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Abstract. In this paper, Banach function space and the Hardy classes of analytic func-
tions generated by this space are considered. An analogue of the classical Riesz theorem
in these classes and the validity of the Cauchy formula for analytic functions from these
classes are established. The basicity of the parts of exponential system in the correspond-
ing Hardy classes is proved.
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1. Introduction

Lately, in connection with the new non-standard function spaces, there had
been great interest in conjugation problems of the theory of analytic functions
in different settings. Every Banach functional space generates a corresponding
Banach Hardy (or Smirnov) class of analytic functions. Non-standard spaces in-
clude the Lebesgue spaces with a variable summability exponent, Morrey spaces,
grand-Lebesgue spaces, etc. Numerous articles, review papers, and monographs
have been dedicated to the study of various problems of analysis in these spaces
(see [1-9] and references therein). Each of the above-mentioned spaces presents
specific difficulties to treat your problem depending on the geometry of the space.
The solutions of considered problems depend on the parameters of the space (in-
cluding the norm it is supplied with) and the problem data, and you have to find
the relationships between them to solve your problem. Despite these circum-
stances, it should be noted that these spaces are basically (unlike, for example,
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Lebesgue spaces with variable summability index) so called rearrangement in-
variant Banach function spaces (r.i.s. for short). For the theory of these spaces
we refer the readers to the monographs [10-12]. Along with this, the Hardy and
Smirnov classes associated with these spaces have also begun to be considered
and the Riemann-Hilbert problems in these spaces have been studied (see, for
example, [13-22]).

In this paper, Banach function spaces and the Hardy classes of analytic func-
tions generated by this space are considered. An analogue of the classical Riesz
theorem in these classes and the validity of the Cauchy formula for analytic func-
tions from these classes are established. The basicity of the parts of exponential
system in the corresponding Hardy classes is proved.

2. Needful information and auxiliary facts

We will use the following standard notations and concepts. R+ = (0,+∞);
χM (·) is the characteristic function of the set M ; R is the set of real numbers; C
is the complex plane; ω = {z ∈ C : |z| < 1} is a unit disk in C; γ = ∂ω is a unit
circle; M̄ is the closure of the set M with respect to the corresponding norm;
( · ) is the complex conjugate. By [X] we denote the algebra of linear bounded
operators acting in a Banach space X.

We will need some concepts and facts from the theory of Banach function
spaces (see, e.g., [10, 11]).

Let (R0;µ) be a measure space. Let M + be the cone of µ-measurable func-
tions on R0 whose values lie in [0,+∞].

Definition 1. A mapping ρ : M + → [0,+∞] is called a Banach function norm
(or simply a function norm) if, for all f, g, fn, n ∈ N , in M +, for all constants
a ≥ 0 and for all µ-measurable subsets E ⊂ R0, the following properties hold:

(P1) ρ (f) = 0⇔ f = 0 µ-a.e.; ρ (af) = aρ (f) ; ρ (f + g) ≤ ρ (f) + ρ (g);

(P2) 0 ≤ g ≤ f µ-a.e. ⇒ ρ (g) ≤ ρ (f);

(P3) 0 ≤ fn ↑ f µ-a.e. ⇒ ρ (fn) ↑ ρ (f);

(P4) µ (E) < +∞⇒ ρ (χE) < +∞;

(P5) µ (E) < +∞⇒
∫
E fdµ ≤ CEρ (f), for some constant CE :

0 < CE < +∞.

Let M denote the collection of all extended scalar-valued (real or complex)
µ-measurable functions and M0 ⊂ M denote the subclass of functions that are
finite µ-a.e. .
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Definition 2. Let ρ be a function norm. The collection X = X (ρ) of all func-
tions f in M for which ρ (|f |) < +∞ is called a Banach function space. For each
f ∈ X, define ‖f‖X = ρ (|f |).

The following theorem is valid.

Theorem 1. Let ρ be a function norm, X = X (ρ) and ‖·‖X be as above. Then
under the natural vector space operations, (X; ‖·‖X) is a normed linear space for
which the inclusions

Ms ⊂ X ⊂M0

hold, where Ms is the set of µ-simple functions. In particular, if fn → f in X,
then fn → f in measure on sets of finite measure, and hence some subsequence
converges pointwise µ-a.e. to f .

To obtain our main results, we will significantly use the following result of
[23] (see also [11]). Let αX and βX be upper and lower Boyd indices for the space
X.

Theorem 2. For every p and q such that

1 ≤ q < 1

βX
≤ 1

αX
< p ≤ ∞,

we have

Lp ⊂ X ⊂ Lq,

with the inclusion maps being continuous.

We will use some results related to Fourier series in an r.i.s.. Let us state
some relevant concepts and notations.

Definition 3. Let X be an Banach function space. The closure in X of the set
of simple functions Ms is denoted by Xb.

Definition 4. Let X be a r.i.s. over a resonant space (R;µ). For each finite
value of t belonging to the range of µ, let E be a subset of R with µ (E) = t and
let

ϕX (t) = ‖χE‖X .

If f belongs to L1 (γ), then for each integer n the n-th Fourier coefficient of
f is defined by

f̂ (n) =
1

2π

∫ π

−π
f
(
eiθ
)
e−inθdθ , n ∈ Z.
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Let Sn’s be partial sums of the Fourier series of the function f :

Sn (f) =
∑
|k|≤n

f̂ (k) eikt.

In the sequel, we will also need the following

Theorem 3. Suppose X is an r.i.s. on γ whose fundamental function satisfies
ϕX (+0) = 0. Then the following conditions are equivalent:

1. Fourier series converge in norm in Xb;

2. the partial-sum operators Sn are uniformly bounded on Xb .

The following theorem is valid.

Theorem 4. Let X be a separable r.i.s. on (−π, π]. Fourier series converge in
norm in X if and only if the Boyd indices of X satisfy 0 < αX ;βX < 1.

We will need also the following lemma from [10].

Lemma 1. [10] Let X = X (ρ) be a Banach function space and suppose fn ∈
X , n ∈ N .

i) If 0 ≤ fn ↑ f µ-a.e., then either f /∈ Xand ‖fn‖X ↑ +∞, or f ∈ X and
‖fn‖X ↑ ‖f‖X .

ii) (Fatou’s lemma) If fn → f µ -a.e., and if lim
n→∞

inf ‖fn‖X < +∞ , then

f ∈ X and ‖f‖X ≤ lim
n→∞

inf ‖fn‖X .

In the sequel, we will need the following easily provable lemma.

Lemma 2. Let the Banach space
(
Y1; ‖·‖Y1

)
be continuously embedded in the

Banach space
(
Y2; ‖·‖Y2

)
. Let T ∈ [Y2;Y1] and ImT = Y1 (closure of the image

of T ). If the set M ⊂ Y2 is everywhere dense in Y2, i.e. M̄ = Y2, then TM = Y1.

In fact, let y1 ∈ Y1 be an arbitrary element and ε > 0 be an arbitrary number.
It is clear that ∃z1 ∈ ImT :

‖z1 − y1‖Y1 < ε.

Consequently, ∃x2 ∈ Y2 : Tx2 = z1. From M = Y2 it follows that ∃m2 ∈ M :
‖m2 − x2‖Y2 < ε. We have

‖Tm2 − y1‖Y1 ≤ ‖Tm2 − z1‖Y1 + ε = ‖Tm2 − Tx2‖Y1 + ε ≤

≤ ‖T‖ ‖m2 − x2‖Y2 + ε = (1 + ‖T‖) ε.



Hardy Banach Spaces, Cauchy Formula and Riesz Theorem 161

From the arbitrariness of ε it directly follows that TM = Y1.

In what follows, we will also use the concept of Nevanlinna class of analytic
functions. By N we denote the set of analytic functions F (·) in ω such that

sup
0<r<1

∫ π

−π
log+

∣∣F (reit)∣∣ dt < +∞,

where log+ u = log max {1;u} , u ≥ 0. It is known (see, e.g., [7, 30]) that the non-
zero function F (·) belongs to the class N if and only if it can be represented
as

F (z) = B (z) exp

(
1

2π

∫ π

−π

eit + z

eit − z
dh (t)

)
, (1)

where B (·) is a Blaschke function, and h (·) is a function of bounded variation on
[−π, π]. By N ′ (Nevanlinna class) we denote a class of functions F ∈ N such
that the function h (·) in (1) is absolutely continuous on [−π, π].

More details concerning the above results can be found in [10-12; 23-29].

3. Hardy classes H±X and bases in them

Let X be a Banach function space over [−π, π]. By H+
X we denote a Hardy

class of functions F (·) analytic inside ω equipped with the norm

‖F‖H±
X

= lim
r→1−0

‖Fr (·)‖X ,

where Fr (t) = F
(
reit
)
. We also define its subclass

H+
Xb
≡
{
F ∈ H+

X : F+ ∈ Xb

}
,

where F+ (·) are the non-tangential boundary values of F on γ.

Similar to classical case, we define the Banach Hardy class mH
−
X of analytic

functions outside the unit circle which have a finite order at infinity. Let the
function f (·), analytic outside ω, have a Laurent decomposition of the form

f (z) =
m∑

n=−∞
anz

n , z →∞, am 6= 0 ,

in the vicinity of the infinitely remote point. So, for m > 0 the point z = ∞
is a pole of order m, and for m ≤ 0 the point z = ∞ is a zero of order (−m).
Let f (·) = f0 (·) + f1 (·), where f0 (·) is the principal part, and f1 (·) is the
regular part of Laurent decomposition in the vicinity of z = ∞. If the function
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g (z) = f0

(
1
z̄

)
, |z| < 1, belongs to the class H+

X , then we will say that the
function f (·) belongs to the class mH

−
X .

Consider the following singular integral with the Cauchy kernel:

(S f) (τ) =
1

2πi

∫
γ

f (ξ) dξ

ξ − τ
, τ ∈ γ,

where f ∈ X is some function

We need the following result of D.Boyd [23].

Theorem 5. Suppose that T ∈ [Lp] and T ∈ [Lq], with 1 < p < q < +∞. Let X
be an r.i.s. with the Boyd indices αX and βX which satisfy 1

q < αX ≤ βX < 1
p .

Then T ∈ [X].

This theorem has the following immediate corollary.

Corollary 1. Let X be an r.i.s. over (−π, π] with the Boyd indices αX ;βX ∈
(0, 1). Then singular operator S acts boundedly in X, i.e. S ∈ [X].

This fact helps establish the validity of some classical facts concerning Cauchy
type integrals in r.i.s. .

3.1. Cauchy integral formula

Let X be some Banach function space over γ. Then it is clear that the
following continuous embedding X ⊂ L1 is true:

‖f‖L1
≤ C ‖f‖X , ∀f ∈ X, (2)

where C > 0 is some constant. This estimate directly implies that H+
X ⊂ H+

1 .
Let f ∈ H+

X . Denote by f+ the non-tangential boundary values of f ∈ H+
X on

γ : f+ = f/γ . It follows from f ∈ H+
1 that the Cauchy formula

f (z) =
1

2πi

∫
γ

f+ (τ)

τ − z
dτ , z ∈ ω,

holds. Consequently, if f ∈ H+
X , then the Cauchy formula is valid for it. Let us

expand the function f (·) in a Taylor series in a neighborhood of the point z = 0 :

f (z) =

∞∑
n=0

f+
n z

n , z ∈ ω.
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By the Riesz theorem, we have∫ π

−π

∣∣f (reit)− f+
(
eit
)∣∣ dt→ 0 , r → 1− 0.

Hence we immediately obtain

1

2π

∫ π

−π
f+
(
eit
)
e−intdt =

{
f+
n , n ≥ 0 ,

0 , n < 0 .

Now, consider the following Cauchy type integral

F (z) =
1

2πi

∫
γ

f (τ)

τ − z
dτ , z ∈ ω, (3)

where f ∈ X is some function. By the Sokhotski-Plemelj formulas, we have

F± (τ) = ±1

2
f (τ) + (Sf) (τ) , a.e. τ ∈ γ, (4)

where F+ (·) (F− (·)) are non-tangential boundary values of F (·) inside (outside)
ω on γ. It immediately follows from formulas (4) that F± (·) belong to X if and
only if (Sf) (·) belong to X, i.e. S ∈ [X]. Therefore, as follows from Corollary 1,
if X is an r.i.s. with the Boyd indices αX ;βX ∈ (0, 1), then F± (·) ∈ X. Thus,
the boundary values of the Cauchy-type integral (3) belong to X, if only S ∈ [X].

Next, let F (·) ∈ H+
X . Therefore, the relation

lim
rn→1−0

‖Frn (·)‖X < +∞

holds for any sequence rn ↑ 1. It is obvious that ∃ {rn}:rn ↑ 1 and Frn (τ) →
F+ (τ), n → ∞, a.e. τ ∈ γ. Then it follows from Lemma 1 ii) (Fatou’s lemma)
that ∥∥F+

∥∥
X
≤ lim inf

n→∞
‖Frn‖X ≤ ‖F‖H+

X
, (5)

i.e. F+ ∈ X. Thus, if F ∈ H+
X , then F+ ∈ X and the inequality (5) is valid.

Let the non-tangential boundary values F+ (·) of the function F ∈ N ′ belong
to Xb. Then it is clear that (see e.g. [7]) F ∈ H+

1 (since F+ ∈ Xb ⊂ L1) and the
Cauchy formula (5) holds.

Assume that X is an r.i.s. with the Boyd indices αX ; βX ∈ (0, 1). It is clear
∃ p; q ∈ (1,+∞):

1 < q <
1

βX
≤ 1

αX
< p < +∞.

In this case, we have the following continuous embeddings

Lp ⊂ X ⊂ Lq,
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i.e. ∃ C1; C2 > 0 :
‖f‖Lq

≤ C1 ‖f‖X , ∀f ∈ X, (6)

‖f‖X ≤ C2 ‖f‖Lp
, ∀f ∈ Lp. (7)

It is quite obvious that Lp is dense in Xb. Thus, the embeddings

Lp ⊂ Xb ⊂ X ⊂ Lq

hold. It is well known that the direct decomposition

Lq = L+
q +̇−1L

−
q , 1 < q < +∞, (8)

holds, where L+
q

(
−1L

−
q

)
are boundary values of functions from Hardy classes

H+
q

(
−1H

−
q

)
on γ. Denote the projector onto the subspace L+

q (−1L
−
q ), generated

by the decomposition (8), by P+ (P−). Assume P+Xb = X+
b ; P−Xb = −1X

−
b .

Trigonometric polynomials are dense in Xb (in norm ‖·‖X ) and in Lq (in norm
‖·‖q). The following expressions for projectors are known

P± =
1

2
I ± S,

where I is an identity operator. If αX ;βX ∈ (0, 1), then, by Corollary 1, P± ∈
[X]. The following relations hold

P+
(
eint
)

=

{
eint , n ≥ 0 ,
0, n < 0 ,

;P−
(
eint
)

=

{
0, n ≥ 0 ,
eint , n < 0 .

(9)

Let us show that the system of exponents
{
eint
}
n∈Z forms a basis for Xb, if

αX ; βX ∈ (0, 1). Let f ∈ X be an arbitrary function. Consider the partial sums

Smf =
m∑

n=−m
fne

int,

where fn are the Fourier coefficients of the function f .
In the sequel, we assume that the function f is continued periodically (with

period 2π) to the whole real axis and f (τ) = f (arg τ) , τ ∈ γ. We have

(Smf) (x) =
1

2π

∫ π

−π
f (t)

sin
[(
m+ 1

2

)
(x− t)

]
2 sin x−t

2

dt =

=
sin
(
m+ 1

2

)
x

2π

∫ π

−π
f (t)

cos
(
m+ 1

2

)
t

2 sin x−t
2

dt−
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−
cos
(
m+ 1

2

)
x

2π

∫ π

−π
f (t)

sin
(
m+ 1

2

)
t

2 sin x−t
2

dt =

=
sin
(
m+ 1

2

)
x

2π

(
S(1)
m f

)
(x)−

cos
(
m+ 1

2

)
x

2π

(
S(2)
m f

)
(x) ,

where S
(k)
m f denotes the corresponding integrals. Hence it follows directly

‖Smf‖X ≤
1

2π

(∥∥∥S(1)
m f

∥∥∥
X

+
∥∥∥S(2)

m f
∥∥∥
X

)
.

Taking into account the obvious identity

1

2 sin x−t
2

= i
ei

1
2

(x+t)

eix − eit
,

we obtain

S(1)
m f =

∫ π

−π

f1 (t)

2 sin x−t
2

dt = iei
x
2

∫ π

−π

f1 (t) ei
t
2

eix − eit
dt = ei

x
2

∫
γ

f̃1 (τ) dτ

eix − τ
,

where

f̃1

(
eit
)

= e−i
t
2 f (t) cos

(
m+

1

2

)
t.

Since, for αX ; βX ∈ (0, 1), the singular integral is bounded in X, we obtain∥∥∥S(1)
m f

∥∥∥
X
≤ C1

∥∥∥f̃1

∥∥∥
X
≤ C1 ‖f‖X ,

where C1 > 0 is a constant independent of m. Similarly we have∥∥∥S(2)
m f

∥∥∥
X
≤ C2 ‖f‖X ,

and finally

‖Smf‖X ≤ C ‖f‖X ,

where C > 0 is a constant independent of m. Consequently, sup
m
‖Sm‖[X] < +∞.

Then from Theorem 3 it follows that the Fourier series of every function f ∈ Xb

converges to itself in X. The estimate (6) implies the minimality of the system
in X. As a result, the following theorem is true.

Theorem 6. Let X be an r.i.s. on γ with ϕX (+0) = 0 . Then the system of
exponents

{
eint
}
n∈Z forms a basis for Xb if and only if the Boyd indices of X

satisfy 0 < αX ;βX < 1.
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Let us show that the system
{
eint
}
n∈Z+

forms a basis for X+
b . Take ∀f+ ∈

X+
b . Then it is clear that ∃f ∈ Xb:P

+f = f+. Let us expand the function f
with the basis

{
eint
}
n∈Z+

:

f =

+∞∑
n=−∞

fne
int.

Since P+ ∈ [X], taking into account the relations (9), we obtain

f+ =
+∞∑
n=0

fne
int. (10)

From Lemma 2 it immediately follows that X+
b is a subspace of X. Then it

is clear that the decomposition (10) is unique. This proves the basicity of the
system of exponents

{
eint
}
n∈Z+

in X+
b . The basicity of the system

{
e−int

}
n∈N

is proved similarly in −1X
−
b . So, the following theorem is true.

Theorem 7. Let X be an r.i.s. on γ with the Boyd indices αX ; βX ∈ (0, 1). Let
X+
b =

(
1
2I + S

)
Xb and −1X

−
b =

(
1
2I − S

)
Xb, where S is the singular Cauchy in-

tegral. Then the system
{
eint
}
n∈Z+

({
e−int

}
n∈N

)
forms a basis for X+

b

(
−1X

−
b

)
.

Let X be an r.i.s. with the Boyd indices αX ; βX : 1 < q < 1
βX
≤ 1

αX
<

p < +∞. Then from the relations (6) and (7) we immediately get the continuous
embeddings

H+
p ⊂ H+

X ⊂ H
+
q .

The direct decomposition

Xb = X+
b +̇−1X

−
b

holds. It follows directly from Theorem 6 and 7. Denote the set of all polynomials
with regard to zn by A . It is absolutely clear that A ⊂ H+

X . The closure of A
in H+

X ( i.e. according to the norm ‖·‖H+
X

) is denoted by H+
Xb

. Let us show that

the spaces X+
b and H+

Xb
are isometric. Let F ∈ H+

Xb
be an arbitrary function.

As already established, F+ ∈ X and the inequality∥∥F+
∥∥
X
≤ ‖F‖H+

X
,

is true. We now need the following class of harmonic functions in ω. Denote by
hX the class of harmonic functions u in ω with the norm

‖u‖hX = lim
r→1−0

‖ur (·)‖X ,
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where ur (t) = u
(
reit
)
, 0 ≤ r < 1 ,−π < t ≤ π. It is absolutely clear that

F ∈ H+
X if and only if ReF ; ImF ∈ hX . So, let f ∈ X+

b . It is obvious that
∃F ∈ H+

1 , F+ = f a.e. on γ. Let f1 = Ref . Consider the following Poisson
integral

ur (x) = u
(
reix

)
=

1

2π

∫ π

−π
f1 (s)Pr (s− x) ds =

1

2π

∫ π

−π
Pr (s) f1 (s− x) ds,

where

Pr (s) =
1− r2

1− 2r cos s+ r2

is a Poisson kernel for a unit circle. The following relation is well known

1

2π

∫ π

−π
Pr (s) ds = 1 , ∀r ∈ [0, 1) .

Let us show that u ∈ hX . We have

‖ur‖X =
1

2π

∥∥∥∥∫ π

−π
Pr (s) f1 (s− x) ds

∥∥∥∥
X

≤ 1

2π

∫ π

−π
Pr (s) ‖f1 (s− ·)‖X ds.

As X is an r.i.s., it is also translation-invariant (see e.g. [10, p.158]), i.e.

‖f1 (s− ·)‖X = ‖f1‖X ,∀s ∈ [−π, π] .

Then from the previous relation we get

‖ur‖X ≤
1

2π

∫ π

−π
Pr (s) ‖f1‖X ds = ‖f1‖X

1

2π

∫ π

−π
Pr (s) ds =

= ‖f1‖X ⇒ ‖u‖hX ≤ ‖f1‖X .

It is known that u/γ = f1 a.e. on γ. It is clear that u = ReF . It can be proved
similarly that

‖ImF‖hX ≤ ‖Imf‖X ,

and, as a result, ImF ∈ hX .
It is clear that the Poisson integral

F
(
reix

)
=

1

2π

∫ π

−π
Pr (s− x) f (s) ds

is an analytic function and F/γ = ReF/γ + iImF/γ = Ref + iImf = f a.e. on
γ. Moreover, the following estimate is proved in exactly the same way as in the
case hX :

‖F‖H+
X
≤ ‖f‖X .



168 B.T. Bilalov, A.E. Guliyeva

Recalling the previously obtained estimate (5), we obtain ‖F‖H+
X

= ‖f‖X . From

Theorem 7 it follows that the system {zn}n∈z+forms a basis for H+
Xb

. Hence it

directly follows from Theorem 7 again that the subspace X+
b and Hardy class

H+
Xb

are isometrically isomorphic.

Similarly we can prove that if f ∈ −1X
−
b , then ∃F ∈ −1H

−
Xb

: F−/γ = f ;

‖F‖
−1H

−
Xb

= ‖f‖X , and moreover, the system {z−n}n∈N forms a basis for −1H
−
Xb

.

Assume X+ = P+X ; −1X
− = P−X. If X is an r.i.s. and αX ; βX ∈

(0, 1), then it is clear that P± ∈ [X], and then from the relation P+ + P− = I
we immediately get the direct decomposition X = X++̇−1X

− (since P± are
mutually disjoint projectors). Proceeding from this relation, absolutely similar
to the previous case it is proved that the spaces X+ (−1X

−) and H+
X

(
−1H

−
X

)
are

isometric. So we have established the following result.

Theorem 8. Let X be an r.i.s. with the Boyd indices αX ; βX ∈ (0, 1). Then:

i) An analytic in ω function F ∈ N belongs to a class H+
Xb

(
H+
X

)
if and only

if its boundary values F+ belong to Xb (X) and the Cauchy formula

F (z) =
1

2πi

∫
γ

F+ (τ)

τ − z
dτ , z ∈ ω,

holds for it;

ii) Spaces H+
Xb

and X+
b ; −1H

−
Xb

and −1X
−
b (H+

X and X+; −1H
−
X and −1X

−)
can be identified from the point of view of isometry

‖F‖H+
X

=
∥∥F+

∥∥
X

; ‖F‖
−1H

−
X

=
∥∥F−∥∥

X

and the direct decompositions

Xb = H+
Xb

+̇−1H
−
Xb

; X = H+
X+̇−1H

−
X ,

hold;

iii) System {zn}n∈z+
(
{z−n}n∈N

)
forms a basis for H+

Xb
(in −1H

−
Xb

).

3.2. An analogue of the Riesz theorem

Let X be an r.i.s. with the Boyd indices αX ; βX ∈ (0, 1). As already estab-
lished, for an arbitrary sequence rn ↑ 1 , n ∈ N , we have ‖F+‖X ≤ lim

n→∞
inf ‖Frn‖X ,

and, as a result,∥∥F+
∥∥
X
≤ lim

r→1−0
‖Fr‖X ≤ lim

r→1−0
‖Fr‖X ≤

∥∥F+
∥∥
X
.
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Then

lim
r→1−0

‖Fr‖X =
∥∥F+

∥∥
X
. (11)

We will prove that

lim
r→1−0

∥∥Fr (·)− F+ (·)
∥∥
X

= 0

also holds if F ∈ H+
X and F+ has an absolutely continuous norm ‖·‖X . First,

assume the following notation

‖f‖X(M) = ‖f χM‖X ,

where M ⊂ γ is a measurable set. Recall that ‖·‖X is absolutely continuous if
for f ∈ Xb and for ∀ε > 0 , ∃ δ > 0 : ‖f‖X(e) < ε, for ∀ |e| < δ, e < γ is a
measurable subset, | · | is a Lebesgue measure.

So, let F ∈ H+
X be such that F+ has an absolutely continuous norm ‖·‖X .

Let rn ↑ 1, n ∈ N , be an arbitrary sequence and ε > 0 be an arbitrary number.
It is known that Frn → F+ a.e. on γ (since F ∈ H+

1 ). It is obvious that ∃δ > 0:
(everywhere we consider only measurable sets)∥∥F+

∥∥
X(e)

< ε , ∀e : |e| < δ. (12)

Then by Egorov’s theorem, ∃ e0 : |e0| < δ, on M = γ\e0, the sequence Frn
converges uniformly to F+:∣∣Frn (t)− F+ (t)

∣∣ < ε, ∀t ∈M,

∀n > n0, where n0 ∈ N depends only on ε. Denote by c0 = ‖1‖X an absolute
constant. We have ∥∥Frn − F+

∥∥
X(M)

≤ ‖ε‖X(M) ≤ c0ε.

Then from the relation∣∣∣‖Frn‖X(M) −
∥∥F+

∥∥
X(M)

∣∣∣ ≤ ∥∥Frn − F+
∥∥
X(M)

it follows immediately that

lim
n→∞

‖Frn‖X(M) =
∥∥F+

∥∥
X(M)

. (13)

We have∣∣∣‖Frn‖X(e0) −
∥∥F+

∥∥
X(e0)

∣∣∣ ≤ ∥∥Frn − F+
∥∥
X(e0)

=
∥∥Frnχe0 − F+χe0

∥∥
X

=



170 B.T. Bilalov, A.E. Guliyeva

=
∥∥Frnχe0 + FrnχM − FrnχM + F+χM − F+χM − F+χe0

∥∥
X

=

=
∥∥Frn − F+ − FrnχM + F+χM

∥∥
X
≤
∥∥Frn − F+

∥∥
X

+

+
∥∥FrnχM − F+χM

∥∥
X

=
∥∥Frn − F+

∥∥
X

+
∥∥Frn − F+

∥∥
X(M)

.

Hence, taking into account relations (11) and (13), we directly obtain

lim
n→∞

‖Frn‖X(e0) =
∥∥F+

∥∥
X(e0)

.

Then from (12) it follows that ∃n1 ∈ N :

‖Frn‖X(e0) < ε , ∀n ≥ n1.

We have ∥∥Frn − F+
∥∥
X

=
∥∥(Frn − F+

)
χM +

(
Frn − F+

)
χe0
∥∥
X
≤

≤
∥∥Frn − F+

∥∥
X(M)

+
∥∥Frn − F+

∥∥
X(e0)

≤

≤
∥∥Frn − F+

∥∥
X(M)

+ ‖Frn‖X(e0) +
∥∥F+

∥∥
X(e0)

≤ 2ε+
∥∥Frn − F+

∥∥
X(M)

.

Hence, paying attention to relation (13), from the arbitrariness of ε we obtain

lim
n→∞

∥∥Frn − F+
∥∥
X

= 0,

and this, in turn, by the arbitrariness of rn ↑ 1, n ∈ N , means

lim
r→1−0

∥∥Fr − F+
∥∥
X

= 0. (14)

Again from the inequality∣∣‖Fr‖X − ∥∥F+
∥∥
X

∣∣ ≤ ∥∥Fr − F+
∥∥
X

it follows that
lim

r→1−0
‖Fr‖X =

∥∥F+
∥∥
X
.

On the contrary, let the relation (14) hold. Let us show that F+ has an
absolutely continuous norm ‖·‖X . In fact, let ε > 0 be an arbitrary number.
Then from the inequality∥∥Fr − F+

∥∥
X(e)
≤
∥∥Fr − F+

∥∥
X

and from relation (14) it immediately follows that

lim
r→1−0

∥∥Fr − F+
∥∥
X(e)

= 0.
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Then ∃ r0 ∈ (0, 1): ∥∥Fr − F+
∥∥
X(e)

< ε , ∀r ∈ (r0 , 1) .

Take and fix r1 ∈ (r0, 1). It is obvious that Fr1 (·) is continuous on γ and therefore
is bounded, i.e. ∃c > 0:

|Fr1 (t)| ≤ c , ∀t ∈ γ.

We have ∥∥F+
∥∥
X(e)
≤
∥∥F+ − Fr1

∥∥
X(e)

+ ‖Fr1‖X(e) < ε+ c ‖χe‖X . (15)

It follows from the embedding (7) that the characteristic function χe has an
absolutely continuous norm ‖·‖X . Then it follows from (15) that F+ also has an
absolutely continuous norm ‖·‖X , and, as a result, F+ ∈ Xb. Therefore F ∈ H+

Xb
.

Thus, the following analog of classical Riesz theorem is true.

Theorem 9. Let X be an r.i.s. with the Boyd indices αX ; βX ∈ (0, 1). Then:

i) If F ∈ H+
X , then lim

r→1−0
‖Fr‖X = ‖F+‖X ;

ii) The relation lim
r→1−0

‖Fr − F+‖ = 0 is true if and only if F ∈ H+
Xb

.

Similarly we can prove the following

Theorem 10. Let X be an r.i.s. with the Boyd indices αX ; βX ∈ (0, 1). Then:

i) If F ∈m H−X , then lim
r→1+0

‖Fr‖X = ‖F−‖X ;

ii) The relation lim
r→1+0

‖Fr − F−‖ = 0 is true if and only if F ∈m H−Xb
.

iii) Analytic function F (·) outside ω belongs to the class −1H
−
X (−1H

−
Xb

) if

and only if its boundary values F− (·) belong to X (Xb) and the Cauchy formula

F (z) = − 1

2πi

∫
γ

F− (τ)

τ − z
dτ , |z| > 1 ,

holds.
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