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On Partial Derivatives of the I-Function of r-Variables

D. Kumar, F.Y. Ayant, S.D. Purohit, F. Uçar*

Abstract. The object of this paper is to establish some formulas involving the partial
derivatives of the Prasad’s I-function of r-variables. On specializing the parameters,
the results can be reduced to derivatives of H-function of r-variables, H-function of two
variables. As a result, we have four corollaries concerning the multivariable H-function.
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1. Introduction and preliminaries

Recently Sreenivas et al. [16] have studied some formulas involving the partial
derivatives of the multivariable I-function defined by Prathima et al. [10]. In this
paper, we establish four formulas concerning the multivariable I-function defined
by Prasad [9]. We shall give the formulas involving the multivariable H-function
defined by Srivastava and Panda [18, 19].

The multivariable I-function generalizes the multivariable H-function. This
function of r-variables is defined in term of multiple Mellin-Barnes type integral:

I (z1, z2, · · · , zr) = I0,n2;0,n3;··· ;0,nr:m(1),n(1);··· ;m(r),n(r)

p2,q2,p3,q3;··· ;pr,qr:p(1),q(1);··· ;p(r),q(r)
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; · · · ;
(
a
(r)
j , α

(r)
j

)
1,p(r)

· · · ;
(
brj ;β

(1)
rj , · · · , β

(r)
rj

)
1,qr

:
(
b
(1)
j , β

(1)
j

)
1,q(1)

; · · · ;
(
b
(r)
j , β

(r)
j

)
1,q(r)


∗Corresponding author.

http://www.azjm.org 49 © 2010 AZJM All rights reserved.



50 D. Kumar, F.Y. Ayant, S.D. Purohit, F. Uçar

=
1

(2πω)r

∫
L1
· · ·
∫
Lr
φ (s1, · · · , sr)

r∏
i=1

φi (si) z
si
i ds1 · · · dsr, (1)

where

φi (si) =

∏m(i)

j=1 Γ
(
b
(i)
j − β

(i)
j si

)∏n(i)

j=1 Γ
(

1− a(i)j + α
(i)
j si

)
∏q(i)

j=m(i)+1
Γ
(

1− b(i)j + β
(i)
j si

)∏p(i)

j=n(i)+1
Γ
(
a
(i)
j − α

(i)
j si

) ,
(i = 1, · · · , r) , (2)

and

φ (s1, · · · , sr) =

∏n2
j=1 Γ

(
1− a2j +

∑2
i=1 α

(i)
2j si

)∏n3
j=1 Γ

(
1− a3j +

∑3
i=1 α

(i)
3j si

)
· · ·∏p2

j=n2+1 Γ
(
a2j −

∑2
i=1 α

(i)
2j si

)∏p3
j=n3+1 Γ

(
a3j −

∑3
i=1 α

(i)
3j si

)
· · ·

· · ·
∏nr
j=1 Γ

(
1− arj +

∑r
i=1 α

(i)
rj si

)
· · ·
∏pr
j=nr+1 Γ

(
arj −

∑r
i=1 α

(i)
rj si

)∏q2
j=1 Γ

(
1− b2j −

∑2
i=1 β

(i)
2j si

)
× 1∏q3

j=1 Γ
(

1− b3j +
∑3

i=1 β
(i)
3j si

)
· · ·
∏qr
j=1 Γ

(
1− brj −

∑r
i=1 β

(i)
rj si

) . (3)

For more details, see Y.N Prasad [9]. Throughout this paper, we assume that the
existence and convergence conditions of the multivariable I-function are satisfied.
The condition for absolute convergence of multiple Mellin-Barnes type contour
(1) can be obtained by extension of the corresponding conditions for multivariable
H-function given as

| arg zi| <
1

2
Ωiπ,where

Ωi =

n(i)∑
k=1

α
(i)
k −

p(i)∑
k=n(i)+1

α
(i)
k +

m(i)∑
k=1

β
(i)
k −

q(i)∑
k=m(i)+1

β
(i)
k +

 n2∑
k=1

α
(i)
2k −

p2∑
k=n2+1

α
(i)
2k

+

· · ·+

 ns∑
k=1

α
(i)
sk −

ps∑
k=ns+1

α
(i)
sk

−( q2∑
k=1

β
(i)
2k +

q3∑
k=1

β
(i)
3k + · · ·+

qs∑
k=1

β
(i)
sk

)
, (4)

and zi ∈ C, zi 6= 0 for i = 1, . . . , r. We may establish the asymptotic expansion
in the following convenient form:

I (z1, . . . , zr) = 0 (|z1|α1 , . . . , |zr|αr) , max (|z1|, . . . , |zr|)→ 0;
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I (z1, · · · , zr) = 0
(
|z1|β1 , . . . , |zr|βr

)
, min (|z1|, . . . , |zr|)→∞.

Here, k = 1, . . . , r : α′k = min
[
<
(
b
(k)
j /β

(k)
j

)]
, j = 1, . . . ,m(k) and

β′k = max
[
<
((
a
(k)
j − 1

)
/α

(k)
j

)]
, j = 1, . . . , n(k).

In this paper, we will use the following notations:

U = p2, q2; p3, q3; . . . ; pr−1, qr−1, (5)

V = 0, n2; 0, n3; . . . ; 0, nr−1, (6)

X = m(1), n(1); . . . ;m(r), n(r), (7)

Y = p(1), q(1); . . . ; p(r), q(r), (8)
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(1)
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2k

)
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; . . . ;
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a(r−1)k;α
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(r−1)
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; . . . ;
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, (11)
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. (14)

2. Partial differentiation formulas for the Prasad’s I-function of
r-variables

In this section, we give four formulas involving the partial differentiation for
the multivariable I-function. Here, we also treat partial differentiation operators
Dx = ∂

∂x and Dy = ∂
∂y .

Theorem 1.

m∏
i=1

[Dx (ax+ by + c)− λi] {(ax+ by + c)µ

× I
[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]}
= am (ax+ by + c)µ
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× IV ;0,nr+m;X
U :pr+m,qr+m;Y


z1 (ax+ by + c)h1

.

.

zr (ax+ by + c)hr

∣∣∣∣∣∣∣∣
A : (ρi − µ− 1;h1, · · · , hr)1,m , A : A

.

.
B : (ρi − µ;h1, · · · , hr)1,m , B : B

 .

(15)

Provided that
µ > 0, hj > 0 for j = 1, . . . , r. a, b, c are complex numbers, a 6= 0, b 6= 0, m is

a positive integer. Also, | arg zj (ax+ by + c)hi | < 1
2Ωjπ, where Ωj is defined by

(4); λi = aρi for i = 1, . . . ,m.

Proof. L.H.S. of (15) (say P1)=

m∏
i=1

[Dx (ax+ by + c)− λi] {(ax+ by + c)µ

I
[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]}
.

P1 =
m∏
i=1

{
Dx (ax+ by + c)µ+1 I

[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]
−

λi (ax+ by + c)µ I
[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]}

=
m∏
i=1

{
a (µ+ 1) (ax+ by + c)µ I

[
z1 (ax+ by + c)h1 , · · · , zr (ax+ by + c)hr

]
+

+ (ax+ by + c)µ+1

× Dx
1

(2πω)r

∫
L1

· · ·
∫
Lr

φ (s1, . . . , sr)

{
r∏
i=1

φi (si)
[
zi (ax+ by + c)hi

]si
ds1 . . . dsr

}
− λi (ax+ by + c)µ I

[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]}

= am (ax+ by + c)µ
1

(2πω)r

∫
L1

· · ·
∫
Lr

φ (s1, . . . , sr)

r∏
i=1

φi (si)
[
zi (ax+ by + c)hi

]si
×

m∏
i=1

µ+ 1 +

r∑
j=1

hjsj − ρi

ds1 . . . dsr.
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Now, using the relation

µ+ 1 +
r∑
j=1

hjsj − ρi =
Γ
(
µ+ 2 +

∑r
j=1 hjsj − ρi

)
Γ
(
µ+ 1 +

∑r
j=1 hjsj − ρi

) , (16)

and interpreting the multiple integrals with the help of Mellin-Barnes contour
integral (1), we arrive at the required result (15). J

Theorem 2.

m∏
i=1

[Dy (ax+ by + c)− ki] {(ax+ by + c)µ

× I
[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]}
= bm (ax+ by + c)µ

× IV ;0,nr+m;X
U :pr+m,qr+m;Y


z1 (ax+ by + c)h1

.

.

zr (ax+ by + c)hr

∣∣∣∣∣∣∣∣
A : (ρi − µ− 1;h1, . . . , hr)1,m , A : A

.

.
B : B, (ρi − µ;h1, . . . , hr)1,m : B

 .

(17)

Provided that
µ > 0, hj > 0 for j = 1, . . . , r. a, b, c are complex numbers, a 6= 0, b 6= 0, m is a

positive integer. | arg zj (ax+ by + c)hi | < 1
2Ωjπ, where Ωj is defined by (4); and

ki = bρi for i = 1, . . . ,m.

Proof. L.H.S. of (17) (say P2)=
m∏
i=1

[Dy (ax+ by + c)− ki]×

×
{

(ax+ by + c)µ I
[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]}
.

P2 =

m∏
i=1

{
Dy (ax+ by + c)µ+1 I

[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]
−

ki (ax+ by + c)µ I
[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]}

=

m∏
i=1

{b (µ+ 1) (ax+ by + c)µ×
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×I
[
z1 (ax+ by + c)h1 , · · · , zr (ax+ by + c)hr

]
+ (ax+ by + c)µ+1

× Dy
1

(2πω)r

∫
L1

· · ·
∫
Lr

φ (s1, . . . , sr)

{
r∏
i=1

φi (si)
[
zi (ax+ by + c)hi

]si
ds1 . . . dsr

}
−ki (ax+ by + c)µ I

[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]}

= bm (ax+ by + c)µ
1

(2πω)r

∫
L1

· · ·
∫
Lr

φ (s1, . . . , sr)

r∏
i=1

φi (si)
[
zi (ax+ by + c)hi

]si
×

m∏
i=1

µ+ 1 +

r∑
j=1

hjsj − ρi

 ds1 . . . dsr.

Now, using the relation (16) and then interpreting the multiple integrals with the
help of (1), we obtain required result (17). J

Theorem 3. Let µ > 0, hj > 0 (j = 1, · · · , r) , λi = aρi (i = 1, . . . ,m) , a, b, c ∈
C, also a 6= 0, b 6= 0, and m be a positive integer. Let | arg zj (ax+ by + c)hi | <
1
2Ωjπ, where Ωj is given by (4). Then

m∏
i=1

[(ax+ by + c) Dx − λi] {(ax+ by + c)µ

× I
[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]}
= am (ax+ by + c)µ

× IV ;0,nr+m;X
U :pr+m,qr+m;Y


z1 (ax+ by + c)h1

.

.

zr (ax+ by + c)hr

∣∣∣∣∣∣∣∣
A : (ρi − µ;h1, . . . , hr)1,m , A : A

.

.
B : B, (ρi − µ+ 1;h1, . . . , hr)1,m : B

 .

(18)

Proof. L.H.S. of (18) (say P3)=
m∏
i=1

[(ax+ by + c)Dx − λi] {(ax+ by + c)µ

I
[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]}

=

m∏
i=1

{(ax+ by + c) Dx (ax+ by + c)µ
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I
[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]
−λi (ax+ by + c)µ I

[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]}
=

m∏
i=1

{aµ (ax+ by + c)µ×

× I
[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]
+ (ax+ by + c)µ+1

× Dx
1

(2πω)r

∫
L1

· · ·
∫
Lr

φ (s1, . . . , sr)

{
r∏
i=1

φi (si)
[
zi (ax+ by + c)hi

]si
ds1 . . . dsr

}
−λi (ax+ by + c)µ I

[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]
.
}

P3 = am (ax+ by + c)µ
1

(2πω)r

∫
L1

· · ·
∫
Lr

φ (s1, . . . , sr)

×
r∏
i=1

φi (si)
[
zi (ax+ by + c)hi

]si
×

m∏
i=1

µ+

r∑
j=1

hjsj − ρi

 ds1 . . . dsr.

Now, using the relation

µ+
r∑
j=1

hjsj − ρi =
Γ
(
µ+ 1 +

∑r
j=1 hjsj − ρi

)
Γ
(
µ+

∑r
j=1 hjsj − ρi

) , (19)

and then interpreting the multiple integrals with the help of Mellin-Barnes con-
tour integral as given by (1), we finally arrive at the required result (18). J

Theorem 4. Let µ > 0, hj > 0 (j = 1, · · · , r) , λi = bρi (i = 1, . . . ,m) , a, b, c ∈
C, also a 6= 0, b 6= 0, and m be a positive integer. Let | arg zj (ax+ by + c)hi | <
1
2Ωjπ. Then

m∏
i=1

[(ax+ by + c) Dy − ki] {(ax+ by + c)µ

× I
[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]}
= bm (ax+ by + c)µ

× IV ;0,nr+m;X
U :pr+m,qr+m;Y


z1 (ax+ by + c)h1

.

.

zr (ax+ by + c)hr

∣∣∣∣∣∣∣∣
A : (ρi − µ;h1, . . . , hr)1,m , A : A

.

.
B : B, (ρi − µ+ 1;h1, . . . , hr)1,m : B

 .

(20)
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Proof. L.H.S. of (20) (say P4)=

m∏
i=1

[(ax+ by + c)Dy − ki] {(ax+ by + c)µ×

×I
[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]}

=

m∏
i=1

{(ax+ by + c)Dy (ax+ by + c)µ

I
[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]
−ki (ax+ by + c)µ I

[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]}
m∏
i=1

{bµ (ax+ by + c)µ×

×I
[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]
+ (ax+ by + c)µ+1

× Dy
1

(2πω)r

∫
L1

· · ·
∫
Lr

φ (s1, · · · , sr)

{
r∏
i=1

φi (si)
[
zi (ax+ by + c)hi

]si
ds1 . . . dsr

}
−ki (ax+ by + c)µ I

[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]}

= bm (ax+ by + c)µ
1

(2πω)r

∫
L1

· · ·
∫
Lr

φ (s1, . . . , sr)
r∏
i=1

φi (si)
[
zi (ax+ by + c)hi

]si
×

m∏
i=1

µ+
r∑
j=1

hjsj − ρi

ds1 . . . dsr.

Now, using the relation (19) and then interpreting the multiple integrals with the
help of (1), we obtain the required result (20). J

3. Special cases

In this section, we assume U = V = A = B = 0. Then the multivariable
I-function defined in (1) reduces to multivariable H-function [2, 3, 4, 8].
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Note that

Ω′i =

n(i)∑
k=1

α
(i)
k −

p(i)∑
k=n(i)+1

α
(i)
k +

m(i)∑
k=1

β
(i)
k −

q(i)∑
k=m(i)+1

β
(i)
k +

ns∑
k=1

α
(i)
sk−

ps∑
k=ns+1

α
(i)
sk−

qs∑
k=1

β
(i)
sk .

(21)
We have the following corollaries:

Corollary 1. Let µ > 0, hj > 0 (j = 1, · · · , r) , λi = aρi (i = 1, · · · ,m) , a, b, c ∈
C, also a 6= 0, b 6= 0, and m be a positive integer. Let | arg zj (ax+ by + c)hi | <
1
2Ω′jπ, where Ω′j is defined as (21). Then

m∏
i=1

[Dx (ax+ by + c)− λi] {(ax+ by + c)µ

× H
[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]}
= am (ax+ by + c)µ

× H0,nr+m;X
pr+m,qr+m;Y


z1 (ax+ by + c)h1

.

.

zr (ax+ by + c)hr

∣∣∣∣∣∣∣∣
(ρi − µ− 1;h1, . . . , hr)1,m , A : A

.

.
B, (ρi − µ;h1, . . . , hr)1,m : B

 .

(22)

Corollary 2. Let ki = bρi for i = 1, . . . ,m, and a, b, c ∈ C, µ > 0, hj > 0 for

j = 1, · · · , r; also a 6= 0, b 6= 0, m be a positive integer, | arg zj (ax+ by + c)hi | <
1
2Ω′jπ. Then

m∏
i=1

[Dy (ax+ by + c)− ki] {(ax+ by + c)µ

× H
[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]}
= bm (ax+ by + c)µ

× H0,nr+m;X
pr+m,qr+m;Y


z1 (ax+ by + c)h1

.

.

zr (ax+ by + c)hr

∣∣∣∣∣∣∣∣
(ρi − µ− 1;h1, . . . , hr)1,m , A : A

.

.
B, (ρi − µ;h1, . . . , hr)1,m : B

 .

(23)

Corollary 3.

m∏
i=1

[(ax+ by + c) Dx − λi] {(ax+ by + c)µ
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× H
[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]}
= am (ax+ by + c)µ

× H0,nr+m;X
pr+m,qr+m;Y


z1 (ax+ by + c)h1

.

.

zr (ax+ by + c)hr

∣∣∣∣∣∣∣∣
(ρi − µ;h1, · · · , hr)1,m , A : A

.

.
B, (ρi − µ+ 1;h1, · · · , hr)1,m : B

 .

(24)

Provided that
µ > 0, hj > 0 for j = 1, . . . , r; a, b, c are complex numbers; and a 6= 0, b 6= 0, m

is a positive integer. Here, | arg zj (ax+ by + c)hi | < 1
2Ω′jπ, where Ω′j is defined

by (21). Also, λi = aρi for i = 1, · · · ,m.

Corollary 4. Let ki = bρi (i = 1, . . . ,m), a, b, c ∈ C,m ∈ Z+, µ > 0, hj >

0 (j = 1, . . . , r); a 6= 0, b 6= 0, and | arg zj (ax+ by + c)hi | < 1
2Ω′jπ. Then

m∏
i=1

[(ax+ by + c)Dy − ki] {(ax+ by + c)µ

× H
[
z1 (ax+ by + c)h1 , . . . , zr (ax+ by + c)hr

]}
= bm (ax+ by + c)µ

× H0,nr+m;X
pr+m,qr+m;Y


z1 (ax+ by + c)h1

.

.

zr (ax+ by + c)hr

∣∣∣∣∣∣∣∣
(ρi − µ;h1, . . . , hr)1,m , A : A

.

.
B, (ρi − µ+ 1;h1, . . . , hr)1,m : B

 .

(25)

Remark 1. By using the similar methods, we can obtain the similar relations
with the multivariable A-function defined by Gautam and Asgar [6], the multi-
variable Aleph-function defined by Ayant [1] (also see, Saxena et al. [12]), the
Aleph-function of two variables defined by Kumar [7] (see also, Sharma [15]), the
I-function of two variables defined by Sharma and Mishra [14], the H-function of
two variables defined by Srivastava et al. [17] (see also, Ram and Kumar [11]),
the Aleph-function of one variable defined by Südland [20, 21], the I-function of
one variable defined by Saxena [13] and the A-function of one variable defined
by Gautam and Asgar [5]. We can generalize these formulas considering the
argument

∑n
i=0 aixi and the partial derivatives ∂i

∂xi
.
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4. Concluding remarks

The multivariable I-function can also be suitably specialized to a remarkably
wide variety of useful special functions of one or several variables or product
of several such special functions which are expressible in terms of E, G and
H-functions of one, two and more variables available in the literature. Thus
the integral formulas established in this paper would serve as key formulas from
which, upon specializing the parameters, as many as desired results involving
E, G and H-functions of one, two and more variables and other simpler special
functions can be obtained.
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