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On the Number of Lattice Points in the Shifted
Circles

I.Sh. Jabbarov∗, N.Sh. Aslanova, E.V. Jeferli

Abstract. In this work we study the question: for a given r, is there any point (x, y)
on the plane such that the deviation of the number of lattice points, contained inside the
circle of radius r centered at this point, from the area of the disc has order O(r1/2+ε) for
arbitrary positive number ε? We show that the answer for this question is positive.
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1. Introduction

In number theory, the question on the number of lattice points enclosed in
various domains on the plane is studied. Let Ω ⊂ R2 be some closed domain
bounded by a smooth closed curve. Denote by |Ω| an area of the domain Ω.
From geometric reasoning it is clear that the number of lattice points enclosed
by the domain Ω is approximately equal to the area of the domain. In case the
domain is a polygon with vertices at lattice points, the number T of lattice points
can be represented in terms of the area of the polygon as follows:

T = |Ω| − 1,

moreover, T =
∑
δ is a sum taken along all lattice points on the polygon where

we put δ = 1 for interior points, and δ = 1/2 for lattice points on boundary (see
[14]). For other kinds of domains, we have a formula

T = |Ω|+R,
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with some error term R. The problem consists in finding a best possible estimate
of the error term. Note that here we consider all lattice points belonging to the
closed domain with the boundary.

For the lattice point problem for the circle x2 + y2 ≤ r2 with center at origin,
the following estimate has been proved using an elementary method:

R ≤ 2π
√

2r, (K.Gauss(1834))

(see [2, p. 64]). V. Serpinskii (1906) ([3, 13]) improved this estimate using
complicated analytic method to prove that

R << r2/3.

In 1917 I. M. Vinogradov found an elementary proof of the estimate (see [13,
p. 192.])

R << (r log r)2/3.

Despite that the method used by I. M. Vinogradov is elementary, Yarnik [8,
13] showed that Vinogradov’s main result can’t be improved in a similar way.
The following results have been obtained later in this field (see [1-7]):

R << r
326
494

+ε, by Walfisz (1927),

R << r
15
23

+ε, by T itchmarsh (1935),

R << r
13
20

+ε, by Hua (1942).

The best result for today is

R << r
131
208

+ε,

with arbitrary ε > 0, proven in 2003 by M. Huxley ([6]). There is a conjecture
([1, 13]) which states that

R << r
1
2
+ε. (1)

In [9] this conjecture has been verified for the large values (up to 250000) of
the radius. Hardy and Landau ([1, 4, 11]) had independently shown that the
estimate

R = o(r2 log r)
1
4

couldn’t be proven.
In [1], the probabilistic aspects of the same problem for shifted circles has

been considered. The authors in [1] investigate the fluctuations in Nα(R), the
number of lattice points n ∈ Z2 inside a circle of radius R centered at a fixed
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point α ∈ [0, 1)2. Assuming that R is smoothly (e.g., uniformly) distributed on
a segment 0 ≤ R ≤ T , they proved that the random variable

Nα(R)− πR2

√
R

has a limit distribution as T → ∞, which is absolutely continuous (see [12, p.
364]) with respect to Lebesgue measure.

In this work we study the question: is there, for a given r, a point (x, y)
on the plane such that the estimate (1) is valid for the circle of radius r with
center at the point (x, y) ? We show that the answer for this question is positive.
Proving this result in more exact form, we then find the points (x, y) for which
the estimate (1) is most exact for various r.

2. Some auxiliary lemmas

The following lemma is known as Sonin’s formula (see [3, p.200]).

Lemma 1. Let a and b be real numbers, a < b. Then the equality

∑
a<n≤b

f(n) =

∫ b

a
f(x)dx+ ρ(b)f(b)− ρ(a)f(a)− σ(b)f ′(b)+

+σ(a)f ′(a) +

∫ b

a
f ′′(x)σ(x)dx,

holds, where f(x) is a function defined in the interval (a, b] with continuous
derivative of second order

ρ(x) = {x} − 1/2, σ(x) =

∫ x

0
ρ(t)dt.

Lemma 2. Let α be a non-integral real number. Then

{−α} = 1− {α}.

Proof. We have

{−α} = {1− α} = {1− ([α] + {α})} = {−[α] + 1− {α}} = 1− {α}.

J
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Lemma 3. Let the integral
∫ b
a f(x)dx exist for a < b, and ψ(x) ≥ 0 be monoton-

ically non-increasing function in [a, b]. Suppose that

ψ(a) ≤ c1,∫ y

a
f(x)dx ≤ c2

for y ∈ (a, b). Then ∫ b

a
f(x)ψ(x)dx ≤ c1c2.

Proof of Lemma 3 is given in [10].

Lemma 4. Let the function f ′(x) ≥ δ > 0 be monotonically non-increasing in
[a, b], and f ′(x) ≥ δ > 0 in this segment. Then∣∣∣∣∫ b

a
e2πif(x)dx

∣∣∣∣ ≤ 4δ−1.

Proof. Using the equality

eiϕ = cosϕ+ i sinϕ,

we can estimate two trigonometric integrals of the form∫ b

a
cos(f(x))dx =

∫ b

a

1

f ′(x)
cos(f(x))f ′(x)dx.

Applying Theorem 403 of [10], we find∣∣∣∣∫ b

a
cos(f(x))dx

∣∣∣∣ =

∣∣∣∣ 1

f ′(a)

∫ ξ

a
cos(f(x))f ′(x)dx

∣∣∣∣ ≤ 2

δ
; ξ ∈ (a, b).

Lemma 3 is proven. J

The following lemma is Theorem 409 from [10 p. 374].

Lemma 5. Let the condition

f ′′(x) ≥ A > 0

be satisfied for the function f(x) on the interval [a, b]. Then∣∣∣∣∫ b

a
e2πif(x)dx

∣∣∣∣ ≤ 12A−1/2.

Lemma 6. The function ρ(x) has the following Fourier expansion:

ρ(x) =

∞∑
m=−∞,m 6=0

gme
2πimx

with gm = −1/(2πim). This lemma is evident.
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3. Lattice points in shifted circles

The Gauss’ circle problem consists in finding asymptotic relation for the num-
ber N(r) of lattice points in the circle

x2 + y2 ≤ r2,

as r →∞, with the best possible error term.
Our goal is to get such an estimate for the case of very small shifting of

the origin. We will show that in every subdomain of the unit quadrate [−1, 0)2

there exists shifting of the origin to some point in this quadrate for which (1)
is satisfied. Then we apply computer methods to search for the best shifting,
providing numerical results. The program is written in Python.

Consider a shifted circle

(x+ θ)2 + (y + η)2 ≤ r2; 0 ≤ θ, η ≤ 1 (2)

with large radius r (see Fig. 1).
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Figure 1.

Denote by N(r; θ, η) the number of lattice points in this circle.

Theorem 1. Following inequality holds for sufficiently large r > 0:∫ 1

0

∫ 1

0

∣∣N(r; θ, η)− πr2
∣∣2 dθdη ≤ 256r.
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Proof. If 1 > θ > 0, 1 > η > 0, then the lines y = θ, x = η do not contain
lattices. The number N(R; θ, η) can be represented as a sum:

N(r; θ, η) = N1 +N2 −N3,

where N1 is a number of lattice points contained in the union of quadrate ECDL
(see Fig. 1) and segments CKD and EFL, N2 is a number of lattice points
contained in the union of quadrate ECDL and segments CME and DRL, and
N3 is a number of lattice points contained in the quadrate ECDL. The numbers
of the lattice points N1, N2, and N3 can be represented as follows:

N1 =
∑

− r√
2
−θ<n< r√

2
−θ

[
−η +

√
r2 − (n+ θ)2

]
+ 1 +

[
r/
√

2− θ
]

+
[
r/
√

2 + θ
]

+

+
∑

− r√
2
−θ<n< r√

2
−θ

[
η +

√
r2 − (n+ θ)2

]
,

N2 =
∑

− r√
2
−η<n< r√

2
−η

[
−θ +

√
r2 − (n+ η)2

]
+ 1 +

[
r/
√

2− η
]

+
[
r/
√

2 + η
]

+

+
∑

− r√
2
−η<n< r√

2
−η

[
θ +

√
r2 − (n+ η)2

]
,

N3 =
(

1 +
[
r/
√

2− θ
]

+
[
r/
√

2 + θ
])(

1 +
[
r/
√

2− η
]

+
[
r/
√

2 + η
])
.

To estimate the sum N1, we write:

N1 =
∑

− r√
2
−θ<n< r√

2
−θ

(
−η +

√
r2 − (n+ θ)2 −

{
−η +

√
r2 − (n+ θ)2

})
+

+1 +
[
r/
√

2− θ
]

+
[
r/
√

2 + θ
]

+

+
∑

− r√
2
−θ<n< r√

2
−θ

(
η +

√
r2 − (n+ θ)2 −

{
η +

√
r2 − (n+ θ)2

})
. (3)

Below we integrate these sums with respect to θ and η, so we can assume that
the limits of summation above are non-integral. Consider first the sum

V =
∑

− r√
2
−θ<n< r√

2
−θ

(
−η +

√
r2 − (n+ θ)2

)
+

∑
− r√

2
−θ<n< r√

2
−θ

(
η +

√
r2 − (n+ θ)2

)
.
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To estimate this sum, we will use Lemma 1. We have

V1 =
∑

− r√
2
−θ<n< r√

2
−θ

(
−η +

√
r2 − (n+ θ)2

)

=

∫ r/
√
2−θ

−r/
√
2−θ

(
−η +

√
r2 − (x+ θ)2

)
dx+

+ρ
(
r/
√

2− θ
)(

r/
√

2− η
)
− ρ

(
−r/
√

2− θ
)(

r/
√

2− η
)

+

−σ
(
r/
√

2− θ
)

+ σ
(
−r/
√

2− θ
)

+ r2
∫ r/

√
2−θ

−r/
√
2−θ

σ(x)dx

(r2 − (x+ θ)2)3/2
=

=

∫ r/
√
2−θ

−r/
√
2−θ

(
−η +

√
r2 − (x+ θ)2

)
dx+ ∆+

+ρ
(
r/
√

2− θ
)(

r/
√

2− η
)
− ρ

(
−r/
√

2− θ
)(

r/
√

2− η
)
. (4)

By the evident relation σ(x) ≤ 1/8 (see [12, p.12]), we have

|∆| =

∣∣∣∣∣−σ (r/√2− θ
)

+ σ
(
−r/
√

2− θ
)

+ r2
∫ r/

√
2−θ

−r/
√
2−θ

σ(x)dx

(r2 − (x+ θ)2)3/2

∣∣∣∣∣ ≤ 1/2.

Similarly,

V2 =
∑

− r√
2
−θ<n< r√

2
−θ

(
η +

√
r2 − (n+ θ)2

)
=

∫ r/
√
2−θ

−r/
√
2−θ

(
η +

√
r2 − (x+ θ)2

)
dx+

+ρ
(
r/
√

2− θ
)(

r/
√

2 + η
)
− ρ

(
−r/
√

2− θ
)(

r/
√

2 + η
)

+

−σ
(
r/
√

2− θ
)

+ σ
(
−r/
√

2− θ
)

+ r2
∫ r/

√
2−θ

−r/
√
2−θ

σ(x)dx

(r2 − (x+ θ)2)3/2
=

=

∫ r/
√
2−θ

−r/
√
2−θ

(
η +

√
r2 − (x+ θ)2

)
dx+ ∆′+

+ρ
(
r/
√

2− θ
)(

r/
√

2 + η
)
− ρ

(
−r/
√

2− θ
)(

r/
√

2 + η
)
, (5)
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and |∆′| ≤ 1/2. The sum of the integrals on the right-hand sides of the equalities
(4) and (5) expresses the area SEFLDKC of the domain EFLDKC (Fig. 1).
From (3) we derive

N1 = V1 + V2 +
∑

− r√
2
−θ<n< r√

2
−θ

(
1

2
−
{
−η +

√
r2 − (n+ θ)2

})
+

+
∑

− r√
2
−θ<n< r√

2
−θ

(
1

2
−
{
η +

√
r2 − (n+ θ)2

})
=

= SELDFKC + ρ
(
r/
√

2− θ
)(

r/
√

2− η
)
− ρ

(
−r/
√

2− θ
)(

r/
√

2− η
)

+

+ρ
(
r/
√

2− θ
)(

r/
√

2 + η
)
− ρ

(
−r/
√

2 + θ
)(

r/
√

2− η
)

+ ∆ + ∆′+

+
∑

− r√
2
−θ<n< r√

2
−θ

(
1

2
−
{
−η +

√
r2 − (n+ θ)2

})

+
∑

− r√
2
−θ<n< r√

2
−θ

(
1

2
−
{
η +

√
r2 − (n+ θ)2

})
. (6)

Similarly, denoting

W1 =
∑

− r√
2
−η<n< r√

2
−η

(
−θ +

√
r2 − (n+ η)2

)
,

W2 =
∑

− r√
2
−η<n< r√

2
−η

(
θ +

√
r2 − (n+ η)2

)
,

we get:

N2 = W1 +W2 +
∑

− r√
2
−η<n< r√

2
−η

(
1

2
−
{
−θ +

√
r2 − (n+ η)2

})
+

+
∑

− r√
2
−η<n< r√

2
−η

(
1

2
−
{
θ +

√
r2 − (n+ η)2

})
=

= SCMEFRD + ρ
(
r/
√

2− η
)(

r/
√

2− θ
)
− ρ

(
−r/
√

2− η
)(

r/
√

2− θ
)

+

+ρ
(
r/
√

2− η
)(

r/
√

2 + θ
)
− ρ

(
−r/
√

2− η
)(

r/
√

2 + θ
)

+ ∆′′ + ∆′′′+
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+
∑

− r√
2
−η<n< r√

2
−η

(
1

2
−
{
−θ +

√
r2 − (n+ η)2

})

+
∑

− r√
2
−η<n< r√

2
−η

(
1

2
−
{
θ +

√
r2 − (n+ η)2

})
, (7)

where |∆′′|+|∆′′′| ≤ 1. Then, summing up the obtained expressions and denoting
∆0 = ∆ + ∆′ + ∆′′ + ∆′′′, we find:

N(r; θ, η) = N1 +N2 −N3 =

= −
(

1 +
[
r/
√

2− θ
]

+
[
r/
√

2 + θ
])(

1 +
[
r/
√

2− η
]

+
[
r/
√

2 + η
])

+

+SCMELRD + SEFLDKC +
(
−
{
r/
√

2− θ
}

+
{
−r/
√

2− θ
})(

r/
√

2− η
)

+

+
(
−
{
r/
√

2− θ
}

+
{
−r/
√

2− θ
})(

r/
√

2 + η
)

+

+
∑

− r√
2
−θ<n< r√

2
−θ

(
1

2
−
{
−η +

√
r2 − (n+ θ)2

})
+

+
∑

− r√
2
−θ<n< r√

2
−θ

(
1

2
−
{
η +

√
r2 − (n+ θ)2

})
+

+
(
−
{
r/
√

2− η
}

+
{
−r/
√

2− η
})(

r/
√

2− θ
)

+

+
(
−
{
r/
√

2− η
}

+
{
−r/
√

2− η
})(

r/
√

2 + θ
)

+ ∆0+

+
∑

− r√
2
−η<n< r√

2
−η

(
1

2
−
{
−θ +

√
r2 − (n+ η)2

})
+

+
∑

− r√
2
−η<n< r√

2
−η

(
1

2
−
{
θ +

√
r2 − (n+ η)2

})
.

It is easy to see that by Lemma 2(
1 +

[
r/
√

2− θ
]

+
[
r/
√

2 + θ
])(

1 +
[
r/
√

2− η
]

+
[
r/
√

2 + η
])

=

=
(
r
√

2−
{
r/
√

2− θ
}

+
{
−r/
√

2− θ
})

(
r
√

2−
{
r/
√

2− η
}

+
{
−r/
√

2− η
})

=
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= 2r2 +
(
−
{
r/
√

2− θ
}

+
{
−r/
√

2− θ
})

r
√

2+

+
(
−
{
r/
√

2− η
}

+
{
−r/
√

2− η
})

r
√

2 + δ,

and

|δ| =
∣∣∣(−{r/√2− θ

}
+
{
−r/
√

2− θ
})(

−
{
r/
√

2− η
}

+
{
−r/
√

2− η
})∣∣∣ ≤ 1.

Denote

δ0 = δ0(r; θ, η) =(
−
{
r/
√

2− θ
}

+
{
−r/
√

2− θ
})(

−
{
r/
√

2− η
}

+
{
−r/
√

2− η
})

+ ∆0.

Now we have

N(r; θ, η) = πr2 +
∑

− r√
2
−θ<n< r√

2
−θ

(
1

2
−
{
−η +

√
r2 − (n+ θ)2

})
+

+
∑

− r√
2
−θ<n< r√

2
−θ

(
1

2
−
{
η +

√
r2 − (n+ θ)2

})

+
∑

− r√
2
−η<n< r√

2
−η

(
1

2
−
{
−θ +

√
r2 − (n+ η)2

})
+

+
∑

− r√
2
−η<n< r√

2
−η

(
1

2
−
{
θ +

√
r2 − (n+ η)2

})
+ δ0(r; θ, η); |δ0| ≤ 3.

Therefore, by Cauchy inequality,∫ 1

0

∫ 1

0

∣∣N(r; θ, η)− πr2 − δ0(r; θ, η)
∣∣2 dθdη ≤

≤ 4

∫ 1

0

∫ 1

0

∣∣∣∣∣∣∣
∑

√
r<|n+θ|< r√

2

ρ
(
−η +

√
r2 − (n+ θ)2

)∣∣∣∣∣∣∣
2

dθdη+

+4

∫ 1

0

∫ 1

0

∣∣∣∣∣∣∣
∑

√
r<|n+θ|< r√

2

ρ
(
η +

√
r2 − (n+ θ)2

)∣∣∣∣∣∣∣
2

dθdη+
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+4

∫ 1

0

∫ 1

0

∣∣∣∣∣∣∣
∑

√
r<|n+η|< r√

2

ρ
(
−θ +

√
r2 − (n+ η)2

)∣∣∣∣∣∣∣
2

dθdη+

+4

∫ 1

0

∫ 1

0

∣∣∣∣∣∣∣
∑

√
r<|n+η|< r√

2

ρ
(
θ +

√
r2 − (n+ η)2

)∣∣∣∣∣∣∣
2

dθdη. (8)

All of integrals on the right-hand side of the last inequality can be estimated in
the same way. So, it suffices to estimate the first integral. We have

∫ 1

0

∫ 1

0

∣∣∣∣∣∣∣
∑

√
r<|n+θ|< r√

2

ρ
(
η +

√
r2 − (n+ θ)2

)∣∣∣∣∣∣∣
2

dθdη ≤

≤ 2

∫ 1

0

∫ 1

0

∣∣∣∣∣∣∣
∑

√
r<n< r√

2

ρ
(
η +

√
r2 − (n+ θ)2

)∣∣∣∣∣∣∣
2

dθdη + 4. (9)

By Parseval’s equality we have

∫ 1

0

∫ 1

0

∣∣∣∣∣∣∣
∑

√
r<n< r√

2

ρ
(
η +

√
r2 − (n+ θ)2

)∣∣∣∣∣∣∣
2

dθdη =

=

∞∑
p=−∞

∞∑
q=−∞

|cpq|2 ,

where

cpq =

∫ 1

0

∫ 1

0

 ∑
√
r<n< r√

2

ρ
(
η +

√
r2 − (n+ θ)2

) e−2πi(pθ+qη)dθdη =

=

∫ 1

0

∞∑
m=−∞,m 6=0

gmdη

∫ 1

0
dθ

∑
√
r<n<r/

√
2

e
2πi
[
m
(
η+
√
r2−(n+θ)2

)
−qη−pθ

]
.

Since ∫ 1

0
e2πi(m−q)ηdη = 0
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when m 6= n, and is equal to 1 when m = n, the previous integral is equal to

gq

∫ 1

0
dθ

∑
√
r<n<r/

√
2

e
2πi
[
q
(√

r2−(n+θ)2
)
−p(n+θ)

]
=

= gq

∫ [r/
√
2]+1

[
√
r]+1

e
2πi
[
q
(√

r2−(n+θ)2
)
−pθ

]
dθ.

So, we have

∫ 1

0

∫ 1

0

∣∣∣∣∣∣∣
∑

√
r<|n+θ|< r√

2

ρ
(
η +

√
r2 − (n+ θ)2

)∣∣∣∣∣∣∣
2

dθdη ≤
∞∑

q=−∞,q 6=0

∞∑
p=−∞

|cqp|2 ≤

≤
∞∑

q=−∞,q 6=0

∞∑
p=−∞

|gq|2
∣∣∣∣∣
∫ [r/

√
2]+1

[
√
r]+1

e
2πi
[
q
(√

r2−(n+θ)2
)
−pθ

]
dθ

∣∣∣∣∣
2

. (10)

To estimate the inner integral, apply Lemmas 4 and 5 with f(θ) = q
√
r2 − (n+ θ)2−

pθ. Since ∣∣f ′′(θ)∣∣ ≥ qr−1,
by Lemma 5 we have∣∣∣∣∣

∫ [r/
√
2]+1

[
√
r]+1

e
2πi
[
q
(√

r2−(n+θ)2
)
−pθ

]
dθ

∣∣∣∣∣
2

≤ 12r

q
,

when |p| ≤ 2q. When |p| > 2q we have

∣∣f ′(θ)∣∣ =

∣∣∣∣∣ −q(n+ θ)√
r2 − (n+ θ)2

− p

∣∣∣∣∣ ≥ p/2,
and by Lemma 4 ∣∣∣∣∣

∫ [r/
√
2]+1

[
√
r]+1

e
2πi
[
q
(√

r2−(n+θ)2
)
−pθ

]
dθ

∣∣∣∣∣
2

≤ 64

p2
.

Therefore, for the last sum in (10) we have the bound

∞∑
q=−∞,q 6=0

∞∑
p=−∞

|gq|2
∣∣∣∣∣
∫ [r/

√
2]+1

[
√
r]+1

e
2πi
[
q
(√

r2−(n+θ)2
)
−pθ

]
dθ

∣∣∣∣∣
2

≤
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≤ 48r

∞∑
q=−∞,q 6=0

|gq|2 + 32

∞∑
q=−∞,q 6=0

|gq|2
∞∑
|p|>2q

p−2 ≤

≤ 96r + 64

4π2

∞∑
q=1

q−2 = 4r + 3.

J

Now from the relations (8)-(10) the statement of the theorem follows easily.

Corollary 1. There exists a point (θ, η) ∈ [0, 1) such that∣∣N(r; θ, η)− πr2
∣∣ ≤ 16

√
r,

for all r ≥ 2.

Proof. From Theorem 1 we deduce for some (θ, η):∣∣N(r; θ, η)− πr2
∣∣ ≤ 8

√
r + 3/4 + 3 ≤

≤
√

2(64(r + 3/4) + 9) ≤
√

128r + 128 ≤ 16
√
r

when r ≥ 2.
The proved theorem and its corollary give no information about the location

of the point (θ, η) inside the quadrate [−1, 0). If we use the theorem to localize
the point (θ, η) considering a small quadrate centered at this point, then the
coefficient on the right-hand side of the inequality stated in the corollary will
grow in inverse proportion to the side of the quadrate.

To get some empirical information on the location of the points (θ, η), we
need computer calculations. We divide the unit quadrate into several small
quadrates and consider circles of radius r centered at the vertex points (θ, η)
of these quadrates. The program written in Python allows us to compute the
number of lattice points in the considered circles and to estimate the relative
deviation of the number of lattice points from the area of the disc. The software
is given below.

import math
R = int(input(”insert a radius of a circle”))
H = int(input(”insert the number of shifting steps”))
def Disc (k,l):

i=0
for x in range(-R,R+1):

for y in range(-R,R+1):
while (H*x-k)**2+(H*y-l)**2<=(H*R)**2:
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i+=1

break

y+=1

x+=1

print (”the number of lattice points in the circle is N(R)=”, i)

print (”the relative deviation is”,(math.pi*R**2-i)/(math.sqrt(R)) )

for k in range(H):

for l in range(H):

print (k,l)

Disc (k,l)

l+=1

k+=1

Here H is the number of parts the interval (0, 1) is divided into. The r denotes
the radius of the circle. The radii and the number of division points are entered
from keyboard. We enter H = 5 for the number of steps. For r we used the values:
500, 600, 800, 1000, 2000, 5000 and 6400. In the last case we assume H = 6. For
every pair (u, v) (0 ≤ u < H, 0 ≤ v < H) we compute the number of lattice
points N = N(u, v; r) in the circles with center at the point (u/H, v/H) and

the value of relative deviation d = πr2−N(u,v; r)√
r

. For the results of calculations

we preserve 8 digits after the decimal point. Since the value of math.pi is taken
with an error of at most 10−11, the nominator of the fraction d is known with an
error of at most 10−3. Since

√
r < 100, at least one of these 8 decimal digits after

the decimal point is a right digit. This is sufficient for establishing approximate
shifting for which the relative deviation d is small or large.

Computer calculation analysis was made for cases of radii r = 500, 600, 800,
1000, 2000, 5000 and 6400. In each case, a relative (dmin) deviation with minimal
absolute value, a relative (dmax) deviation with maximal absolute value, and the
centers at which these values are reached have been found.

In the case of r = 500: dmin = 0.052 is reached at the centers (1/5, 2/5),
(1/5, 4/5), (2/5, 1/5), (2/5, 4/5), (3/5, 1/5), (3/5, 4/5), (4/5, 2/5), (4/5, 3/5);
dmax = 2.1987 is reached at the origin.

In the case of r = 600: dmin = −0.14188 is reached at the centers (1/5, 1/5),
(1/5, 3/5), (4/5, 1/5), (4/5, 4/5); dmax = −24.6147 is reached at (2/5, 3/5).

In the case of r = 800: dmin = 0.2934 is reached at the centers (2/5, 1/5), (2/5,
4/5), (3/5, 1/5), (3/5, 4/5), (4/5, 2/5); dmax = 8.2983 is reached at (1/5, 2/5),
(1/5, 3/5).

In the case of r = 1000: dmin = −0.1058 is reached at the centers (1/5, 1/5),
(1/5, 4/5), (4/5, 1/5), (4/5, 4/5); dmax = 1.6651 is reached at (0, 1/5), (0, 4/5),
(1/5, 0), (4/5, 0).
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In the case of r = 2000: dmin = −0.2099 is reached at the centers (1/5, 2/5),
(1/5, 3/5), (2/5, 0), (3/5, 1/5), (4/5, 2/5), (4/5, 3/5); dmax = 1.6237 is reached at
(0, 2/5), (0, 3/5), (2/5, 1/5), (2/5, 4/5), (3/5, 0), (3/5, 4/5).

In the case of r = 5000: dmin = 0.1604 is reached at the centers (2/5, 2/5),
(2/5, 3/5), (3/5, 2/5), (3/5, 3/5); dmax = 1.9706 is reached at the origin.

In the case of r = 6400: dmin = 0.0761 is reached at the centers (1/3, 1/3),
(1/3, 2/3), (1/3, 5/6), (2/3, 1/3), (2/3, 2/3); dmax = 5.1761 is reached at the ori-
gin. J
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