2k + 1
·
(
n− 2

2k − 1

)
. (7)

There exist s ∈ N0 and odd u ∈ N such that k = 2su. If k ≤ s+ 1, then 2k | 2k.
Hence 2k ≤ 2k and 2k−1 ≤ k. Next, k ≥ 3, so k − 1 ≥ 2 by binomial theorem,
2k−1 = (1 + 1)k−1 ≥ 1 + (k − 1) +

(
k−1
2

)
> k, a contradiction. Hence k ≥ s + 2,
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that is 2k

2k = 2c
2v−1 for some c, v ∈ N. Moreover n−1 = 2t(2S+1) and the integers

2k + 1 and n are odd, so by (7) we have

2k
(

n

2k + 1

)
≡ 0 (mod 2t+1) for all k ≥ 3, k ≤ n− 1

2
. (8)

Thus by (6) it follows that(
n

1

)
an−1 − 2

(
n

3

)
an−3 + 4

(
n

5

)
an−5 ≡ 1 (mod 2t+1). (9)

By Euler’s theorem a2
t

= aϕ(2
t+1) ≡ 1 (mod 2t+1). Taking into account that

n− 1 = 2t(2S + 1), we get the congruence an−1 ≡ 1 (mod 2t+1). But n ≡ 1 + 2t

(mod 2t+1), so: (
n

1

)
an−1 ≡ 1 + 2t (mod 2t+1). (10)

Denote D = 2
(
n
3

)
an−3. Then D = n(n−1)(n−2)

3 ·an−3 and n ≡ 1+2t (mod 2t+1), so
3D ≡ (1+2t)·2t ·(2t−1)·an−3 ≡ 3·2t (mod 2t+1), since 2 | (1+2t)·(2t−1)·an−3−3
and the fact that a is odd. Therefore D ≡ 2t (mod 2t+1). By the above

2

(
n

3

)
an−3 ≡ 2t (mod 2t+1). (11)

Denote E = 4
(
n
5

)
an−5. Then E = n(n−1)(n−2)(n−3)(n−4)

2·3·5 an−5 and n = 1 + 2t +
2t+1S, so 15E = (1 + 2t + 2t+1S)(2t + 2t+1S)(2t + 2t+1S− 1)(2t−1 + 2tS− 1)(2t +
2t+1S−3) ·an−5. But t ≥ 2, so (1+2t+2t+1S)(2t+2t+1S−1)(2t−1+2tS−1)(2t+
2t+1S − 3)an−5 = 2g + 1 for some g ∈ Z. Hence 15E ≡ 2t(2g + 1) ≡ 2t ≡ 15 · 2t
(mod 2t+1). Thus E ≡ 2t (mod 2t+1). By the above

4

(
n

5

)
an−5 ≡ 2t (mod 2t+1). (12)

By congruences (10)-(12) and (9) it follows that (1+2t)−2t+2t ≡ 1 (mod 2t+1).
Consequently 2t+1 | 2t, a contradiction. Finally n ≡ 3 (mod 4). J

4. The analysis of the Pell’s equation

Lemma 5. If a, x, y ∈ N and x2− (a2 + 2)y2 = 1, then x ≡ 1 (mod a) and y ≡ 0
(mod a).
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Proof. Since a2 < a2 + 2 < (a + 1)2, we see that D = a2 + 2 is not a
square of an integer, and the equation x2 − Dy2 = 1 is a Pell’s equation. One
of the solutions of this equation is (a2 + 1, a). Next, x2 −Dy2 > 0 and D > a2,
so x2 > Dy2 > (ay)2 and x > ay. Hence x ≥ ay + 1 and 1 = x2 − Dy2 ≥
(ay + 1)2 − Dy2 = (ay + 1)2 − (a2 + 2)y2 = 1 + 2ay − 2y2. Thus 2y2 ≥ 2ay
and consequently y ≥ a. Hence, the pair (a2 + 1, a) is a minimal solution of this
equation. Hence, by the description of all solutions of the general Pell’s equation
(cf. [5]) we conclude that x + y

√
D = [(a2 + 1) + a

√
D]m for some m ∈ N. But

(a2 +1)+a
√
D ≡ 1 (mod a) in the ring Z[

√
D], so x+y

√
D ≡ 1 (mod a). Hence

x ≡ 1 (mod a) and y ≡ 0 (mod a) in the ring Z. J

Lemma 6. Assume that the integers a, x, y ∈ N are such that x2−(a2+2)y2 = −2.
Then x ≡ 0 (mod a) and y ≡ 1 (mod a).

Proof. If y = 1, then x = a and the assertion is clear. Let y > 1. Then
x2 = (a2 + 2)y2 − 2 > a2 + 2− 2 = a2 and consequently x > a.

But x2 − (a2 + 2)y2 = −2, so x2 − a2y2 ≡ 0 (mod 2), x2 ≡ x (mod 2),
and ay ≡ a2y2 (mod 2). Hence x − ay ≡ 0 (mod 2) and x−ay

2 ∈ Z. Moreover
x2−a2y2 = 2y2−2 > 0, since y > 1 and consequently x−ay > 0. Hence x−ay

2 ∈ N.

Next, x ≡ ay (mod 2), so ax ≡ a2y ≡ (a2 +2)y (mod 2) and (a2+2)y−ax
2 ∈ Z. We

also have (a2 + 2)2y2 − a2x2 = (a2 + 2)(x2 + 2) − a2x2 = 2a2 + 2x2 + 4 > 0, so

(a2 + 2)y > ax and by the above, we obtain (a2+2)y−ax
2 ∈ N. Moreover

x+ y
√
a2 + 2

a+
√
a2 + 2

=
(a2 + 2)y − ax

2
+
x− ay

2

√
a2 + 2. (13)

Denote D = a2 + 2. A map r + s
√
D 7→ r + s

√
D = r − s

√
D for r, s ∈ Q is an

automorphism of the field Q(
√
a2 + 2) and (r + s

√
D) · r + s

√
D = r2 −Ds2, so

by the formula (13) we get

x+ y
√
a2 + 2

a+
√
a2 + 2

=
(a2 + 2)y − ax

2
− x− ay

2

√
a2 + 2. (14)

Multiplying equations (13) and (14) and taking into account that x2−(a2+2)y2 =

−2 and a2− (a2 +2) ·12 = −2 we obtain 1 = −2
−2 = [ (a

2+2)y−ax
2 ]2− (a2 +2)[x−ay2 ]2.

Thus by Lemma 5, (a2+2)y−ax
2 ≡ 1 (mod a) and x−ay

2 ≡ 0 (mod a). Hence
(a2+2)y−ax

2 + x−ay
2

√
D ≡ 1 (mod a) in the ring Z[

√
D]. By the formula (13),

x + y
√
D = (a +

√
D) · [ (a

2+2)y−ax
2 + x−ay

2

√
D], so x + y

√
D ≡

√
D (mod a).

Hence x ≡ 0 (mod a) and y ≡ 1 (mod a) in the ring Z. J
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Lemma 7. Let n > 3 be an integer. If x2+2 = yn for some x, y ∈ Z, then y = 3.

Proof. According to Lemma 4, n = 4m + 3 for some m ∈ N0. From Lemma
1, x is odd and y = a2 + 2 for some odd integer a satisfing (6). Hence, without

loss of generality, we can assume a ∈ N. Furthermore 1 ≡ (−2)
n−1
2 (mod a). In

addition n−1
2 = 2m+ 1, so

2
n−1
2 ≡ −1 (mod a). (15)

Moreover, x is odd, so we may assume that x ∈ N and the equality x2 + 2 = yn

can be rewritten as x2 − (a2 + 2)[y
n−1
2 ]2 = −2. From Lemma 6 we get y

n−1
2 ≡ 1

(mod a). But y ≡ 2 (mod a), so 2
n−1
2 ≡ 1 (mod a). Thus by (15), 1 ≡ −1

(mod a), so a | 2. But a is odd, so a = 1 and y = 3. J

5. Proof of the Nagell’s theorem

Now we are ready to prove the Nagell’s theorem. Suppose that for some
integer n > 3 there exist integers x and y such that x2 + 2 = yn. By Lemma 4 we
get n ≡ 3 (mod 4), hence there exists an integer t ≥ 2 such that 2t | n − 3 and

2t+1 - n−3. By Lemma 7 and its proof, we have y = 3 and

n−1
2∑
j=0

(−2)j
(

n

2j + 1

)
=

1. Hence by Lemma 3 1 ≡ 1 + 2t (mod 2t+1), and consequently 2t+1 | 2t, a
contradiction. Therefore the Diophantine equation (1) for n > 3 has no solution
and the Nagell’s theorem 1 is proved.
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