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On the equation (2k − 1)(3` − 1) = 5m − 1

F. Luca, L. Szalay∗

Abstract. In this paper, we solve completely the title diophantine equation. The main
tools are linear forms of logarithm of algebraic numbers, reduction methods, modular
arithmetic. We use Maple to carry out some calculations corresponding to the LLL
algorithm, Baker-Davenport reduction, and certain approximations.
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1. Introduction

The purpose of the paper is to solve completely the title diophantine equation.
It can be considered as an equation between products of terms of two binary
recurrences and the terms of a third binary recurrence. This type of problem is not
unprecedented, it has already been studied before with other binary recurrences.
See, for example, [3] where the authors found all Fibonacci numbers which are
products of two Pell numbers, and all Pell numbers which are product of two
Fibonacci numbers. Note that finding the common terms of two homogenous
linear recurrences is one important question within number theory. Our result is
the following.

Theorem 1. The only positive integer triple (k, `,m) which satisfies

(2k − 1)(3` − 1) = 5m − 1 (1)

is (k, `,m) = (2, 2, 2).
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Now we describe here the bird’s eye view of the proof. First we use Baker
method (Matveev’s theorem, see Theorem 2) to have the upper bound min{k, `} <
0.26 · 1012(1 + log x), where x = max{k, `,m}. A second application gives the
bound 3 · 1026 on both k and `. Then we apply the LLL algorithm for reduc-
tion, and obtain min{k, `} ≤ 193. This relatively small number via Matveev’s
theorem implies k, ` < 2 · 1015. A repetition of LLL procedure now returns
with min{k, `} ≤ 113, and then the Baker-Davenport method (Theorem 3) with
m ≤ 256. Finally, k ≤ 591 and ` ≤ 302 follow, and a computer search completes
the proof.

Assume that the positive integers 2 ≤ a ≤ b and c are fixed. The equation

(ak − 1)(b` − 1) = cm − 1 (2)

sometimes surely has infinitely many solutions, for instance if a = 2, c = b2.
Computer search shows that most often there is probably 0 or 1 solution, while
(2k − 1)(5` − 1) = 13m − 1 possesses at least two triples: (k, `,m) = (2, 1, 1) and
(3, 2, 2). It is apparent from the proof of our theorem that the method is more
general and usually able to handle equation (2) with a, b, c fixed.

2. Lemmas and linear forms in logarithms

In this section we introduce some notations and lemmas. We begin with

Lemma 1. If equation (1) holds with k, ` ≥ 2, then

5m > 2 max{2k, 3`} > 2k + 3`.

Proof. The statement is obvious. J

Lemma 2. If k ≥ 4, ` ≥ 3 and m satisfy (1), then

0.43k + 0.68`− 0.2 < m < 0.44k + 0.69`.

Proof. Clearly,
2k−0.13`−0.1 < 5m < 2k3`

holds, the left hand side is being valid for k ≥ 4 and ` ≥ 3. Taking logarithms in
the extreme sides of the above inequality and approximating both (log 2)/(log 5)
and (log 3)/(log 5), we get the conclusion of the lemma. J

Lemma 3. If the positive integers k, ` and m satisfy (1), then

k ≡ ` ≡ 2 (mod4), m ≡ 0 (mod2).
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Proof. Consider (1) modulo 3. If k is odd, then the left hand side of (1)
(denoted by LHS) is congruent to −1 modulo 3 which contradicts the right hand
side (denoted by RHS). If k is even, then LHS is congruent to 0 modulo 3, and
so is RHS. Consequently, m is even. Knowing that k is even, and considering the
title equation modulo 5, we obtain the statement of the lemma. J

Lemma 4. The only solution to (1) with k = 2 or ` = 2 is k = ` = 2.

Proof. For k = 2, we get 3`+1 − 5m = 2. Since m is even, this reduces to the
elliptic equation 3rx3 − y2 = 2, where r ∈ {0, 1, 2} is the residue class of ` + 1
modulo 3 and (x, y) = (3(`+1−r)/3, 5m/2).

For ` = 2, we get 2k+3−7 = 5m = (5m/2)2, a particular case of a Ramanujan’s
famous equation 2n − 7 = y2, whose largest solution is n = 15. J

We also need some results from the theory of lower bounds in non-zero linear
forms in logarithms of algebraic numbers. We start by recalling Theorem 9.4 of
[1], which is a modified version of a result of Matveev [5]. Let L be an algebraic
number field of degree dL. Let η1, η2, . . . , ηl ∈ L be not 0 or 1 and d1, . . . , dl be
non-zero integers. We put

D = max{|d1|, . . . , |dl|, 3},

and put

Γ =
l∏

i=1

ηdii − 1.

Let A1, . . . , Al be positive integers such that

Aj ≥ h′(ηj) := max{dLh(ηj), | log ηj |, 0.16}, for j = 1, . . . l,

where for an algebraic number η of minimal polynomial

f(X) = a0(X − η(1)) · · · (X − η(k)) ∈ C[X]

over the integers with positive a0, we write h(η) for its Weil height given by

h(η) =
1

k

log a0 +
k∑

j=1

max{0, log |η(j)|}

 .

The following consequence of Matveev’s theorem is Theorem 9.4 in [1].

Theorem 2. If Γ 6= 0 and L ⊆ R, then

log |Γ| > −1.4 · 30l+3l4.5d2L(1 + log dL)(1 + logD)A1A2 · · ·Al.
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We recall the Baker-Davenport reduction method (see [4, Lemma 5a]), which
is useful to reduce the bounds arising from applying Theorem 2.

Theorem 3. Let κ 6= 0 and µ be real numbers. Assume that M is a positive
integer. Let P/Q be the convergent of the continued fraction expansion of κ such
that Q > 6M , and put

ξ = ‖µQ‖ −M · ‖κQ‖,

where ‖ · ‖ denotes the distance from the nearest integer. If ξ > 0, then there is
no solution of the inequality

0 < |mκ− n+ µ| < AB−k

for positive integers m, n and k with

log (AQ/ξ)

logB
≤ k and m ≤M.

3. The proof of Theorem 1

3.1. First bound on min{k, `}, and then on k and `

The case k = 2 or ` = 2 has been treated in Lemma 4. From now on, by
Lemma 3, we assume that k ≥ 6 and ` ≥ 6. And we need to show that there is
no such solution. Equation (1) is equivalent to

2k3` = 5m + 2k + 3` − 2, (3)

and then to
2k3`

5m
− 1 =

2k + 3` − 2

5m
. (4)

Clearly,

0 <
2k + 3` − 2

5m
<

2 max{2k, 3`}
5m

<
4

2min{k,`} . (5)

The last inequality can be seen if one extends the middle fraction by min{2k, 3`},
and then by (3) and Lemma 1 we have

2 max{2k, 3`}min{2k, 3`}
5m min{2k, 3`}

<
2(5m + 2k + 3`)

5m min{2k, 3`}
<

2(5m + 2 max{2k, 3`})
5m min{2k, 3`}

<
4 · 5m

5m min{2k, 3`}
.

Thus (5) follows.
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Put x = max{k, `,m}. Now apply Theorem 2 to the left hand side of (4)
(which is positive) with η1 = 2, η2 = 3, η3 = 5, and with A1 = log 2, A2 = log 3,
A3 = log 5. Thus,

log

(
2k3`

5m
− 1

)
> −1.4 · 306 · 34.5(1 + log x) · log 2 · log 3 · log 5.

Then we obtain
2k3`

5m
− 1 > exp(−0.18 · 1012(1 + log x)).

Combining this with (4) and (5), we obtain

min{k, `} < c1(1 + log x),

where c1 := 0.26 · 1012.

Now let us distinguish two cases. First suppose k ≤ `, and consider the left
hand side of

(2k − 1)3`

5m
− 1 <

2k

5m
<

2

3`
. (6)

Matveev’s theorem with the parameters

η1 = 2k − 1, η2 = 3, η3 = 5; b1 = 1, h(η1) < k log 2 < log 2 · 0.26 · 1012(1 + log x),

and A1 = 0.19 · 1012(1 + log x)), A2 = log 3, A3 = log 5 implies

log

(
(2k − 1)3`

5m
− 1

)
> −0.49 · 1023(1 + log x)2. (7)

Now Lemma 2 provides

x = max{`,m} < max{`, 0.44k + 0.69`} < 1.13`.

Combining it with (6) and (7), we see

` log 3− log 2 < 0.49 · 1023(1 + log(1.13`))2.

Thus, ` < 2 · 1026.
Assume now that ` ≤ k. In a way similar to the previous arguments, from

the inequality
(3` − 1)2k

5m
− 1 <

3`

5m
<

2

2k
, (8)

applying Theorem 2, we obtain

log

(
(3` − 1)2k

5m
− 1

)
> −0.47 · 1023(1 + log x)2.
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Finally,

k log 2− log 2 < 0.47 · 1023(1 + log(1.13k))2

holds, which yields k < 3 · 1026.
Now we record the results we have proved so far.

Proposition 1. If (1) holds, then k, ` < 3 · 1026. Furthermore, min{k, `} <
c1(1 + log x). We recall that c1 = 0.26 · 1012, and x = max{k, `,m}.

3.2. Reduction of the bounds and final computations

In this section, we reduce the bounds of Proposition 1. In order to apply the
LLL algorithm for

Γ := k log 2 + ` log 3−m log 5,

first we note that

0 <
2k3`

5m
− 1 <

4

2min{k,`} <
1

2

holds if min{k, `} ≥ 3. Thus, 0 < Γ < 1/2. Hence,

Γ <
8

2min{k,`} .

For the computational aspects of the application of LLL algorithm we refer to
the book of H. Cohen [2], pp. 58-63, and the LLL(lvect, integer) command
of the package IntegerRelation in Maple. We implemented the computations in
Maple by following Cohen’s approach. Recall the upper bound of Proposition
1 for k and `. Furthermore, m < 1.13 · 3 · 1026 < 3.5 · 1026. We specified
X1 = X2 = X3 = 3.5 · 1026 (see [2] and the notation therein), and then C = 1086

was fixed. Thus Q = 2.45 · 1053, T = 5.25 · 1026. Here we introduce bwe for
denoting the nearest integer of w ∈ R. The LLL algorithm uses the initial matrix

B =

 1 0 0
0 1 0

bC log 2e bC log 3e bC log 5e

 ,
and returns with BL = [bij ] ∈ Z3×3, where

b11 = 11337753750863538940889440067,

b12 = 23304226705236031851581334341,

b13 = −62676558316087526307960333326;

b21 = −33043600810744979419960450935,



On the equation (2k − 1)(3` − 1) = 5m − 1 9

b22 = −17183715218876198554967457652,

b23 = −31135562271014236326168683314;

b31 = −8792762957217886611780885324,

b32 = 53334844514835108019108344793,

b33 = 27478865365839878852029447475.

The approximate number of the entries of BL is 1028. Then, by the Gram-Schmidt
orthogonalization, we obtain |Γ| > 3.5 · 10−58. This bound provides

min{k, `} ≤ 193.

At this point we go back to (6) (and then to (8)), and use the upper bound
h(η1) < 193 log 2 (and then 193 log 3) instead of log 2 · c1(1 + log x) (and then
instead of log 3 ·c1(1+log x)). In summary, the application of Matveev’s theorem
provides the improvement of Proposition 1 as follows.

Proposition 2. If (1) holds, then k, ` < 2 · 1015.

Using this new bound, LLL algorithm (which we do not detail here) can
reduce the upper bound for min{k, `}. More precisely, we have the following

Proposition 3. If (2k − 1)(3` − 1) = 5m − 1 holds, then min{k, `} ≤ 113.

Suppose again that k ≤ `, and recall (6). Assuming m > 113, we get 5m/2 >
5k/2 > 2k. Thus,

0 < Γ1 :=
(2k − 1)3`

5m
− 1 <

2k

5m
<

1

5m/2
<

1

2
.

Hence,

ε1 := ` log 3−m log 5 + log(2k − 1) <
2

5m/2
.

Now we apply Theorem 3 to the inequality∣∣∣∣` log 3

log 5
−m+

log(2k − 1)

log 5

∣∣∣∣ < 2

5m/2 log 5
<

2

5m/2

with the notation A = 2, B = 5, κ = (log 3)/(log 5), µ = (log(2k − 1))/(log 5).
The possible values for k are 6, 10, . . . , 110. Moreover, by Lemma 2,

m < 0.44k + 0.69` < 1.13 · 2 · 1015 < 2.5 · 1015 =: M.

For each fixed value of k (≤ 110) we found m ≤ 131. Then the left hand side of
Lemma 2 yields ` ≤ 302.
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A similar machinery works for ` ≤ k with

0 < Γ2 :=
(3` − 1)2k

5m
− 1 <

3`

5m
<

1

5m/4

if ` = 6, 10, . . . , 110. Now we obtain m ≤ 256, and then k ≤ 591.

Comparing the two branches, we conclude the following result.

Theorem 4. If (2k − 1)(3` − 1) = 5m − 1 holds and k ≥ 6, ` ≥ 6, then k ≤ 591,
` ≤ 302, and m ≤ 256.

These bounds are relatively small, so the remaining cases can be verified by
computer. No new solution is found. Thus the proof is complete. J
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