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The A-integral and Restricted Complex Riesz
Transform
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Abstract. In this paper, we prove that the restricted complex Riesz transform of a
Lebesgue integrable function is A-integrable and we obtain an analogue of Riesz’s equal-

ity.
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1. Introduction

For every k € Z, k # 0, the complex Riesz transform of a function f € L,(C),
1 <p < o0, is defined as the following singular integral (see [7]):

z—-w)k
(1)) = 51t | s fw)dm{)

2milkl e=0 {weC': |z—w|>e} |Z -

whose multiplier is

my(r) = <|:|>k g

Of course, for k = 0 we set R? as the identity operator, (R°f)(z) = f(z). Note
that in the case k = 2 we get the Ahlfors—Beurling transform.
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Let Q be a bounded domain in the complex plane and f € L1(f2). In the
present paper we consider some modification of R*. Namely, the restricted com-
plex Riesz transform R’é is defined as

Id :

RE 2) = RF z) = lim
(REF)(2) = R (xaf)(2) /{

 onilkl e50

(z — w)

weQ: |z—w|>e} ’Z - w|k+2

(w)dm(w), z € .

The complex Riesz transform is one of the important operators in complex
analysis. It has been shown in [7, 16] that this transform plays an essential role in
applications to the theory of quasiconformal mappings and to the elliptic partial
differential equations with discontinuous coefficients.

It is known from the theory of singular integrals (see [14]) that the complex
Riesz transform is a bounded operator in the space L,(£2), 1 < p < oo, that is, if
f € Ly(Q), then RE(f) € L,(R2) and

IRGfNr, < Coll £l - (1)

In the case f € L; () only the weak inequality holds,

m{z € Q: |(RGS)(2)] > A} < %IIfIILp (2)

where m stands for the Lebesgue measure, C),, C; are constants independent of
f. From inequalities (1), (2) it follows that the complex Riesz transform of the
function f € L1(Q) satisfies the condition

mizeQ: [(REF)(2) >)\}:o(§),)\—>—l—oo. (3)

Indeed, if f € Li(Q2), then for every ¢ > 0 there exists n € N such that || f —

[f1"|zy < 167, where [f(2)]" = f(z) for [f(2)] < n and [f(2)]" = 0 for [f(2)| > n.
It follows from (2) that

n A 2C n 3
mi{z € Q: [RG(S (M@ > <71 = < 5 (4)
Since the function [f(z)]™ is bounded, [f]" € L,(€) for every p > 1; whence
RE([f]™) € Lp(Q) for every p > 1. Therefore RE([f]") € L1(£2). It follows that
for sufficiently large values of A > 0

Az 0 |(BEAME)] > 5)

<

/ (BELldm(z) < & )
(=€ [(RG[f1™)(2)1>3
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From (4) and (5) for sufficiently large values of A > 0 we obtain
m{z € Q: [(RGf)(2)] > A}

n A n A €
<m{zeQ: [Ro(f = [f1")(2)] > 5} +m{z € Q1 |(RY[)(2)] > 5} < 3
This means that the condition (3) holds.
Note that the complex Riesz transform of a function f € L;(€) is not
Lebesgue integrable. In the present paper, we prove that the complex Riesz
transform of a function f € L1(Q) is A-integrable on Q and we obtain an ana-

logue of Riesz’s equality.

2. A-integral

For a measurable complex function f(z) on domain 2 we set
[F(2)]n = [f(2)]" = f(2) for |[f(2)] <n

[f(2)ln = n-sgn f(2), [f(2)]" =0 for [f(2)| >n, n €N,

where sgnw = le for w # 0 and sgn0 = 0.
In 1928, Titchmarsh [15] introduced the notions of Q- and @’-integrals of
a function measurable on €.

Definition 1. If the finite limit lim Jolf (2)]ndm(z) (h_)m Jolf ()] dm(z), re-
spectively) exists, then f is said to be Q-integrable (Q'-integrable, respectively)

on Q; that is, f € Q(Q) (f € Q(R)). The value of this limit is referred to as
the Q-integral (Q'-integral) of this function and is denoted by (Q) [, f(z)dm(z)

(@) Jq f(2)dm(2)).

In the same paper, when studying properties of trigonometric series conjugate
to Fourier series of Lebesgue integrable functions, Titchmarsh established that
the Q-integrability leads to a series of natural results. A very uncomfortable
fact impeding the application of Q-integrals and (Q’-integrals when dealing with
diverse problems of function theory is the absence of the additivity property;
that is, the Q-integrability (Q’-integrability) of two functions does not imply the
Q-integrability (Q’-integrability) of their sum. If one adds the condition

m{zeq: \f(z)|>)\}:o(§),>\ﬂ+oo (6)
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to the definition of Q-integrability (Q’-integrability) of a function f, then the
Q-integral and @Q’-integral coincide (Q(Q) = Q'(€2)), and these integrals become
additive.

Definition 2. If f € Q'(Q) (or f € Q()) and condition (6) holds then f is
said to be A-integrable on Q, f € A(Q), and the limit hm fQ dm( ) (or

the limit hm fﬂ 2)|"dm(z)) is denoted in this case by ) Jo J(

The properties of Q- and Q’-integrals were investigated in [2, 9, 10, 15, 17];
for the applications of A-, Q- and Q'-integrals in the theory of functions of real
and complex variables we refer the reader to [1-6, 12, 13, 17, 18].

3. A-integrability and Riesz’s equality for the complex Riesz
transform of Lebesgue integrable functions

From the properties of singular integrals it follows that (see [14]) if f € L,(9),
p>1landge Ly(Q), g >1, %—i—%:l,then

/Q 9(2) (RE F)(2)dm(z)
(z —w)*
27”‘k‘ glj’% //{w,zeﬁilz—wba} mf( w)g(2)dm(w)dm(z)

" /Q F(2)(Rbg) (=)dm(2). (7)

In this section we prove that the complex Riesz transform of a function f €
L;(Q) is A-integrable on 2 and put forward an analogue of (7).

Theorem 1. Let f € L1(2) and g(z) be a bounded function on Q with bounded
(REg)(2) on Q. Then the function g(z) - (REf)(2) is A-integrable on Q and

(4) / 9(2) (RE ) (2)dm(z) = (—1)* / £(2)(Rbg) (2)dm(2). (8)
Q Q

Note that in the case k = 2 (that is, in the case of Ahlfors—Beurling transform)
theorem 3.1 was proved in [4].

Proof. Since the A-integral satisfies the additivity property, it can be assumed
that the function f is real, f(z) > 0 for any z € Q, and

max{|g(2)], [(Rag)(2)} < 1.
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For z ¢ Q we assume that f(z) =

Our proof will depend on a certain refinement of Besicovitch’s method [8] for
a direct proof of the existence of conjugate function (this method employs only
the machinery of the theory of sets of points). This method was improved by
Titchmarsh [15] and Ul’yanov [17] for the study of properties of the conjugate
function. It is worth noting that Besicovitch—Titchmarsh—Ul’yanov’s method is
applicable only to functions of one real variable (because this method relies on
some facts that are valid only in one-dimensional case). For example, it depends
on the fact that any open set is a union of at most a countable number of intervals
(to overcome this difficulty, we used Vitali’s covering lemma). To make this
method to work in the setting of functions of complex variable, we have slightly
improved the construction, which, for simplicity of presentation, is divided into
three steps.

Step 1. In this part we construct and study properties of the sets G, Ly,
L), T, and the functions ®,(z), ®}(z), which we shall use later.

Denote ®,(z) = f(z) — [f(2)]". Then oy, = [ Ppn(z)dm(z) — 0 as n — oo.
Take n € N such that a,, < 1. Let B, = {2 € Q: f(z )>n} For any z € E,, we
set

r, = sup r>0:/ @n(w)dm(w):lﬂr2~n
B(zir) 2

if {r >0: fB(Z;r) ®,, (w) dm (w) = 1772 - n} # 0, and define r, = 0 otherwise,
where B (z; r) is an open ball with center z and radius r. Note that if z € E,, is a
Lebesgue point of the function ®,, (z), then r, > 0 and, therefore, the set E,\ E},
has a zero measure, where E/, ={z € E,, : r, > 0}.

Consider the system of sets {B(z; 72)}.cp; . It follows from the Vitali’s cov-
ering lemma (see [11]) that there exists at most a countable set of points z; € EJ,,
J € I C N such that the balls B(zj; 72,), j € I are pairwise disjoint and

U B(z;r,) C U B(zj; 5r;).
2€E), jeI
Denote (see [6])

G = B(21§ 5Tz1)\ U B(Zj;rzj)’
7>1

Gp = B(zp; 5r2,)\ UGUUBZ]’T'ZJ p>2, pel

Jj>p
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Then the measurable sets G, p € I are pairwise disjoint, and moreover,

B(zp;12,) C Gp C B(zp; 572,),p € 1,

E/ C U B(z;r,) C U G, = U B(zp; 572,).

zeE! pel pel
Denote @7 ( fG dm(w) for z € Gy, p € I and ®;,(2) =0 for
z € C\Upes G Then for any p E I we have
/ By (2)dm(z) = / % (2)dm(z). ()
GP GP
Note that (see [4]), for any z € Gy, p € 1,
2
0<t(z) < 220
2
Setting L = Upes Gps L, = Uper B (2p; 1072, ), we have (see [6])
d0a 200«
L,) < " m(L) < iy 10
m(La) < 200 () < 20 (10)
Let T,, = Q\L},. We first prove the inequality
[ IRb@, — ®) ) dm() < di -, (1)

where dj, = 4000 - 31! - |k|. Denote h,(2) = RE(®,, — ®%)(2). For any z € T), we
have
I

z—w)k
e = 1| [ |(_w|2+2 @) — @} w)ldm()

S /G ‘Z_w‘m [@n(w) = @} (w)]dm(w)

pel

z —w) 7w
/G (’k)JrQCI)n(w)dm(w)— / (|,3+2c1>;;( Jam(w)|.  (12)

p]z—w Gp]z—

It follows from the integral mean value theorem that for any p € I there are
points wy,; € B(zp;572,)), i = 1,2,3,4, such that

z —w)k
/G |,§—w|k)+2‘1)n(w)dm(w)
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(Z_wpl)k , (E_wzﬂ)k /
= | Re———"— +ilm————"—| - P, (w)dm(w),
{ |2 — wp,1|FF2 |z —wpalF2 ] Jq, n(w)dm{w)

/ EmD g w)dim(u)

|z —w|kt2 "

(z_wp3)k . (E_wpzl)k :| /
= |Re———— 27 __ 4 iIm————P—~ . O (w)dm(w),
{ |2 — wp,3|F 2 |z —wpalf*t?2] Jo, "

Then, using (9) and (12),

215

‘k| z—wp, (E—wpi+2)k
|< : . @, (w)dm(w). (13)
For any w, v € B(zp;5r;,) and z € T, the inequality
z —w)" z—o)% | _ 4003k .,
P
2 —wF2 [z — ofFt2 2 — 2,3
holds. Indeed, if £ > 0, then
E-w)* (z-v)F
|z —w|kt2 |z — v]k+2
z-w)k  (z-w) z-wk  (z-v)F
|z —w|k+2 |z — v]kt2 |z —ofFt2 |z — o|kt+2
‘|z—v|k+2—\z—wlk+2‘ |(§—@)k—(§—ﬁ)k}
|z —wf? - |z — ofF+2 |2 — vfF+2
<ol S = ol —wlFH o —wl - Sy e — olf)s — w1
2 — w|2 - [z — v|FF2 |z — v|F+2
k+1 k11 -1 k—1-1
B |v —wl Zz—w v — w] z—w
oz —wf?- ]z — zZ—v |z — )3 z—v
=0 =0
k+1 k—1 K
807, & e 400 - 3% - r,
. 3 +1-1 3k -1 < P
S —al (Z > = TP
1=0 1=0
if £ < 0, then
G-t =t || Gt o | d00-3H,

|z — Zp‘?)

|z —w|lkl+2 |z — p]lkl+2

|z —w|kt2 |z — v]Ft+2
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Therefore it follows from (13) that

|l<:| 800 - 3kl . 7, /
| @, (w)d
Z F—aP Je, (w)dm(w)

400 - 3%, /1 10000 - 3% |k -3 .
|’€|Z Tp.<27r.25r§p.n>zz M-,

3
|Z_Zp‘ pel |z — 2|
This implies the inequality

| (2)|dm(z) < 10000 - 3% - k] -7 S8 / _dm(z)

vel | _ZPP

dm(z)
1L A E 3 e
< 10000 - 3" - |k| - n sz/

_ 3
pel {z:|z—2p|>10rz, } ’Z Zp|

Tn

o
d
=10000- 3" k| - - S ri’p-ZW/ & =2000-3* k| 7on - r2
pel 10rzp 7’ pel

20
:2000.3\k\.’k‘.ﬂ.n.&:moo.glkl.‘k|.a
™

proving the inequality (11).
We represent the function f(z) in the form

f2) =[f@]" + Pp(z) + [Pn — ©1](2).

Step 2. In this part we prove the equality

lim [ g(2)(RES)()dm(z) = (~1)* / £(2)(Rbg) (2)dm(2).
n—00 T, Q
Consider the integral
/ 9(=) (RS £)(2)dm(2)
- / g(){(RELF™) (2) + (RE®L)(2) + R(®y — ©%)(2) bdm(2)
- / 9(2) (RELF™) (2)dm(z) + / 9(2) (RE®%) (2)dm(2)

n n

+/ 9(2)RE(®, — ©F)(2)dm(z) = Sy + S5+ S3.
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By (7), we have, for square integrable functions,

S — / 9(2) (R (2)dm(2)

2/9(2)(Rﬁ[f]")(2)dm(2)—/ 9(2)(BHLf]")(z)dm(2)
Q

Ll

n

= (0 [P B ~ [ @B Edm() = 51 + 5.

5] = '/ 9(=) (RELfT" / [(RE[)") (=) dm(2)

< {m@;)- i (lez[ﬂ”)Q(z)dm(Z)] <6, {m@;) . ([f(z)]“>2dm<z>]

Since

1/2 1/2

<G| m(zy)- [ )] -

it follows from (10) that

lim S1 = (~1)" lim [ [£(=)]"(Rh)(z)dm(2)

n—oo n—oo 0

1)k /Q F(2)(Rbg) (z)dm(2). (17)

For the integral Sy we also have

Sy — / 9(2)(RE®E) ()dm(2)

z/g(Z)(%‘I’Z)(Z)dm(Z)—/ 9(2) (RGP, (2)dm(2)
Q L

n

— (~1)* /Q &1 (2) (Rlyg) (2)dim(z) — / 9(2) (RE®3) (2)dm(z) = 5" + 5.

L/

n

The following estimates are valid.

5] = \ [ &)@ )

/ 12 (2)(Rhg)(2)|dm(2)
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< [ @i = [ @uEdm() = o,

581 = ‘ | s rbE ()

< /L RE®) )l ()

< |m(z)- [ (R )] e i) [ @i )Pan ) .
< Cy [2;” (L) - /th;;(z)dm(z)] e {225” (L) .an] v
Then it follows from (10) that
lim S5 = 0. (18)

n—0o0

To estimate the integral S3, we apply inequality (11). We have

93] = - 9(2)R&(®n — @7,)(2)dm(2)| < . |9(2) R (®n — @71)(2)|dm(2)
/ RE(® ldm(z) < 4000 35 - k] - an
This implies the equality
lim S3 = 0. (19)

n—o0

Now (15) follows from equalities (16), (17), (18) and (19).
Step 3. In this part we prove the equality

) [ s mENEmE) = tim [ gm0
Consider the difference of integrals

/ 9(2)(R6f)(2)dm(2)—/[9(2)(Rﬁf)(2)]”dm(2)
Q

n

_ /L [0(=) (RE ) (2)]"dm(2)

n

+/T {9()(REN(2) = [9(2)(RGS)(2)]"ydm(z) = 5O 4 5. (21)
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From the inequality |S™M| < n-m(L.) it follows that

lim S = 0. (22)
n—oo
Denote o, = {z € Q: |g(2)(REf)(2)] > n}.
Since m{z € Q: [(REf)(2)| > n} = 0(L), n — oo, we have m(0y,) = o (),
n — oo. Using (11) and (14), we obtain

(2) z k z mlz k z mlz
S \s/m%m )(REF)(2)ld <>s/manr<RQf>< )[dm(z)
< / (RELF]) (=) dim(2) / (RE®2)(2)|dm(2) / (RE(®,, — ) (2)|dm(2)

< |mlow) [ (RELT)im(2) " i) [ <R6<1>;>2<z>dm<z>] P

1/2

<6 [mwn) / <[f<z>]">2dm<z>] e [mm) / <<I>;z<z>>2dm<z>] - on

25

<Oy [nm(an) /Q f(z)dm(z)] v + s [2nm(an) /Q @Z(z)dm(z)] v + dy, - o,
It follows that

lim S = 0. (23)

n—o0

Now equality (20) follows from equalities (21), (22) and (23).
From the equalities (15) and (20) we obtain (8). Theorem 1 is proved. <«
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