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Existence and Uniqueness of Solutions for
Nonlinear Impulsive Differential Equations with
Three-Point and Integral Boundary Conditions

M.J. Mardanov, Y.A. Sharifov∗, R.A. Sardarova, H.N. Aliyev

Abstract. The aim of this paper is to investigate the solution of the system of nonlin-
ear impulsive differential equations with three-point and integral boundary conditions.
The Green function is constructed and the original problem is reduced to the equivalent
integral equations. Sufficient conditions are found for the existence and uniqueness of
solutions to the boundary value problems for the system of first order nonlinear impul-
sive ordinary differential equations with three-point and integral boundary conditions.
Banach’s fixed point theorem is used to prove the uniqueness and Schaefer’s fixed point
theorem is used to prove the existence of a solution of the considered problem.
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1. Introduction

In recent years, impulsive differential equations have become an active area
of research due to their applications in various fields of science and engineering.
These equations are widely used in modeling impulsive problems in physics, biol-
ogy, medicine, population dynamics, biotechnology, industrial robotics, scenarios
involving automatic control systems, etc. (see [9,11,16,17,21,25,31,39,40] and the
references therein). Some physical systems characterized by sharp changes in the
state of the system are usually described by the impulsive differential equations.
These changes occur at the fixed or non-fixed points in time over a short period
of time. Many authors have studied various aspects of boundary value problems
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with nonlocal boundary conditions for the nonlinear differential equations in sev-
eral branches of physics and applied mathematics, we refer the readers to [4-8,
10-15, 18, 20, 22-24, 26-30, 32-38, 41-46].

In some cases, the mathematical models of natural processes involve condi-
tions in the form of integrals. It may be explained by the fact that in such cases
it becomes impossible to measure the main parameters of the system, while the
average value is known. Differential equations with integral boundary conditions
have applications in numerous fields such as modeling and analyzing of many
physical systems including blood flow problems, chemical engineering, thermoe-
lasticity, underground water flow, population dynamics, etc. For more details of
integral boundary conditions, see [1-3, 6-8, 10, 12-14, 18-20, 24, 26, 35, 38] and
references therein.

In this paper we firstly consider first order impulsive differential equation
with three point and integral boundary conditions. The problem we treat is
a generalization of the known works on the considered topic. The existence
and uniqueness of the solution of this problem is proved using the fixed point
technique.

2. Problem statement

This paper deals with the existence and uniqueness of the system of nonlinear
impulsive differential equations of the type

ẋ(t) = f(t, x(t)) for t 6= ti, i = 1, 2, ..., p, t ∈ [0, T ], (1)

subject to impulsive conditions

x(t+i )− x(ti) = Ii(x(ti)), i = 1, 2, ..., p, t ∈ [0, T ], (2)

0 = t0 < t1 < ... < tp1 < τ < tp1+1 < ... < tp = tp+1 = T,

and three-point and integral boundary conditions

Ax(0) +Bx(τ) + Cx(T ) +

∫ T

0
n (t)x(t)dt = d, (3)

where A,B,C are constant square matrices of order n such that detN 6= 0, N =
(A+B+C+

∫ T
0 n (t) dt); f : [0, T ]×Rn → Rn, n : [0, T ]→ Rn×n and Ii : Rn → Rn

are given functions; ∆x(ti) = x(t+i )−x(t−i ), where x(t+i ) = lim
h→0+

x(ti+h), x(t−i ) =

lim
h→0+

x(ti − h) = x(ti) are the right- and left-hand limits of x(t) at point t = ti,

respectively.
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Note that this work is a natural continuation of the works [35,36,47,48].
The present paper is organized as follows. Section 3 describes the necessary

background. Section 4 introduces theorems related to existence and uniqueness
of a solution of problem (1), (2) and (3) that are proved under some sufficient
conditions on nonlinear terms.

3. Preliminaries

In this section, we recall notations, preliminary facts and basic definitions
which are used throughout this paper. We denote by C([0, T ];Rn) the Banach
space of all continuous vector functions x(t) from [0, T ] into Rn with the norm

‖x‖ = max {|x(t)| : t ∈ [0, T ]} ,

where |·| is the norm in the space Rn.
We consider the linear space
PC([0, T ], Rn) = {x : [0, T ]→ Rn : x(t) ∈ C ((ti, ti+1], R

n) , i = 0, 1, ..., p,x(t−i ),
x(t+i ) exist, i = 1, ..., p and x(t−i ) = x(ti)

}
.

It is also clear that PC([0, T ], Rn) is a Banach space with the norm

‖x‖PC = max
{
‖x‖(ti,ti+1]

, i = 0, 1, ..., p
}
.

Now let’s give the definition of solution of the problem (1)-(3).

Definition 1. A function x ∈ PC([0, T ], Rn) is said to be a solution of the
problem (1)-(3) if ẋ(t) = f(t, x(t)) for each t 6= ti, i = 1, 2, ..., p, t ∈ [0, T ]; x(t+i )−
x(ti) = Ii(x(ti)) for each i = 1, 2, ..., p, t ∈ [0, T ], 0 = t0 < t1 < ... < tp1 < τ <
tp1+1 < ... < tp < tp+1 = T, and boundary conditions (3) are satisfied.

We need the following lemmas.

Lemma 1. Let y ∈ C([0, T ], Rn) and Ii(x(ti)) ∈ Rn, i = 1, 2, ..., p. Then the
unique solution x(t) ∈ PC([0, T ], Rn) of the boundary value problem for impulsive
differential equation

ẋ(t) = y(t), t ∈ [0, T ], t 6= ti, i = 1, 2, ..., p, (4)

x(t+i )− x(ti) = Ii, i = 1, 2, ..., p,

0 < t1 < ... < tp1 < τ < tp1+1 < ... < tp = T, (5)

Ax(0) +Bx(τ) + Cx(T ) +

∫ T

0
n (t)x(t)dt = d, (6)
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is given by

x(t) = D +

∫ T

0
G(t, s)y(s)ds+

∑
0<tk<T

G(ti, tk)ak

for t ∈ (ti, ti+1], i = 0, 1, ..., p, D = N−1d, where

G(t, τ) =

{
G1(t, s), 0 < s < τ
G2(t, s), τ < s ≤ T

with

G1(t, s) =


N−1

(
A+

∫ s
0 n(ξ)dξ

)
, 0 ≤ s ≤ t,

−N−1
(
B + C +

∫ T
s n(ξ)dξ

)
, t < s ≤ τ,

−N−1
(
C +

∫ T
s n(ξ)dξ

)
, τ < s ≤ T,

and

G2(t, s) =


N−1

(
A+

∫ s
0 n(ξ)dξ

)
, 0 ≤ s ≤ τ,

N−1
(
A+B +

∫ s
0 n(ξ)dξ

)
, τ < s ≤ t,

−N−1
(
C +

∫ T
s n(ξ)dξ

)
, t < s ≤ T.

Proof. Assume that x(t) is a solution of boundary value problem (1)-(3).
Then integrating equation (1) for t ∈ (0, tj+1) we obtain∫ t

0
y(s)ds =

∫ t

0
x′(s)ds =

[
x(t1)− x(0+)

]
+
[
x(t2)− x(t+1 )

]
+ ...+

[
x(t)− x(t+j )

]
= −x(0)−

[
x(t+1 )− x(t1)

]
−
[
x(t+2 − x(t2)

]
− ...−

[
x(t+j )− x(tj)

]
+ x(t).

Using above formula and condition (5), we can write

x(t) = x(0) +

∫ t

0
y(s)ds+

∑
0<τj<t

aj . (7)

Since the solution defined by (7) satisfies condition (6) we get

Nx(0) = d−B
∫ τ

0
y (s) ds−B

∑
0<τj<τ

aj − C
∫ T

0
y(s)ds−

−C
∑

0<τj<T

aj −
∫ T

0
n (t)

∫ t

0
y (s) dsdt−

∫ T

0
n (t)

∑
0<tj<t

ajdt. (8)
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Since detN 6= 0, from (8) we obtain

x(0) = D −N−1B
∫ τ

0
y (s) ds−N−1

∫ T

0
n (t)

∫ t

0
y (s) dsdt−

−N−1
∫ T

0
n (t)

∑
0<tj<t

ajdt−N−1B
∑

0<τj<τ

aj−

−N−1C
∫ T

0
y(s)ds−N−1C

∑
0<τj<T

aj . (9)

Since the equalities∫ T

0
n (t)

∫ t

0
y (s) dsdt =

∫ T

0

∫ T

t
n (s) dsy (t) dt,

∫ T

0
n (t)

∑
0<ti<t

aidt =
∑

0<ti<T

∫ T

ti

n (t) dtai,

are satisfied, from (9) we get

x(0) = D −N−1B
∫ τ

0
y (s) ds−N−1

∫ T

0

∫ T

t
n (s) dsy (t) dt−

−N−1
∑

0<ti<T

∫ T

ti

n (t) dtai −N−1B
∑

0<τj<τ

aj−

−N−1C
∫ T

0
y(s)ds−N−1C

∑
0<τj<T

aj . (10)

Now taking into account the value x(0) determined from equality (10) in (7), we
get

x(t) = D −N−1B
∫ τ

0
y (s) ds−N−1

∫ T

0

∫ T

t
n (s) dsy (t) dt−

N−1
∑

0<ti<T

∫ T

ti

n (t) dtai −N−1B
∑

0<τj<τ

aj −N−1C
∫ T

0
y(s)ds−

−N−1C
∑

0<τj<T

aj +

∫ t

0
y(s)ds+

∑
0<τj<t

aj . (11)
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Now consider t ∈ [tj , tj+1], tj+1 < τ . Then we can rewrite equality (11) as
follows:

x(t) = D −N−1B
∫ t

0
y(s)ds−N−1B

∫ τ

t
y(s)ds−N−1B

∑
0<τj<t

aj−

−N−1B
∑

t<τj<τ

aj − x(t) = D −N−1B
∫ t

0
y(s)ds−N−1B

∫ τ

t
y(s)ds−

−N−1B
∑

0<τj<t

aj −N−1B
∑

t<τj<τ

aj −N−1C
∫ t

0
y(s)ds−N−1C

∫ τ

t
y(s)ds

−N−1C
∫ T

τ
y(s)ds−N−1C

∑
0<τj<t

aj −N−1C
∑

t<τj<τ

aj−

−N−1
∫ t

0

∫ T

s
n (α) dαy (s) ds−N−1

∫ τ

t

∫ T

s
n (α) dαy (s) ds−

−N−1
∫ T

τ

∫ T

s
n (α) dαy (s) ds−

−
∑

τ<tj<T

aj −N−1
∑

0<tj<t

∫ T

tj

n (t) dtaj −N−1
∑

t<tj<τ

∫ T

tj

n (t) dtaj−

−N−1
∑

τ<tj<T

∫ T

tj

n (t) dtaj +

∫ t

0
y(s)ds+

∑
0<τj<t

aj .

Grouping like terms, and then simplifying we get

x(t) = D +N−1
∫ t

0

(
A+

∫ s

0
n (α) dα

)
y(s)ds−

−N−1
∫ τ

t
(B+C+

∫ T

s
n (α) dα)y(s)ds−−N−1

∫ T

τ

(
C +

∫ T

s
n (α) dα

)
y(s)ds+

+
∑

0<τj<t

(
N−1A+

∫ tj

0
n (α) dα

)
aj −

∑
t<τj<τ

N−1(B + C+

+

∫ T

tj

n (α) dα)aj −
(
N−1C +

∫ T

s
n (α) dα

) ∑
τ<τj<T

aj . (12)
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Let us introduce the following function:

G1(t, s) =


N−1

(
A+

∫ s
0 n(ξ)dξ

)
, 0 ≤ s ≤ t,

−N−1
(
B + C +

∫ T
s n(ξ)dξ

)
, t < s ≤ τ,

−N−1
(
C +

∫ T
s n(ξ)dξ

)
, τ < s ≤ T,

Using above equality as in (12), we obtain

x(t) = D +

∫ T

0
G1(t, s)y(τ)dτ +

∑
0<tk<T

G1(tj , tk)ak.

For the case t ∈ (tj , tj+1], tj > τ we can rewrite equality (11) as follows:

x(t) = D −N−1B
∫ τ

0
y(s)ds−N−1B

∑
0<tj<τ

aj−

−N−1C
∫ τ

0
y(s)ds−N−1C

∫ t

τ
y(s)ds−

−N−1C
∫ T

t
y(s)ds−N−1C

∑
0<tj<τ

aj −N−1C
∑

τ<tj<t

aj −N−1C
∑

t<tj<T

aj+

+

∫ τ

0
y(s)ds+

∫ t

τ
y(s)ds+

∑
0<tj<τ

aj +
∑

τ<τj<t

aj−

−N−1
∫ τ

0

∫ T

s
n (α) dαy (s) ds−N−1

∫ t

τ

∫ T

s
n (α) dαy (s) ds−

−N−1
∫ T

t

∫ T

s
n (α) dαy (s) ds−N−1

∑
0<tj<t

∫ T

tj

n (t) dtaj−

−N−1
∑

t<tj<τ

∫ T

tj

n (t) dtaj −N−1
∑

τ<tj<T

∫ T

tj

n (t) dtaj =

= D+N−1
∫ τ

0

(
A+

∫ s

0
n (α) dα

)
y(s)ds+N−1

∫ t

τ
(A+B+

∫ s

0
n (α) dα)y(s)ds−

−N−1
∫ T

t

(
C +

∫ T

s
n (α) dα

)
y(s)ds+N−1

∑
0<tj<τ

(
A+

∫ tj

0
n (α) dα

)
aj+

+N−1
∑

τ<tj<t

(A+B +

∫ tj

0
n (α) dα)aj −N−1

∑
t<tj<T

(
C +

∫ T

tj

n (α) dα

)
aj .
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Let’s introduce the following function:

G2(t, s) =


N−1

(
A+

∫ s
0 n(ξ)dξ

)
, 0 ≤ s ≤ τ,

N−1
(
A+B +

∫ s
0 n(ξ)dξ

)
, τ < s ≤ t,

−N−1
(
C +

∫ T
s n(ξ)dξ

)
, t < s ≤ T.

Hence, for each t ∈ (tj , tj+1], we have

x(t) = D +

∫ T

0
G2(t, τ)y(τ)dτ +

∑
0<τk<T

G2(tj , tk)ak.

Finally, we derive the formula for the solution of boundary-value problem (1)-(3)

x(t) = D +

∫ T

0
G(t, s)y(s)ds+

∑
0<tk<T

G(tj , tk)ak. (13)

The lemma is proved. J

Remark 1. Note that for the solution (13) we have

1. x (t) = D is the solution of ẋ(t) = 0 with nonlocal boundary condition

Ax(0) +Bx(t1) + Cx(T ) +
∫ T
0 n (t)x (t) dt = d;

2. The function x (t) =
∫ T
0 G(t, τ)y(τ)dτ is the solution of ẋ(t) = y(t) with

nonlocal boundary condition Ax(0)+Bx(t1)+Cx(T )+
∫ T
0 n (t)x (t) dt = 0.

Here G(t, τ) is Green’s function of problem (4)-(6);

3. The functions
∑

0<tk<T
G(ti, tk)aj , i = 1, 2, ..., p are solutions of ẋ(t) = 0

with nonlocal boundary condition Ax(0)+Bx(t1)+Cx(T )+
∫ T
0 n (t)x (t) dt

= 0 and condition (5).

Lemma 2. Assume that f ∈ C([0, T ]×Rn, Rn) and Ik(x) ∈ C(Rn), k = 1, 2, ..., p.
Then the function x(t) is a solution of impulsive boundary value problem (1)-(3)
if and only if x(t) is a solution of the impulsive integral equation

x(t) = D +

∫ T

0
G(t, s)f(s, x(s))ds+

p∑
k=1

G(ti, tk)Ik(x(tk))

for
t ∈ (ti, ti+1], i = 0, 1, ..., p. (14)

Proof. Let x(t) be a solution of boundary-value problem (1)-(3). In a similar
way as in Lemma 1 we can prove that x(t) is also a solution of impulsive integral
equation (14). It is obvious that, the solution of impulsive integral equation (14)
satisfies boundary-value problem (1)-(3). Lemma 2 is proved. J
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4. Main results

Here we deal with the uniqueness result for problem (1)-(3). Our strategy to
treat this problem is based on Banach’s fixed point theorem.

Theorem 1. Assume that:
(H1) There exists a constant M > 0 such that

|f(t, x)− f(t, y)| ≤M |x− y|

for any t ∈ [0, T ] and all x, y ∈ Rn.
(H2) There exist constants li > 0, i = 1, 2, ..., p such that

|Ii(x)− Ii(y)| ≤ li |x− y|

for all x, y ∈ Rn.
If

L = S(MT +

p∑
k=1

lk) < 1, (15)

then boundary value problem (1)-(3) has a unique solution on [0, T ]. Here

S = max
[0,T ]×[0,T ]

‖G(t, s)‖ .

Proof. Transform problem (1)-(3) into a fixed point problem. Let the operator

F : PC([0, T ], Rn)→ PC([0, T ], Rn)

be defined as

F (x)(t) = D +

∫ T

0
G(t, s)f(s, x(s))ds+

p∑
k=1

G(ti, tk)Ik (x(tk)) (16)

for t ∈ (ti, ti+1], i = 0, 1, ..., p.
We will show that F is a contraction. Consider x, y ∈ PC([0, T ], Rn). Then

for each t ∈ (ti, ti+1],

|F (x)(t)− F (y)(t)| ≤
∫ T

0
|G(t, s)| |f ((s, x(s))− f ((s, y(s))| ds+

+

p∑
k=1

|G(ti, tk| |Ik (x(tk))− Ik (y(tk))| ≤
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≤ SMT ‖x− y‖+ S

p∑
k=1

lk |x(tk)− y(tk)| ≤

≤

[
S

(
MT +

p∑
k=1

lk

)]
‖x− y‖PC .

Then

‖F (x)(t)− F (y)(t)‖PC ≤ L ‖x− y‖PC ,

hence F is contraction, and thus it has a unique fixed point. So, the operator F
is a solution of the problem (1)-(3).

Now the uniqueness result for the problem (1)-(3) follows from the Banach
fixed point principle.

Theorem 1 is proved. J

Next we state the existence result for problem (1)-(3) by using Schaefer’s fixed
point theorem.

Theorem 2. Assume that:

(H3) The function f : [0, T ]×Rn → Rn is continuous.

(H4) There exists a constant M1 > 0 such that |f(t, x)| ≤M1 for any t ∈ [0, T ]
and all x ∈ Rn.

(H5) The functions Ik(x), x ∈ Rn, k = 1, 2, ..., p are continuous and there
exists a constant M2 > 0 such that

max |Ik(x)|
k∈{1,...,p}

≤M2

for all x ∈ Rn.
Then the boundary value problem (1)-(3) has at least one solution on [0, T ].

Proof. We show that under the assumptions of the theorem, the operator F
has a fixed point. The proof is divided into several steps.

Step 1. Here we show that F is continuous.

Let {xn} be a sequence such that xn → x in PC([0, T ], Rn). Then for any

t ∈ (ti, ti+1], i = 0, 1, ..., p,

we have

|F (xn)(t)− F (x)(t)| ≤

≤
∫ T

0
|G(t, s)| |f(s, xn(s))− f (s, x(s))| ds+
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+

p∑
k=1

|G(ti, tk| |Ik (xn(tk))− Ik (x(tk))| ≤

≤ ST max
s∈[0,T ]

|f(s, xn(s))− f (s, x(s))|+

+S

p∑
k=1

|Ik (xn(tk))− Ik (x(tk))| .

Since f, and Ik, k = 1, 2, ..., p are continuous functions, we have

‖F (xn)(t)− F (x)(t)‖PC → 0

as n→∝. Thus, F is continuous.
Step 2. We prove that the operator F maps bounded sets in PC([0, T ], Rn).
To do so, it is enough to show that for any η > 0 there exists a positive constant
l such that for any {x ∈ Bτ = PC([0, T ], Rn) : ‖x‖ ≤ η} we have ‖F (x(·))‖ ≤ l.
By triangle inequality, assumptions (H4) and (H5) for t ∈ (ti, ti+1], we get

|F (x)(t)| ≤ |D|+
∫ T

0
|G(t, s)| |f (s, x(s))| ds+

p∑
k=1

|G(ti, τk)| |Ik(tk)|

for any t ∈ [0, T ].
Hence,

|F (x)(t)| ≤ |D|+ STM1 + SpM2.

So,
‖F (x)(t)‖PC ≤ |D|+ S[TM1 + pM2] = l.

Step 3. We show that the operator F maps bounded sets into equicontinuous
sets of PC([0, T ], Rn).

Let ξ1, ξ2 ∈ [0, T ], ξ1 < ζ2, Bη be a bounded set of PC([0, T ], Rn) as in Step
2, and assume that x ∈ Bη.
Case 1: ξ1, ξ2 ∈ [tj , tj+1], tj+1 < τ . Then

|F (x)(ξ2)− F (x)(ξ1)| =

=
∣∣∣N−1A ∫ ξ2ζ1 f (s, x(s)) ds+N−1(B + C)

∫ ξ2
ξ1
f (s, x(s)) ds

∣∣∣ ≤ ∫ ξ2ξ1 |f (s, x(s))| ds.
Case 2: ξ1 ∈ [tp, τ ], ξ2 ∈ [τ, tp1+1]. Then

|F (x)(ξ2)− F (x)(ξ1)| =
∣∣∣∣∫ ξ2

ξ1

f (s, x(s)) ds

∣∣∣∣ ≤ ∫ ξ2

ξ1

|f (s, x(s))| .

Case 3: ξ1, ξ2 ∈ [tj , tj+1] , tj > τ.
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Case 3 is proved similar to Case 1.
The right-hand side of the above inequalities for all three cases 1-3 tends to
zero as ξ1 → ξ2. As a consequence of Steps 1, 2 and 3 and the Arzela-Ascoli
theorem, we can conclude that the operator F : PC([0, T ], Rn)→ PC([0, T ], Rn)
is completely continuous.

Step 4. Now it remains to show that the set
∆ = {x ∈ PC([0, T ], Rn) : x = λF (x) for some 0 < λ < 1} is bounded. Assume
that x = λ(Fx) for some 0 < λ < 1. Then, for any t ∈ (ti, ti+1], i = 0, 1, ..., p we
have

x(t) = λ

[
D +

∫ T

0
G(t, s)f (s, x(s)) ds+

p∑
k=1

G(ti, τk)Ik (x(tk))

]
.

In view of assumptions (H4) and (H5), we get for any t ∈ [0, T ]

|F (x)(t)| ≤ |D|+ [M1T + pM2]S.

So, for every ∈ [0, T ], we obtain the following estimate:

‖x‖PC ≤ |D|+ [M1T + pM2]S = R,

which means that x is a solution of (1)-(3).
Theorem 2 is proved. J
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