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On the Asymptotics of Solutions of Some Classes
of Linear Differential Equations
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Abstract. Asymptotic behavior of solutions of ordinary differential equations in the
case where the right part is a product of two differential expressions with almost constant
coefficients is investigated.
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1. Introduction

The goal of this paper is to obtain asymptotic formulas as x → +∞ for the
fundamental system of solutions of the following differential equation:

l2(l1(y)) = λy, x ∈ R+ := [0, +∞), (1)

where λ is a complex parameter,

l1(y) := y(n) + (a1 + p1(x))y(n−1) + (a2 + p′2(x))y(n−2) + . . .+ (an + p′n(x))y, (2)

l2(y) := y(m) + (b1 + q1(x))y(m−1) + (b2 + q′2(x))y(m−2) + . . .+ (bm+ q′m(x))y, (3)

and all derivatives are understood in the sense of distributions.
Throughout this paper it is assumed that a1, a2, . . . , an, b1, b2, . . . , bm are com-

plex numbers, p1, p2, . . . , pn, q1, q2, . . . , qm are complex-valued measurable func-
tions on R+ such that

|p1|+ (1 + |p2 − p1|)
n∑
j=2

|pj | ∈ L1
loc(R+)
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and

|q1|+ (1 + |q2 − q1|)
m∑
j=2

|qj | ∈ L1
loc(R+).

More precise conditions on the functions pi (i = 1, 2, . . . , n) and qj (j = 1, 2, . . . ,m)
will be given in the formulations of theorems below.

The novelty of the obtained theorems in comparison with the well-known
classical results is that we assume that derivatives are understood in the sense
of distributions. In addition, the results are new for the functions pi and qj ,
differentiable a sufficient number of times.

2. The product of quasidifferential expressions

Let a1, a2, . . . , an be complex numbers and let p1, p2, . . . , pn be measurable
complex-valued functions on R+ such that

|p1|+ (1 + |p2 − p1|)
n∑
j=2

|pj | ∈ L1
loc(R+), (4)

where, as usual, L1
loc(R+) is the space of functions Lebesgue integrable on any

segment [α, β] ⊂ R+.

Let F := (fij) be an n-dimensional square matrix of the form

F :=


0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . .
0 0 0 . . . 1 0

fn−1,1 fn−1,2 fn−1,3 . . . fn−1,n−1 1
fn1 fn2 fn3 . . . fn−1,n fnn

.

The elements of the first (n − 2) rows of the matrix F are determined by the
equalities fij := 0, if j 6= i+ 1 and fi,i+1 := 1. Define the elements fn−1,j of the
penultimate row of this matrix, assuming

fn−1,j := −pn+1−j , j = 1, 2, ...n− 1, fn−1,n := 1,

and the elements fnj of the last row, assuming

fn1 := −(p2 − p1 − a1)pn − an, fnn := p2 − p1 − a1,

fnj := pn+2−j − (p2 − p1 − a1)pn+1−j − an+1−j , j = 2, 3, ...n− 1.
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Following the generally accepted procedure (see, for example, [1, section I,

p.8]), we define quasiderivatives y
[j]
F (j = 0, 1, ...n) of a given function y by means

of the matrix F , assuming

y
[j]
F := y(j), j = 0, 1, . . . , n− 2, y

[n−1]
F := y(n−1) +

n−1∑
j=1

pn+1−jy
(j−1),

y
[n]
F := (y

[n−1]
F )′ −

n∑
j=1

fnjy
[j−1]
F ,

and the quasidifferential expression τF (y), assuming

τF (y) := y
[n]
F .

The domain D(τF ) of expression τF (y) is the set of all complex-valued func-
tions y for which the quasiderivatives up to the order (n − 1) exist and are
absolutely continuous on every segment [α, β] ⊂ R+. It is obvious that τF (y) ∈
L1
loc(R+) for any y ∈ D(τF ).

In [2] it was shown that for all y ∈ D(τF ) distribution l1(y) (see (2)) is a
regular generalized function and

l1(y) = τF (y). (5)

Further, let b1, b2, . . . , bm be complex numbers, and q1, q2, . . . , qm be complex-
valued measurable functions on R+ such that

|q1|+ (1 + |q2 − q1|)
m∑
j=2

|qj | ∈ L1
loc(R+). (6)

Denote by G an m-dimensional square matrix of the same structure as the
matrix F but determined by the numbers bj and functions qj . The matrix G

generates quasiderivatives y
[j]
G (j = 0, 1, . . . ,m) and quasidifferential expression

τG(y). As before, for all y ∈ D(τG) distribution l2(y) (see (3)) is a regular
generalized function and

l2(y) = τG(y). (7)

Following [3] and [4], we define now the product of expressions τF (y) and
τG(y). Let H be an (n+m)-dimensional square matrix of the form

H :=

(
F M

Om×n G

)
,
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where M is a matrix of dimension n×m, all elements of which are equal to zero,
except for the element in the lower left corner, equal to 1, and Om×n is a zero

matrix of dimension m× n. Using the matrix H, we define quasi-derivatives y
[j]
H

(j = 0, 1, ...n+m) of a given function y, assuming

y
[j]
H := y

[j]
F , j = 0, 1, . . . , n,

y
[n+j]
H := (y

[n]
F )

[j]
G , j = 1, 2, . . . ,m,

and quasidifferential expression, assuming

τH(y) := (y
[n]
F )

[m]
G .

It is well known that the domain D(τH) of the expression τH is given by

D(τH) = {y|y ∈ D(τF ) and τF y ∈ D(τG)},

and, besides

τH(y) = τG(τF (y))(:= τGτF (y)) for y ∈ D(τH)(= D(τGτF )).

Now we consider the quasidifferential equation

τG(τF (y)) = λy, (8)

where λ is a complex parameter. We use the symbol y to denote the column vector

y := (y
[0]
H , y

[1]
H , . . . , y

[n+m−1]
H )T (T is the transposition symbol), and consider the

system of first order linear differential equations

y′ = (H + Λ)y, (9)

where Λ := (λij) is a square matrix of dimension (n + m), whose elements are
determined by the equalities λn+m,1 := λ and λij := 0 for all other values of i
and j.

The conditions (4) and (6) imply that all elements of the matrix H are locally
integrable on R+ functions. Therefore, the conditions (4) and (6) ensure the
validity of the existence and uniqueness theorem for the solution of the Cauchy
problem for system (9) stated at an arbitrary point of the semi-axis R+. On the
other hand, the equation (8) is equivalent to the system (9) in the sense that
if all quasiderivatives of y up to the order (n + m − 1) are locally absolutely
continuous on R+ and y satisfies the equation (8) almost everywhere, then y
is a solution of the system (9), and vice versa, if y is a solution of the system
(9), then its coordinates are locally absolutely continuous on R+ and the first
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coordinate y(= y
[0]
H ) satisfies the equation (8) almost everywhere on R+. Thus,

the conditions (4) and (6) imply the validity of the existence and uniqueness
theorem for the solution of the Cauchy problem for the equation (8) stated at an
arbitrary point of the semi-axis R+.

Formulas (5) and (7) allow treating the differential equation (1) with distri-
bution coefficients as a quasidifferential equation (8), and this, in turn, allows
asserting that the conditions (4) and (6) imply also the validity of the existence
and uniqueness theorem for the solution of the Cauchy problem for the equation
(1) stated at an arbitrary point of the semi-axis R+.

3. Main results

We now formulate our main results. The symbol o(1), as usual, will denote a
function infinitely small as x→ +∞.

Theorem 1. Suppose that, the number λ in the equation (1), is different from
the product anbm (λ 6= anbm), and the functions p1, p2, . . . , pn and q1, q2, . . . , qm
satisfy the conditions

xα−1
(
|p1|+ (1 + |p2 − p1|)

n∑
j=2

|pj |
)
∈ L1(R+)

and

xα−1
(
|q1|+ (1 + |q2 − q1|)

m∑
j=2

|qj |
)
∈ L1(R+),

where α is the largest multiplicity of a root of the polynomial

F(z) = (zn + a1z
n−1 + . . .+ an)(zm + b1z

m−1 + . . .+ bm)− λ.

Then the equation (1) has a fundamental system of solutions y1, y2, . . . , yn+m,
such that if z1 is a root of the polynomial F(z) of multiplicity l1 6 α, then the
equation (1) has a subsystem {yj} (j = 1, 2, . . . , l1) of fundamental solutions such
that

y
[s−1]
j (x) = ez1xxj−1(zs−11 + o(1)), s = 1, 2, . . . , n, (10)

y
[n+s−1]
j (x) = ez1xxj−1(zn+s−11 + a1z

n+s−2
1 + . . .+ anz

s−1
1 + o(1)), (11)

s = 1, 2, . . . ,m,

as x→ +∞.
Another subsystem of fundamental solutions {yj} (j = l1 + 1, . . . l1 + l2) cor-

responding to the root z2 of the polynomial F(z) of multiplicity l2 has the same
asymptotics, and so on.
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Proof. The quasidifferential equation (8) (and so the differential equation (1))
is equivalent to the system of equations (9). We write this system in the form

y′ = (A+R(x))y. (12)

Here, as before, y is the column vector y = (y
[0]
H , y

[1]
H , . . . , y

[n+m−1]
H )T , the nonzero

elements aij of (n + m)-dimensional square matrix A are determined by the
equalities

aj,j+1 = 1, j = 1, 2, ...., n+m− 1, anj = −an+1−j , j = 1, 2, ..., n,

an+m,1 = λ, an+m,n+j = −bm+1−j , j = 1, 2, ...,m,

and the nonzero elements rij of the matrix function R(x) are defined by the
equalities

rn−1,j = −pn+1−j , j = 1, 2, ...n− 1, rn1 = −(p2 − p1 − a1)pn,

rnj = pn+2−j − (p2 − p1 − a1)pn+1−j , j = 2, 3, ..., n− 1, rnn = p2 − p1,

rn+m−1,n+j = −qm+1−j , j = 1, 2, ...m− 1, rn+m,n+1 = −(q2 − q1 − b1)pm,

rn+m,n+j = qm+2−j−(q2−q1−b1)qm+1−j , j = 2, 3, ...,m−1, rn+m,n+m = q2−q1.

Note that the characteristic polynomial of the matrix A coincides with the
polynomial (−1)n+mF(z). Let z1 be the root of the equation F(z) = 0 of multi-
plicity l1, i.e. the eigenvalue of the matrix A of algebraic multiplicity l1. The
structure of the matrix A is such that ai,i+1 = 1, if 1 ≤ i ≤ n + m − 1, and
aij = 0, if 2 ≤ i + 1 < j ≤ n + m. Therefore, any eigenvector c of the matrix A
corresponding to the eigenvalue z1 has the form

c = (1, z1, z
2
1 , . . . , z

n−1
1 , Q(z1), z1Q(z1), . . . , z

m−1
1 Q(z1))

T ,

where Q(z) = zn + a1z
n−1 + . . .+ an.

Thus, only one eigenvector corresponds to the eigenvalue z1 of the matrix A,
i.e. the geometric multiplicity of z1 is equal to 1. In other words, each eigenvalue
of the matrix A is associated with only one Jordan block in its canonical form.
Therefore, the dimension of the Jordan block in the canonical form of the matrix
A of greatest dimension coincides with the multiplicity of the eigenvalue of the
matrix A of greatest multiplicity, i.e. with the number α from the condition of
Theorem 1. Thus, in this situation the system of equations y′ = Ay has solutions
that can be represented as

ez1xc and ez1xxjc +O(ez1xxj−1), j = 1, 2, . . . , l1 − 1.
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In addition, it follows from the conditions of Theorem 1 that all elements of the
matrix xα−1R(x) belong to the space L1(R+). Applying the statement of problem
35 from [5, Ch. III, p. 120] (see also [6, Chapter IV, Remark to Theorem 4,
p. 95]), we see that the system of equations (12) has a subsystem of solutions of
{yj}, j = 1, 2, . . . l1, representable in the form

yj = ez1xxj−1(c + o(1)), j = 1, 2, . . . , l1, as x→ +∞.

A further look into the relationship between the solutions of the equation
(1) and the solutions of the system (12), shows that the equation (1) has a
subsystem of solutions {yj}, j = 1, 2, . . . l1, representable in the forms (10) and
(11) as x→ +∞.

Repeating these arguments for an eigenvalue z2 of multiplicity l2, we find
that the equation (1) has a subsystem of solutions {yj}, j = l1 + 1, . . . l1 + l2,
with an asymptotic form (10) and (11) (with z1 replaced by z2), and so on.
From the above reasoning it also follows that, having considered all the roots of
the polynomial F(z), we obtain the asymptotics of some fundamental system of
solutions y1, y2, . . . , yn+m of the equation (1). The theorem is proved. J

Remark 1. The condition λ 6= anbm of Theorem 1 implies that the number
z = 0 is not the root of the polynomial F(z). This allows us to find not only the
main term of the asymptotics of the solutions of the equation (1), but also their
quasiderivatives up to the (n+m−1)th order. In particular, asymptotic formulas
for solutions of the equation (1) (formulas (10) with s = 1) can be differentiated
up to the order (n − 2). If λ = anbm and the number z = 0 is the root of the
polynomial F(z) of multiplicity l, then the method of the proof of Theorem 1 allow
us to state that the equation (1) has solutions of the form

yj = xj−1(1 + o(1)), j = 1, 2, . . . , l,

but for quasiderivatives of these solutions one can only say that

y
[s]
j (x) = xj−1o(1), s = 1, 2, . . . , n− 1, n+ 1, . . . ,m+ n− 1,

y
[n]
j (x) = xj−1(an + o(1)).

Using more subtle methods for first-order linear differential systems, one can
also study the situation when λ = anbm. In particular, the following theorem
holds.

Theorem 2. Suppose that, in the equation (1),

a1 = a2 = . . . = an = b1 = b2 = . . . = bm = λ = 0
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and the functions p1, p2, . . . , pn and q1, q2, . . . , qm satisfy the conditions

|p1|+ (1 + x|p2 − p1|)
n∑
j=2

xj−2|pj | ∈ L1(R+)

and

|q1|+ (1 + x|q2 − q1|)
m∑
j=2

xj−2|qj | ∈ L1(R+).

Then the equation (1) has a fundamental system of solutions {yj} (j = 1, 2, . . . , n+
m) such that

y
[s]
j (x) =


xj−1−s

(j − 1− s)!
(1 + o(1)), if s = 0, 1, . . . , j − 1,

xj−1−s o(1), if s = j, j + 1, . . . , n+m− 1.

(13)

as x→ +∞.

Proof. As we already noted in the proof of Theorem 1, the equation (8) (and
so (1)) is equivalent to the system (12). Moreover, it follows from the conditions
of Theorem 2 that the matrix A has a Jordan form containing one Jordan block
with zero eigenvalue of multiplicity (n + m). By the symbol D we denote a
diagonal matrix

D := diag(1, x, . . . , xn, . . . , xn+m−1).

The calculations show that the nonzero elements r̃ij of the matrix R̃ :=
DRD−1 are determined by the equalities

r̃n−1,j = −xn−j−1pn+1−j , j = 1, 2, . . . , n− 1,

r̃n,j = xn−j(pn+2−j + (p1 − p2)pn+1−j), j = 2, 3, . . . , n− 1,

r̃n,1 = xn−1(p1 − p2)pn, r̃n,n = p2 − p1,

r̃n+m−1,n+j = −xm−j−1qm+1−j , j = 1, 2, ...m− 1,

r̃n+m,n+j = xm−j(qm+2−j + (q1 − q2)qm+1−j), j = 2, 3, ...,m− 1,

r̃n+m,n+1 = xm−1(q1 − q2)pm, r̃n+m,n+m = q2 − q1.

From these formulas and from the conditions of Theorem 2 it follows that all
elements of the matrix R̃ belong to the space L1(R+). Thus, the coefficients of
the system (12) satisfy all the conditions of Theorem 1.10.1 from [7]. Applying
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the above theorem again, we see that the system (12) has solutions {yj}, j =
1, 2, ..., n+m, of the form

yj =
( xj−1

(j − 1)!
+o(xj−1),

xj−2

(j − 2)!
+o(xj−2), ..., 1+o(1), o(x−1), ..., o(x−n−m+j)

)T
.

A further look into the relationship between the solutions of the equation (1)
and the solutions of the system (12) shows that the equation (1) has a system of
solutions yj , j = 1, 2, . . . n+m, representable in the form (13) as x→ +∞. The
theorem is proved. J

It will be interesting to join the method of this paper with method of paper
[8] for investigation of more complicated equations.
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