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Generalized Morrey Spaces over Unbounded
Domains

L. Caso, R. D’Ambrosio, L. Softova∗

Abstract. We study generalized Morrey type spaces Mp
ω(Ω, d) over unbounded domains.

Our goal is to describe the main properties of these spaces and some functional subspaces
defined as a closure of the L∞ and C∞

0 functions with respect to the norm in Mp
ω(Ω, d).
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1. Introduction

In his celebrated work [11] Morrey studied the regularity of the solutions of a kind
of elliptic systems. He estimated the Lp-norm of the gradient Du of the solution
in a ball via a power of the radius of the same ball. That estimate permitted him
to obtain local Hölder regularity of u. This result gave rise to the introduction
of new functional spaces named after him. The classical Morrey spaces have
been formulated and studied in the 60’s by Campanato, Peetre and Brudneii
independently, using similar notations. Precisely, a function f ∈ Lploc(R

n) belongs
to the Morrey space Lp,λ(Rn) with p ≥ 1 and λ ∈ (0, n) if

‖f‖Lp,λ(Rn) = sup
Br(x)

(
1

rλ

∫
Br(x)

|f(y)|p dy

) 1
p

< +∞ (1)

and the supremum is taken over all balls in Rn (see [1, 2, 3]).
A natural question that arises is what happens if we consider f defined in some

domain Ω ⊂ Rn bounded or unbounded. In the first case it is enough to take
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the integral in (1) over the intersection Ω ∩ Br(x) and take the supremum over
balls centered at x ∈ Ω with radius r ∈ (0, diam Ω]. The situation becomes a little
bit different if we consider unbounded domain Ω. This case requires additional
condition over the radius of the balls. Such condition is given by Transirico, Troisi
and Vitolo in [18] where the authors study elliptic boundary value problems in
unbounded domains. Precisely, they consider spaces Mp,λ(Ω, d) that consist of
locally integrable functions f ∈ Lploc(Ω) for which the following norm is finite

‖f‖Mp,λ(Ω,d) = sup
Br(x)
r∈(0,d]
x∈Ω

(
1

rλ

∫
Br(x)∩Ω

|f(y)|p dy

) 1
p

< +∞, (2)

where x ∈ Ω and d > 0 is a fixed real number. The properties of these spaces are
studied in [6, 18] where the authors show that for two different positive numbers
d1 and d2 the spaces Mp,λ(Ω, d1) and Mp,λ(Ω, d2) are equivalent.

The first generalization of the classical Morrey spaces is made by Mizuhara
[12] who takes a weight ϕ(r), r > 0, increasing positive measurable function, sat-
isfying a doubling condition, instead of rλ in (1). The new generalized Morrey
spaces Lp,ϕ(Rn) have been deeply studied by Nakai (see, e.g. [13, 16, 17]) sup-
posing that ϕ(Br(x)) ≡ ϕ(x, r) : Rn×R+ → R+ satisfies the following conditions

κ1 ≤
ϕ(Bs(y))

ϕ(Br(y))
≤ κ2 for all r ≤ s ≤ 2r,

∫ ∞
r

ϕ(Bs(y))

sn+1
ds ≤ κ3

ϕ(Br(y))

rn
.

for any fixed x ∈ Rn, any r > 0 and some constants κ1, κ2, κ3 > 0.
The question that we are interested is if such a generalization is possible for

Morrey type spaces defined over unbounded domain and what kind of conditions
are necessary to impose on the weight function. The present work treats a kind of
generalized Morrey spaces Mp

ω(Ω, d) where the weight function ω satisfies doubling
and monotonicity condition (see (W1) and (W2) in Section 2). Our goal is to
give a description of these spaces through some of their subsets. Precisely, we fix
our attention on three subspaces. The first one consists of functions for which
the Mp

ω(Ω, d) norm vanishes over shrinking balls, the second one is a closure of
L∞(Ω) functions with respect to the norm in Mp

ω(Ω, d), while the third one is a
closure of the C∞0 (Ω) functions with respect to the same norm. In the last two
cases we show decomposition of the functions from the corresponding spaces.

Our goal is twofold: to extend the results obtained in [6] for the Morrey
spaces over unbounded domain Mp,λ(Ω, d) to spaces with some weight ω and



Generalized Morrey Spaces over Unbounded Domains 195

to give basic tools for studying Dirichlet boundary problem for elliptic PDEs in
unbounded domains as in [4, 5, 7, 9, 10, 15, 16, 17].

We use the following notations:

• Ω is an unbounded domain in Rn, Br(x) is a ball in Rn and Ω(x, r) =
Ω ∩Br(x) with x ∈ Ω, r > 0;

• Σ(Ω) is the Lebesgue σ-algebra on A; for E ∈ Σ(Ω), we denote by χE the
characteristic function of E and by |E| the Lebesgue measure of E;

• D(E) is the restriction of the C∞0 (Rn) functions on E, that is

D(E) =
{
ζ = η|E : η ∈ C∞0 (Rn), supp ζ = supp η ∩ E ⊆ E

}
;

For p ∈ [1,+∞) define

Lploc(E) = {g : E → R : ζ g ∈ Lp(E), ζ ∈ D(E)} .

The paper is organized as follows: we start with the definition and main properties
of the spaces Mp

ω(Ω, d), in Section 3 we introduce the main subspaces of Mp
ω(Ω, d)

while Section 4 describes decompositions of the functions from the corresponding
subspaces.

2. Spaces Mp
ω(Ω, d), definition and main properties

We call weight a measurable function ω : Rn×R+ → R+ and for Br(x) ⊂ Rn
we write ω(x, r) = ω(Br(x)). In what follows we suppose p ∈ [1,+∞) and d > 0.

Definition 1. A function f ∈ Lploc(Ω) belongs to Mp
ω(Ω, d) if

‖f‖Mp
ω(Ω,d) = sup

x∈Ω
τ∈(0,d]

(
1

ω(x, τ)

∫
Ω(x,τ)

|f(y)|p dy

) 1
p

< +∞, (3)

where the supremum is taken over all balls Bτ (x) ⊂ Rn centered at x ∈ Ω.

Obviously Mp
ω(Ω, d) is a Banach space with a norm defined by (3).

Let us note that Lp,ω(Rn) ⊂Mp
ω(Rn, d) and if Ω is bounded, then Lp,ω(Ω) ≡

Mp
ω(Ω, d), where Lp,ω denotes the generalized Morrey space studied by Nakai

with ϕ ≡ ω. If ω(x, τ) = τλ, with 0 < λ < n, then the spaces Mp
ω(Ω, d) become

the Morrey spaces Mp,λ(Ω, d) considered in [6, 18].
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We assume that the weight ω verifies a doubling condition with a positive
constant Cω independent of x, r, s

1

Cω
≤ ω(x, s)

ω(x, r)
≤ Cω , ∀x ∈ Rn, r ≤ s ≤ 2r, (W1)

and monotonicity condition

ω(y, r) ≤ ω(x, s) ∀x, y ∈ Rn , Br(y) ⊆ Bs(x) . (W2)

Example 1. The following weights satisfy the conditions (W1) and (W2):

E1) ω(x, r) =
(∫

Br(x) u(y) dy
)α

, where u ∈ Ap, p > 1, is a Muckenhoupt weight,

with 0 < α ≤ 1/p < 1 (see for example [13]);

E2) ω(x, r) = φ(r), where φ(r) is an increasing function such that φ(r)
r is de-

creasing;

E3) ω(x, r) = Φ(r), where Φ(r) is a Young function satisfying the so-called
42-condition (see [14, 2]).

The dependence of (3) on d would seem to be quite restrictive. It turns out
instead that all the spaces Mp

ω(Ω, d) on varying of d ∈ R+ are equivalent.

Theorem 1. Let ω satisfy (W1) and (W2), and d1, d2 ∈ R+. Then f ∈Mp
ω(Ω, d1)

iff f ∈Mp
ω(Ω, d2) and

‖f‖Mp
ω(Ω,d1) ≤ ‖f‖Mp

ω(Ω,d2) ≤ c ‖f‖Mp
ω(Ω,d1), (4)

where c > 0 depends on n, p, Cω, d1, d2.

Proof. Without loss of generality suppose that d1 ≤ d2 and fix f ∈Mp
ω(Ω, d1).

‖f‖Mp
ω(Ω,d1) ≤ ‖f‖Mp

ω(Ω,d2) .

In order to prove the second inequality in (4), we observe that

‖f‖Mp
ω(Ω,d2) ≤ ‖f‖Mp

ω(Ω,d1) + sup
x∈Ω

τ∈(d1,d2]

ω(x, τ)
− 1
p ‖f‖Lp(Ω(x,τ))

≤ ‖f‖Mp
ω(Ω,d1) + sup

x∈Ω
ω(x, d1)

− 1
p ‖f‖Lp(Ω(x,d2)) . (5)

Fix x ∈ Ω and take a cube Q(x, 2d2) centered at x and with length of the edge
2d2. Let k ∈ N be such that

2d2

2k+1
≤ d1 <

2d2

2k
. (6)
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Take a dyadic decomposition and choose points x1, · · · , x2n(k+2) ∈ Rn such that

B(x, d2) ⊂ Q(x, 2d2) =
2n(k+2)⋃
i=1

Q
(
xi,

2d2

2k+2

)
⊂

m⋃
i=1

B
(
yi,

d1

2

)
, (7)

where m ≥ 2n(k+2) and yi ∈ Ω for any i. Hence

Ω(x, d2) ⊂
m⋃
i=1

Ω
(
yi,

d1

2

)
.

On the other hand, since B(yi,
d1
2 ) ⊂ B(x, 4d2) for any i, from (W1), (W2)

and (6) one gets

ω
(
yi,

d1

2

)
≤ ω(x, 4d2) ≤ Ck+2

ω ω(x, d1) , (8)

independently of i. Thus, in view of (7), (8) and (W1), for any x ∈ Ω we have(
1

ω(x, d1)

∫
Ω(x,d2)

|f(y)|p dy

) 1
p

≤

(
1

ω(x, d1)

m∑
i=1

∫
Ω(yi,

d1
2

)
|f(y)|p dy

) 1
p

≤

(
m∑
i=1

Ck+2
ω

ω
(
yi,

d1
2

) ∫
Ω(yi,

d1
2

)
|f(y)|p dy

) 1
p

(9)

≤

(
m∑
i=1

Ck+3
ω

ω(yi, d1)

∫
Ω(yi,d1)

|f(y)|p dy

) 1
p

≤ C‖f‖Mp
ω(Ω,d1)

with a positive constant C depending on n, p, Cω, d1, d2. The second inequality
in (4) easily follows from (5) and (9). J

Because of the equivalence of the norms, from now on, we take d = 1, writing
Mp
ω(Ω) = Mp

ω(Ω, 1). Assume in addition that the function ω verifies the assump-
tion

sup
x∈Ω
τ∈(0,1]

|Ω(x, τ)|
ω(x, τ)

= D < +∞ , (W3)

which is equivalent to

‖χΩ‖Mp
ω(Ω) = D

1
p < +∞ .

Using Hölder’s inequality and (W3), it is easy to prove that

Mp
ω(Ω) ⊆M q

ω(Ω) ∀ 1 ≤ q ≤ p . (10)

In addition, (W3) ensures the inclusion L∞(Ω) ⊂Mp
ω(Ω). In fact, if f ∈ L∞(Ω),

then
‖f‖Mp

ω(Ω) ≤ ‖f‖L∞(Ω)‖χΩ‖Mp
ω(Ω) ≤ C . (11)
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3. The subspaces VMp
ω(Ω), M̃p

ω(Ω) and
◦
M p

ω(Ω)

In this section we study the properties and the structure of some subspaces
of Mp

ω(Ω) starting with functions with vanishing norm.

Definition 2. The space VMp
ω(Ω) with ω satisfying (W1), (W2) and (W3),

consists of all functions g ∈Mp
ω(Ω) such that

lim
t→0
‖g‖Mp

ω(Ω,t) = 0 . (12)

As in (10), the Hölder inequality and (W3) imply the inclusion

VMp
ω(Ω) ⊆ VM q

ω(Ω) ∀ 1 ≤ q ≤ p . (13)

Suppose that the norm of the characteristic function of Ω satisfies the following
vanishing condition

lim
t→0
‖χΩ‖Mp

ω(Ω,t) = 0 (V)

which is equivalent to lim
t→0

sup
x∈Ω
τ∈(0,t]

|Ω(x, τ)|
ω(x, τ)

= 0. Then L∞(Ω) ⊂ VMp
ω(Ω) as a

direct consequence of (11). Moreover, the assumption (V) allows us to improve
the inclusion (13) as it is shown in the following lemma.

Lemma 1. Suppose that ω verifies (W1), (W2), (W3) and (V). Then

Mp
ω(Ω) ⊂ VM q

ω(Ω) ∀ 1 ≤ q < p < +∞ . (14)

Proof. From (10) and Hölder’s inequality we easily get

‖g‖Mq
ω(Ω,t) ≤ ‖g‖Mp

ω(Ω) · ‖χΩ‖
p
q
−1

Mp
ω(Ω,t)

.

Then condition (V) proves our claim. J

Example 2. E1) Let u ∈ Ap, p > 1 and u > 0 a.e. in Ω. The weight

ω(x, r) =

(∫
Br(x)

u(y) dy

)α
with 0 < α ≤ 1/p < 1

verifies (V). By the Lebesgue Differentiation Theorem

lim
t→0

1

|Bt(x)|

∫
Bt(x)

u(y)dy = u(x) for a.a. x ∈ Ω.
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lim
t→0

sup
x∈Ω
τ∈(0,t]

|Ω(x, τ)|
(
∫
Bτ (x) u(y) dy)α

≤ C lim
t→0

sup
x∈Ω
τ∈(0,t]

τn(1−α)

( 1
|Bτ (x)|

∫
Bτ (x) u(y) dy)α

= 0 .

Let us note that since ω(x, τ) > 0 for every ball Bτ (x), the weight ω verifies
also (W3);

E2) The weight ω(x, r) = φ(r), where lim
r→0

φ(r) = 0 and lim
r→0

φ(r)

r
= +∞, verifies

(V) and (W3).

In what follows, we are going to give some properties of the spaces VMp
ω(Ω)

which are similar to those of the classical vanishing Morrey spaces (see
[8, Lemma 1.2] and [19, Proposition 3]).

We say that Ω is of (A)-type or satisfies the condition (A), if

sup
x∈Ω
τ∈(0,1]

|B(x, τ)|
|Ω(x, τ)|

= A < +∞ . (A)

It is easy to see that the condition (A) implies the external cone condition

|Ω(x, τ)| ≥ 1

A
τn , ∀x ∈ Ω , ∀ τ ∈ (0, 1] . (15)

Remark 1. We point out that if the domain Ω is bounded, then the condition
(A) is equivalent to the well-known Campanato type condition. In the case of
unbounded domain the radius τ could be arbitrary. Since the property of the
boundary of Ω is a local property, we can add the restriction τ ∈ (0, 1] without
loss of generality.

Remark 2. Comparing (A) with (W3), it is easy to see that if ω(x, τ) ≡ τλ,
then we get λ ∈ (0, n], while the condition (V) implies λ < n.

Let {Jh}h∈N be a sequence of mollifiers, that is, J ∈ C∞0 (Rn), supp J ⊂
B(0, 1), 0 ≤ J(x) ≤ 1,

∫
Rn J(x) dx = 1 and Jh(x) = hn J(hx). Then the following

approximation properties are valid.

Lemma 2. Let (A), (W1), (W2) and (W3) hold. If g ∈ VMp
ω(Ω) with supp g b

Ω, then

lim
y→0
‖g(·− y)− g(·)‖Mp

ω(Ω) = 0 , (16)

lim
h→+∞

‖Jh ∗ g − g‖Mp
ω(Ω) = 0 , (17)

where {Jh}h∈N is a sequence of mollifiers in Rn.
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Proof. Since g ∈ VMp
ω(Ω), for any ε > 0 there exists 0 < tε < 1 such that

‖g‖Mp
ω(Ω,tε) <

ε

4
. (18)

Take δ(ε) small and let y ∈ Bδ(ε)(0) ⊂ B1(0). By (15), (18) and (W3) we get

‖g(·− y)− g(·)‖Mp
ω(Ω) ≤ ‖g(·− y)− g(·)‖Mp

ω(Ω,tε)

+ sup
x∈Ω

τ∈(tε,1]

(
1

ω(x, τ)

∫
Ω(x,τ)

|g(z − y)− g(z)|p dz

) 1
p

<
ε

2
+D

1
p sup
x∈Ω

(
1

|Ω(x, tε)|

∫
Ω(x,1)

|g(z − y)− g(z)|p dz

) 1
p

(19)

<
ε

2
+ C

(
1

tnε

∫
supp g+B(0,1)

|g(z − y)− g(z)|p dz

) 1
p

< ε

where in the last step we use the smallness of y and the continuity with respect
to translation of the Lebesgue integral. The constant C depends on p,D, and A.
In order to prove (17) we use the classical properties of the mollifiers. Let

I :=

∫
Ω(x,τ)

|Jh ∗ g(z)− g(z)|p dz =

∫
Ω(x,τ)

∣∣∣∣∫
Rn
Jh(z − y) · (g(y)− g(z)) dy

∣∣∣∣p dz .
Since supp g is a compact in Ω, we have

I ≤
∫

Ω(x,τ)

∫
Rn
Jh(z − y) · |g(y)− g(z)|p dydz . (20)

Hence, by (20) and Fubini theorem, we get

1

ω(x, τ)

∫
Ω(x,τ)

|Jh ∗ g(z)− g(z)|p dz

≤ 1

ω(x, τ)

∫
Ω(x,τ)

∫
Rn
Jh(z − y) · |g(y)− g(z)|p dydz

≤
∫
Rn
Jh(y)

(
1

ω(x, τ)

∫
Ω(x,τ)

|g(z − y)− g(z)|p dz

)
dy

≤
∫
Rn
Jh(y) · ‖g(·− y)− g(·)‖p

Mp
ω(Ω)

dy .
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Then, since suppJ ⊂ B(0, 1), we have

‖Jh ∗ g − g‖Mp
ω(Ω) ≤

∫
|y|≤ 1

h

Jh(y) · ‖g(·− y)− g(·)‖p
Mp
ω(Ω)

dy .

The last estimate, along with (16), gives (17). J

Definition 3. Denote by M̃p
ω(Ω) the class of functions g ∈ Mp

ω(Ω) ω satisfying
(W1), (W2) and (W3), such that

lim
h→+∞

(
sup

E∈Σ(Ω)

‖χE‖Mp
ω(Ω)

≤ 1
h

‖g χE‖Mp
ω(Ω)

)
= 0 .

The main feature of these spaces is given by the following lemma.

Lemma 3. A function g ∈ Mp
ω(Ω) belongs to M̃p

ω(Ω) iff g is in the closure of
L∞(Ω) in Mp

ω(Ω).

Proof. Because of (11) we have the inclusion L∞(Ω) ⊂ Mp
ω(Ω). Take a func-

tion g in the closure of L∞(Ω) w.r.t. the norm in Mp
ω(Ω). Hence for each ε > 0

there exists a function gε ∈ L∞(Ω) such that

‖g − gε‖Mp
ω(Ω) <

ε

2
. (21)

Let us take E ∈ Σ(Ω) such that

‖χE‖Mp
ω(Ω) <

1

hε
with hε =

2 ‖gε‖L∞(Ω)

ε
. (22)

Then from (21) and (22) it follows that

‖g χE‖Mp
ω(Ω) ≤ ‖(g − gε)χE‖Mp

ω(Ω) + ‖gε χE‖Mp
ω(Ω)

<
ε

2
+ ‖gε χE‖Mp

ω(Ω) <
ε

2
+ ‖g‖L∞(Ω) ·

1

hε
< ε, (23)

which implies g ∈ M̃p
ω(Ω).

To prove the inverse inclusion we take a function g ∈ M̃p
ω(Ω). By the defini-

tion, for any ε > 0 there exists hε > 0 large enough such that

‖g χE‖Mp
ω(Ω) < ε ∀E ∈ Σ(Ω) satisfying ‖χE‖Mp

ω(Ω) <
1

hε
. (24)
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We are going to construct a sequence of L∞ - functions converging to g w.r.t. the
norm in Mp

ω(Ω).For each k ∈ R+, we define the set

Ek = {x ∈ Ω : |g(x)| ≥ k} , (E)

and put gk = g(1− χEk). Then

gk =

{
0 if |g(x)| ≥ k
g if |g(x)| < k,

(25)

and gk ∈ L∞(Ω). Let us note that

‖g‖Mp
ω(Ω) ≥ ‖g χEk‖Mp

ω(Ω) ≥ k · ‖χEk‖Mp
ω(Ω) . (26)

Taking k > kε = hε · ‖g‖Mp
ω(Ω), from (26) we get

‖g‖Mp
ω(Ω) > hε · ‖g‖Mp

ω(Ω)‖χEk‖Mp
ω(Ω) , (27)

and hence ‖χEk‖Mp
ω(Ω) <

1

hε
. Then for k > kε, since g ∈ M̃p

ω(Ω), we have

‖g − gk‖Mp
ω(Ω) = ‖g χEk‖Mp

ω(Ω) < ε .

J

The following result shows that the subspace VMp
ω(Ω) is larger than M̃p

ω(Ω).

Lemma 4. Suppose that ω satisfies (W1), (W2), (W3) and (V). Then

M̃p
ω(Ω) ⊂ VMp

ω(Ω) .

Proof. Analogously to (11), the condition (V) implies the inclusion L∞(Ω) ⊂
VMp

ω(Ω). Fix now g ∈ M̃p
ω(Ω). As in Lemma 3, for each ε > 0, we consider upper

level sets Ek (see (E)) and functions gk with k > kε = hε · ‖g‖Mp
ω(Ω) (see (25))

and hε > 0 such that ‖χEk‖Mp
ω(Ω) <

1
hε

. Then

‖g χEkε‖Mp
ω(Ω,t) ≤ ‖g χEkε‖Mp

ω(Ω) <
ε

2
(28)

and for 0 < t < δε ≤ 1 we get

‖g‖Mp
ω(Ω,t) ≤ ‖g χEk‖Mp

ω(Ω,t) + ‖gk‖Mp
ω(Ω,t) <

ε

2
+
ε

2
, (29)

where the last estimate holds since gk ∈ VMp
ω(Ω) is an essentially bounded

function. J

Now we are able to improve the inclusion (14).
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Lemma 5. Suppose that ω satisfies the conditions (W1), (W2) and (W3). Then

Mp
ω(Ω) ⊂ M̃ q

ω(Ω) ∀ 1 ≤ q < p < +∞ . (30)

Proof. Fix g ∈Mp
ω(Ω) and choose E ∈ Σ(Ω) such that ‖χE‖Mp

ω(Ω) < δε. From
(10) and Hölder’s inequality we get

‖g χE‖Mq
ω(Ω) = sup

x∈Ω
τ∈(0,1]

(
1

ω(x, τ)

∫
E(x,τ)

|g(y)|q dy
) 1
q

≤ sup
x∈Ω
τ∈(0,1]

(
1

ω(x, τ)

∫
E(x,τ)

|g(y)|p dy
) 1
p
(
|E(x, τ)|
ω(x, τ)

) 1
q
− 1
p

≤ ‖g‖Mp
ω(Ω) · ‖χE‖

p
q
−1

Mp
ω(Ω)

< ε

for suitable choice of δε and E. J

Now we introduce a class of mappings necessary for the definition of the

subspace
◦
M

p
ω(Ω). For h ∈ R+, define the cut off functions ζh ∈ C∞0 (Rn) such

that

ζh(x) =

{
1 x ∈ B(0, h)

0 x /∈ B(0, 2h) .

Definition 4. Suppose that ω satisfies (W1), (W2) and (W3). Then a function

g ∈Mp
ω(Ω) belongs to

◦
M

p
ω(Ω) iff

g ∈ M̃p
ω(Ω) and lim

h→+∞
‖(1− ζh) g‖Mp

ω(Ω) = 0 . (31)

We can describe
◦
M

p
ω(Ω) by means of the following density result.

Lemma 6. Let (A) and (V) hold. A function g ∈ Mp
ω(Ω) belongs to

◦
M

p
ω(Ω) if

and only if g is in the closure of C∞0 (Ω) w.r.t. the norm in Mp
ω(Ω).

Proof. Let g ∈
◦
M

p
ω(Ω). In view of (31) and Lemma (4), for each ε > 0 there

exist hε > 0 and 0 < tε < 1 such that

‖(1− ζhε) g‖Mp
ω(Ω) <

ε

3
, ‖g‖Mp

ω(Ω,tε) <
ε

6
. (32)

We consider the sequence of functions {ζhε(1− χΩk) g}k∈N, where

Ωk =

{
x ∈ Ω : dist (x, ∂Ω) >

1

k

}
.
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From (W3) it follows that

‖ζhε(1− χΩk) g‖Mp
ω(Ω) ≤ sup

x∈Ω
τ∈(0,tε]

(
1

ω(x, τ)

∫
Ω(x,τ)

|g(y)|p dy

) 1
p

+ sup
x∈Ω

τ∈(tε,1]

(
1

ω(x, τ)

∫
Ω(x,τ)

|(ζhε(1− χΩk)g) (y)|p dy

) 1
p

(33)

≤ ‖g‖Mp
ω(Ω,tε) +D

1
p sup

x∈Ω
τ∈(tε,1]

(
1

|Ω(x, tε)|

∫
Ω(x,τ)

|(ζhε(1− χΩk) g) (y)|p dy

) 1
p

.

Hence, by (32) and (A)∥∥ζhε(1− χΩk) g
∥∥
Mp
ω(Ω)

<
ε

6
+ C t

−n
p

ε

∥∥ζhε(1− χΩk) g
∥∥
Lp(Ω)

(34)

with C = C(p,D,A). By the Lebesgue Dominated Convergence theorem, there
exists kε ∈ N such that

∥∥ζhε(1− χΩkε
) g
∥∥
Lp(Ω)

<
ε

6

t
n
p
ε

C
. (35)

Hence, by (34) and (35), we have∥∥ζhε(1− χΩkε
) g
∥∥
Mp
ω(Ω)

<
ε

3
. (36)

Now we put ψε = ζhε χΩkε
g, and observe that

suppψε ⊂ Ωkε ∩B(0, 2hε) b Ω.

Since g ∈ VMp
ω(Ω), we have ψε ∈ VMp

ω(Ω). Let us consider now a sequence
{Jm}m∈N of mollifiers in Rn. By Lemma 2, there exists mε ∈ N such that

‖ψε − Jmε ∗ ψε‖Mp
ω(Ω) <

ε

3
. (37)

Finally, if we put ϕε = Jmε ∗ ψε ∈ C∞0 (Ω), from (32), (36) and (37) we deduce

‖g − ϕε‖Mp
ω(Ω) ≤ ‖g − ψε‖Mp

ω(Ω) + ‖ψε − ϕε‖Mp
ω(Ω)

≤ ‖(1− ζhε) g‖Mp
ω(Ω) + ‖ζhε(1− χΩkε

) g‖Mp
ω(Ω) + ‖ψε − Jmε ∗ ψε‖Mp

ω(Ω) < ε ,

hence g belongs to the closure of C∞0 (Ω) w.r.t. the norm in Mp
ω(Ω).
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To prove the inverse inclusion we take a convergent sequence of functions
{ϕk}k∈N in C∞0 (Ω) such that lim

k→+∞
‖g − ϕk‖Mp

ω(Ω) = 0 and suppϕk b Ω. For

each k there exists hk > 0 such that suppϕk ⊂ B(0, hk). In order to show (31)
we consider

‖(1− ζhk) g‖Mp
ω(Ω) = ‖(1− ζhk) (g − ϕk)‖Mp

ω(Ω) ≤ ‖g − ϕk‖Mp
ω(Ω) .

We see that the last term here goes to 0 as k → +∞.
On the other hand, for E ∈ Σ(Ω) we have

‖g χE‖Mp
ω(Ω) ≤ ‖g − ϕk‖Mp

ω(Ω) + ‖ϕk χE‖Mp
ω(Ω) . (38)

Hence, by the inclusions C∞0 (Ω) ⊂ L∞(Ω) ⊂ M̃p
ω(Ω), we deduce from (38) that

if ‖χE‖Mp
ω(Ω) is small enough, then g ∈ M̃p

ω(Ω), and this concludes the proof. J

4. Decompositions of functions in M̃p
ω(Ω) and

◦
M p

ω(Ω)

In this section, we are going to construct suitable decompositions for functions

belonging to M̃p
ω(Ω) and

◦
M

p
ω(Ω). To this aim, we introduce modulus of continuity

of a function in the corresponding space. Let g ∈ M̃p
ω(Ω). We call modulus of

continuity of g in M̃p
ω(Ω) a map

∼
σpω[g] : R+ → R+ defined as

∼
σpω[g](h) := sup

E∈Σ(Ω)

‖χE‖Mp
ω(Ω)

≤ 1
h

‖g χE‖Mp
ω(Ω) (39)

Then Definition 3 gives limh→+∞
∼
σpω[g](h) = 0 . For the functions in

◦
M

p
ω(Ω)

we define the modulus of continuity as a map acting in R+ and defined in the
following way:

◦
σpω[g](h) := ‖(1− ζh) g‖Mp

ω(Ω) + sup
E∈Σ(Ω)

‖χE‖Mp
ω(Ω)

≤ 1
h

‖g χE‖Mp
ω(Ω) . (40)

Obviously limh→+∞
◦
σpω[g](h) = 0 by (31). We are going to show that any function

g in M̃p
ω(Ω) or

◦
M

p
ω(Ω) can be represented as a sum g = g1 + g2, where g2 is

essentially bounded, while the norm of g1 can be controlled by the modulus of
continuity of g in the corresponding space.

Lemma 7. Let g ∈ M̃p
ω(Ω). Then for any h > 0 we have g = g′h + g′′h, where

g′′h ∈ L∞(Ω) and

‖g′h‖Mp
ω(Ω) ≤

∼
σpω[g](h), ‖g′′h‖L∞(Ω) ≤ h

1
p ‖g‖Mp

ω(Ω) . (41)



206 L. Caso, R. D’Ambrosio, L. Softova

Proof. For any g ∈ M̃p
ω(Ω) consider the upper level sets

Eh =
{
x ∈ Ω : |g(x)| ≥ h

1
p ‖g‖Mp

ω(Ω)

}
. (42)

Then for x ∈ Ω and τ ∈ (0, 1] we have

|Eh(x, τ)|
ω(x, τ)

≤ 1

ω(x, τ)

∫
Eh(x,τ)

|g(y)|p

h ‖g‖p
Mp
ω(Ω)

dy

=
1

h ‖g‖p
Mp
ω(Ω)

1

ω(x, τ)

∫
Eh(x,τ)

|g(y)|p dy ≤ 1

h ‖g‖p
Mp
ω(Ω)

‖g‖p
Mp
ω(Ω)

=
1

h
. (43)

Define the functions

g′h = g χEh =

{
g if x ∈ Eh ,
0 if x ∈ Ω \ Eh ,

g′′h = (1− χEh)g =

{
0 if x ∈ Eh ,
g if x ∈ Ω \ Eh .

Obviously g′′h ∈ L∞(Ω) and the second estimate in (41) holds. In view of (43)
and (39), we have

‖g′h‖Mp
ω(Ω) = ‖g χEh‖Mp

ω(Ω) ≤ sup
E∈Σ(Ω)

‖χE‖Mp
ω(Ω)

≤ 1
h

‖g χE‖Mp
ω(Ω) ≤

∼
σpω[g](h), (44)

which implies the first inequality in (41). J

Lemma 8. Let g ∈
◦
M

p
ω(Ω). Then for any h > 0 we have g = g′h + g′′h, where

g′′h ∈ L∞(Ω) and

‖g′h‖Mp
ω(Ω) ≤

◦
σpω[g](h), ‖g′′h‖L∞(Ω) ≤ ζh h

1
p ‖g‖Mp

ω(Ω) . (45)

Proof. Fix g ∈
◦
M

p
ω(Ω), consider the upper level sets Eh given by (42) and

define the functions

g′h = (1− ζh)g + ζhχEhg =

{
g if x ∈ Eh ,
(1− ζh)g if x ∈ Ω \ Eh ,

g′′h = ζh(1− χEh)g =

{
0 if x ∈ Eh ,
gζh if x ∈ Ω \ Eh .

It is easy to see that

‖g′h‖Mp
ω(Ω) ≤ ‖(1− ζh)g‖Mp

ω(Ω) + ‖gχEh‖Mp
ω(Ω) .

Thus by (40) we get the first inequality in (45). The second one follows from
(42). J
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[3] S. Campanato, Proprietà di inclusione per spazi di Morrey, Ricerche Mat.,
12, 1963, 67–86.

[4] L. Caso, P. Cavaliere, M. Transirico Existence results for elliptic equations,
J. Math. Anal. Appl., 274(2), 2002, 554–563.

[5] L. Caso, P. Cavaliere, M. Transirico, On the maximum principle for elliptic
operators, Math. Inequal. Appl., 7(3), 2004, 405–418.

[6] L. Caso, R. D’Ambrosio, S. Monsurró, Some remarks on spaces of Morrey
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