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On a Boundary Value Problem for Fourth-Order
Operator-Differential Equations with a Variable
Coefficient
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Abstract. In this work, conditions for the regular solvability of one boundary-value
problem for fourth-order operator-differential equations with a variable coefficient on
the semi-axis are found. The obtained conditions are expressed by the properties of
the coefficients of the considered operator-differential equation. Moreover, the norms of
intermediate derivatives operators are estimated in terms of the norm of the right-hand
side of the equation and these estimates are related to the solvability conditions of the
boundary value problem.
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1. Introduction

Interest in studying the solvability of differential equations in Banach and
Hilbert spaces and the spectral problems associated with them is growing every
year (see, for example, [1, 2] and the references therein). First of all, this is due
to the fact that many problems for differential operators with partial derivatives
can be reduced to the study of such equations.

Let H be a separable Hilbert space and A be a positive definite self-adjoint
operator in H with domain of definition D (A). Obviously, the domain of defini-
tion D (Aγ) of the operator Aγ becomes a Hilbert space Hγ with respect to the
scalar product (x, y)γ = (Aγx,Aγy), γ ≥ 0. For γ = 0 we assume H0 = H.

Denote by L2 (R+;H) the space of all vector functions defined on R+ =
(0,+∞) almost everywhere with values in H and with a norm

‖f‖L2(R+;H) =

(∫ +∞

0
‖f (t)‖2 dt

) 1
2

< +∞.
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Following the monograph [3], we define a Hilbert space

W 4
2 (R+;H) =

{
u : u(4) ∈ L2 (R+;H) , A4u ∈ L2 (R+;H)

}
with a norm

‖u‖W 4
2 (R+;H) =

(∥∥∥u(4)∥∥∥2
L2(R+;H)

+
∥∥A4u

∥∥2
L2(R+;H)

) 1
2

.

Throughout this work, derivatives are understood in the sense of the theory of
distributions [3].

Obviously, from the trace theorem [3] it follows that

◦
W 4

2 (R+;H) =
{
u : u ∈W 4

2 (R+;H) , u (0) = 0, u′ (0) = 0
}

is a complete subspace of a space W 4
2 (R+;H).

Consider the following boundary value problem in a Hilbert space H:

L (d/dt)u (t) =
d4u (t)

dt4
+ ρ (t)A4u (t) +

4∑
j=0

A4−ju
(j) (t) = f (t) , t ∈ R+, (1)

u (0) = ϕ0, u
′ (0) = ϕ1, (2)

where f (t) ∈ L2 (R+;H) , u (t) ∈ W 4
2 (R+;H), ϕ0 ∈ H 7

2
, ϕ1 ∈ H 5

2
, and operator

coefficients satisfy the following conditions:

1. A is a positive definite self-adjoint operator;

2. ρ (t) is a scalar measurable function in R+ and 0 < α < f (t) < β < +∞;

3. the operators Bj = AjA
−j , j = 0, 4, are bounded in H.

Definition 1. If for any f (t) ∈ L2 (R+;H) , ϕ0 ∈ H 7
2
, ϕ1 ∈ H 5

2
there exists a

vector function u (t) ∈ W 4
2 (R+;H) that satisfies equation (1) almost everywhere

in R+, the boundary conditions (2) in the sense of convergence

lim
t→+0

‖u (t)− ϕ‖ 7
2

= 0, lim
t→+0

∥∥u′ (t)− ϕ1

∥∥
5
2

= 0

and an estimate

‖u‖W 4
2 (R+;H) ≤ const

(
‖f‖L2(R+;H) + ‖ϕ0‖ 7

2
+ ‖ϕ1‖ 5

2

)
,

then the boundary value problem (1), (2) is called regularly solvable.
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It should be noted that operator-differential equations and boundary value
problems of type (1), (2) for them have been studied by many authors.

In these works, basically, ϕ0 = ϕ1 = 0 and ρ (t) takes only two positive values
(see, for example, [4–11]), i.e. ρ (t) = α for t ∈ (0, t0) and ρ (t) = β for t ∈ (t0,∞).

In this paper, ρ (t) can take any positive value and have discontinuity points
of the first kind.

Further, it should be noted that if u(t) ∈ W 4
2 (R+;H), then by the trace

theorem and by the intermediate derivative theorem u(k) (0) ∈ H4−k− 1
2
, k = 0, 3,

A4−ku(k) ∈ L2 (R+;H), k = 0, 4. Moreover∥∥∥u(k) (0)
∥∥∥
4−k− 1

2

≤ const ‖u‖W 4
2 (R+;H) ,

∥∥∥A4−ku(k)
∥∥∥
L2(R+;H)

≤ const ‖u‖W 4
2 (R+;H) .

2. Main results

First let us prove the following

Lemma 1. Let ω1 = − 1√
2

(1 + i) , ω2 = − 1√
2

(1− i), and e−At be a semigroup

of bounded operators generated by the operator −A. Then the vector-function
u0 (t) = eω1tAx1+eω2tAx2 belongs to the space W 4

2 (R+;H) if and only if x1 ∈ H 7
2
,

x2 ∈ H 7
2
.

Proof. The necessity of the statement follows from the trace theorem, since
x1 + x2 ∈ H 7

2
, ω1x1 + ω2x2 = A−1u′ (0) ∈ H 7

2
. Hence we have x1, x2 ∈ H 7

2
. On

the other hand, for x1, x2 ∈ H 7
2

we have u0 (t) ∈ W 4
2 (R+;H). For x1 ∈ H 7

2
let

us show that eω1Ax1 ∈W 4
2 (R+;H). Obviously, there exists a vector y ∈ H such

that A7/2x1 = y. Then ∥∥eω1tAx1
∥∥2
W 4

2 (R+;H)
=

= 2
∥∥∥eω1tAA1/2y

∥∥∥2
L2(R+;H)

= 2
(
A1/2eω1tAy,A1/2eω1tAy

)
L2(R+;H)

=

= 2

∫ µ

0
µ

∫ ∞
µ

e−
√
2tµ (dEµy, y) =

√
2 ‖y‖2 =

√
2 ‖x1‖27/2 .

Hence, we have u0 (t) ∈W 4
2 (R+;H). Lemma is proved. J

In problem (1), (2) we make the change

u (t) = v (t) + u0 (t) , v (t) ∈W 4
2 (R+;H) , u0 (t) ∈W 4

2 (R+;H) .

Moreover, we choose vectors x1 and x2 from u0 (t) = eω1tAx1 + eω2tAx2 so that
v (0) = 0, v′ (0) = 0, i.e.

x1 + x2 = ϕ0, ω1x1 + ω2x2 = A−1ϕ1.
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It is obvious that ϕ0, A
−1ϕ1 ∈ H7/2 and are uniquely determined from this

system, and

‖x1‖ 7
2
≤ const

(
‖ϕ0‖ 7

2
+ ‖ϕ1‖ 5

2

)
,

‖x2‖ 7
2
≤ const

(
‖ϕ0‖ 7

2
+ ‖ϕ1‖ 5

2

)
,

i.e.

‖u0‖W 4
2 (R+;H) ≤ const

(
‖ϕ0‖ 7

2
+ ‖ϕ1‖ 5

2

)
.

Thus, from (1), (2) we obtain the boundary value problem

L (d/dt) v (t) = L (d/dt)u (t)− L (d/dt)u0 (t) , (3)

v (0) = 0, v′ (0) = 0. (4)

Denote

g (t) = L (d/dt)u (t)− L (d/dt)u0 (t) = f (t)− L (d/dt)u0 (t) .

Let us show that g (t) ∈ L2 (R+;H). In fact,

‖g‖L2(R+;H) ≤ ‖f‖L2(R+;H) + ‖L (d/dt)u0‖L2(R+;H) ≤

≤ ‖f‖L2(R+;H) +

∥∥∥∥d4u0dt4
+ ρ (t)A4u0

∥∥∥∥
L2(R+;H)

+

+

4∑
j=0

∥∥∥A4−jA
−(4−j)

∥∥∥∥∥∥A4−ju
(j)
0

∥∥∥
L2(R+;H)

≤

≤ ‖f‖L2(R+;H) +

∥∥∥∥d4u0dt4

∥∥∥∥
L2(R+;H)

+ β
∥∥A4u0

∥∥
L2(R+;H)

+

+
4∑
j=0

‖B4−j‖
∥∥∥A4−ju

(j)
0

∥∥∥
L2(R+;H)

.

Further, taking into account the intermediate derivatives theorem, we obtain

‖g‖L2(R+;H) ≤ ‖f‖L2(R+;H) + const ‖u0‖W 4
2 (R+;H) ≤

≤ ‖f‖L2(R+;H) + const
(
‖ϕ0‖7/2 + ‖ϕ1‖5/2

)
,

i.e. g (t) ∈ L2 (R+;H).
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Thus, from (1), (2) we obtain the boundary value problem

L (d/dt) v (t) = g (t) ,

v (0) = 0, v′ (0) = 0.

Let us define in space L2 (R+;H) an operator L0 with a domain of definition

D (L0) =
◦
W 4

2 (R+;H), and

L0v =
d4v

dt4
+ ρ (t)A4v.

It is obvious that the operator L0 :
◦
W 4

2 (R+;H)→ L2 (R+;H) is self-adjoint. On
the other hand, for every v ∈ D (L0) (v (0) = v′ (0) = 0)

(L0v, v)L2(R+;H) =

(
d4v

dt4
, v

)
L2(R+;H)

+
(
ρ (t)A4v, v

)
L2(R+;H)

≥

≥
∥∥v′′∥∥2

L2(R+;H)
+ αλ40 ‖v‖

2
L2(R+;H) ,

where λ0 is a lower bound for the spectrum of the operator A. Then we obtain
KerL0 = {0} and ImL0 = L2 (R+;H). Thus, it is proved.

Theorem 1. Operator L0 maps the domain of definition of the operator L0

isomorphically onto L2 (R+;H).

First, let us study some properties of solutions of the equation L0v = h, where
v ∈ D (L0), h ∈ L2 (R+;H).

The following theorem is valid.

Theorem 2. Let the vector function v(t) be a solution of the equation

d4v

dt4
+ ρ (t)A4v (t) = h (t) . (5)

Then the following inequalities hold for this solution:∥∥A4v
∥∥
L2(R+;H)

≤ α−1 ‖h‖L2(R+;H) , (6)∥∥A3v′
∥∥
L2(R+;H)

≤ 2−
1
2α−

3
4 ‖h‖L2(R+;H) , (7)∥∥A2v′′

∥∥
L2(R+;H)

≤ 2−1α−
1
2 ‖h‖L2(R+;H) , (8)∥∥Av′′′∥∥

L2(R+;H)
≤ 2−

1
4α−

1
2β

1
4 ‖h‖L2(R+;H) , (9)∥∥∥∥d4vdt4

∥∥∥∥
L2(R+;H)

≤ α−
1
2β

1
2 ‖h‖L2(R+;H) . (10)
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Proof. Multiplying both sides of equation (5) by a function ρ−1/2 (t), we
obtain

ρ−
1
2 (t)

d4v (t)

dt4
+ ρ

1
2 (t)A4v (t) = ρ−

1
2 (t)h (t) .

Hence we have ∥∥∥∥ρ− 1
2
d4v

dt4
+ ρ

1
2A4v

∥∥∥∥2
L2(R+;H)

=
∥∥∥ρ− 1

2h
∥∥∥2
L2(R;H)

.

On the other hand, we obtain∥∥∥∥ρ− 1
2
d4v

dt4
+ ρ

1
2A4v

∥∥∥∥2
L2(R+;H)

=

∥∥∥∥ρ− 1
2
d4v

dt4

∥∥∥∥2
L2(R+;H)

+

∥∥∥ρ 1
2A4v

∥∥∥2
L2(R+;H)

+ 2Re

(
d4v

dt4
, A4v

)
L2(R+;H)

. (11)

After integration by parts, we have(
d4v

dt4
, A4v

)
L2(R+:H)

=

(
A2d

2v

dt2
, A2d

2v

dt2

)
L2(R+:H)

. (12)

Taking into account (12) in equality (11), we obtain∥∥∥∥ρ− 1
2
d4v

dt4

∥∥∥∥2
L2(R+;H)

+
∥∥∥ρ 1

2A4v
∥∥∥2
L2(R+;H)

+ 2

∥∥∥∥A2d
2v

dt2

∥∥∥∥2
L2(R+;H)

=
∥∥∥ρ− 1

2h
∥∥∥2
L2(R+;H)

.

(13)
From equality (13) it follows that∥∥∥ρ 1

2A4v
∥∥∥2
L2(R+;H)

≤
∥∥∥ρ− 1

2h
∥∥∥2
L2(R+;H)

. (14)

Therefore, taking inequality (14) into account, we obtain∥∥A4v
∥∥2
L2(R+;H)

=
∥∥∥ρ− 1

2 ρ
1
2A4v

∥∥∥2
L2(R+;H)

≤ α−1
∥∥∥ρ 1

2A4v
∥∥∥2
L2(R+;H)

≤

≤ α−1
∥∥∥ρ− 1

2h
∥∥∥2
L2(R+;H)

≤ α−2 ‖h‖2L2(R+;H) ,

i.e. ∥∥A4v
∥∥
L2(R+;H)

≤ α−1 ‖h‖L2(R+;H) .

Inequality (6) is proved.
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Further, from inequality (13), we similarly obtain∥∥∥∥ρ− 1
2
d4v

dt4

∥∥∥∥2
L2(R+;H)

≤
∥∥∥ρ− 1

2h
∥∥∥2
L2(R+;H)

,

i.e. ∥∥∥∥d4vdt4
∥∥∥∥2
L2(R+;H)

=

∥∥∥∥ρ 1
2 ρ−

1
2
d4v

dt4

∥∥∥∥2
L2(R+;H)

≤ β
∥∥∥∥ρ− 1

2
d4v

dt4

∥∥∥∥2
L2(R+;H)

≤

≤ β
∥∥∥ρ− 1

2h
∥∥∥2
L2(R+;H)

≤ α−1β ‖h‖2L2(R+;H) .

Therefore, inequality (10) is also proved.
On the other hand, v (t) is a solution of the equation L0v = h (v (0) = v′ (0) =

0). Then it is obvious that after integration by parts we have:

∥∥A2v′′
∥∥2
L2(R+;H)

=
(
A2v′′, A2v′′

)
L2(R+;H)

=

(
A4v,

d4v

dt4

)
L2(R+;H)

=

=

(
ρ

1
2A4v, ρ−

1
2
d4v

dt4

)
L2(R+;H)

≤

≤
∥∥∥ρ 1

2A4v
∥∥∥
L2(R+;H)

∥∥∥∥ρ− 1
2
d4v

dt4

∥∥∥∥
L2(R+;H)

≤

≤ 1

2

(∥∥∥ρ 1
2A4v

∥∥∥2
L2(R+;H)

+

∥∥∥∥ρ− 1
2
d4v

dt4

∥∥∥∥2
L2(R+;H)

)
. (15)

From equality (13) it follows that∥∥∥ρ 1
2A4v

∥∥∥2
L2(R+;H)

+

∥∥∥∥ρ− 1
2
d4v

dt4

∥∥∥∥2
L2(R+;H)

=
∥∥∥ρ− 1

2h
∥∥∥2
L2(R+;H)

− 2
∥∥A2v′′

∥∥2
L2(R+;H)

.

Considering this equality in (15), we have

∥∥A2v′′
∥∥2
L2(R+;H)

≤ 1

2

(∥∥∥ρ− 1
2h
∥∥∥2
L2(R+;H)

− 2
∥∥A2v′′

∥∥2
L2(R+;H)

)
.

Consequently,

2
∥∥A2v′′

∥∥2
L2(R+;H)

≤ 1

2

∥∥∥ρ− 1
2h
∥∥∥2
L2(R+;H)

,

i.e. ∥∥A2v′′
∥∥2
L2(R+;H)

≤ 1

4

∥∥∥ρ− 1
2h
∥∥∥2
L2(R+;H)

.
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Hence we have∥∥A2v′′
∥∥
L2(R+;H)

≤ 1

2

∥∥∥ρ− 1
2h
∥∥∥
L2(R+;H)

≤ 1

2
α−

1
2 ‖h‖L2(R+;H) .

Inequality (8) is proved.
Let us prove the remaining inequalities. We have∥∥A3v′

∥∥
L2(R+;H)

=
(
A3v′, A3v′

)
L2(R+;H)

=

= −
(
A4v,A2v′′

)
L2(R+;H)

≤
∥∥A4v

∥∥
L2(R+;H)

∥∥A2v′′
∥∥
L2(R+;H)

.

Taking into account the proved inequalities (6) and (8), we obtain∥∥A3v′
∥∥2
L2(R+;H)

≤ α−12−1α−
1
2 ‖h‖2L2(R+;H) ≤ 2−1α−

3
2 ‖h‖2L2(R+;H) .

Consequently, ∥∥A3v′
∥∥
L2(R+;H)

≤ 2−
1
2α−

3
4 ‖h‖L2(R+;H) .

Inequality (7) is proved.
Now let us prove inequality (9). For this purpose, consider the norm

N =

∥∥∥∥τ2v(4) +Av′′′ +
1

τ2
A2v′′

∥∥∥∥2
L2(R+;H)

for v ∈ D (L0) (v (0) = v′ (0) = 0), and τ > 0. It is clear that

N = τ4
∥∥∥v(4)∥∥∥2

L2(R+;H)
+

1

τ4
∥∥A2v′′

∥∥2
L2(R+;H)

+

+
∥∥Av′′′∥∥2

L2(R+;H)
+ 2Re

(
v(4), A2v′′

)2
L2(R+;H)

+

+2τ2Re
(
v(4), A2v′′′

)
L2(R+;H)

+ 2
1

τ2
Re
(
Av′′′, A2v′′

)
L2(R+;H)

. (16)

After integration by parts, we have:(
v(4), A2v′′

)
L2(R+;H)

= −
∥∥Av′′′∥∥2

L2(R+;H)
−
(
A

1
2 v′′′ (0) , A

3
2 v′′ (0)

)
, (17)

2Re
(
v(4), Av′′′

)
L2(R+;H)

= −
∥∥∥A 1

2 v′′′ (0)
∥∥∥2 , (18)

2Re
(
Av′′′, A2v′′

)
L2(R+;H)

= −
∥∥∥A 3

2 v′′ (0)
∥∥∥2 . (19)
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Therefore, taking into account equalities (17)-(19) in (16), we obtain

N = τ4
∥∥∥v(4)∥∥∥2

L2(R+;H)
+

1

τ4
∥∥A2v′′

∥∥2
L2(R+;H)

−

−
∥∥Av′′′∥∥2

L2(R+;H)
−
∥∥∥τA 1

2 v′′′ (0) + τ−1A
3
2 v′′ (0)

∥∥∥2 .
Hence we have∥∥Av′′′∥∥2

L2(R+;H)
+
∥∥∥τA 1

2 v′′′ (0) + τ−1A
3
2 v′′ (0)

∥∥∥2 +N =

= τ4
∥∥∥v(4)∥∥∥2

L2(R+;H)
+

1

τ4
∥∥A2v′′

∥∥2
L2(R+;H)

.

Consequently,∥∥Av′′′∥∥2
L2(R+;H)

≤ τ4
∥∥∥v(4)∥∥∥2

L2(R+;H)
+ τ−4

∥∥A2v′′
∥∥2
L2(R+;H)

.

Putting τ2 =
(∥∥A2v′′

∥∥
L2(R+;H)

∥∥v(4)∥∥−1
L2(R+;H)

) 1
2
, we obtain for any ε > 0

∥∥Av′′′∥∥2
L2(R+;H)

≤ 2
∥∥A2v′′

∥∥
L2(R+;H)

∥∥∥v(4)∥∥∥
L2(R+;H)

≤

≤ 2β
1
2

∥∥∥ρ− 1
2 v(4)

∥∥∥
L2(R+;H)

∥∥A2v′′
∥∥
L2(R+;H)

≤

≤ β
1
2

(
ε
∥∥∥ρ− 1

2 v(4)
∥∥∥2
L2(R+;H)

+
1

ε

∥∥A2v′′
∥∥2
L2(R+;H)

)
.

Taking ε = 2−
1
2 , we obtain∥∥Av′′′∥∥2

L2(R+;H)
≤ β

1
2

(
2−

1
2

∥∥∥ρ− 1
2 v(4)

∥∥∥2
L2(R+;H)

+ 2
1
2

∥∥A2v′′
∥∥2
L2(R+;H)

)
.

Taking into account the equality (13) we have:∥∥Av′′′∥∥2
L2(R+;H)

≤ 2−
1
2β

1
2

∥∥∥ρ− 1
2h
∥∥∥2
L2(R+;H)

≤ 2−
1
2β

1
2α−1 ‖h‖2L2(R+;H) ,

i.e. ∥∥Av′′′∥∥
L2(R+;H)

≤ 2−
1
4β

1
4α−

1
2 ‖h‖L2(R+;H) .

Theorem is proved. J

Now, let us prove the main theorem.
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Theorem 3. Let the conditions 1) -3) be satisfied, and moreover, the operators
Bj = AjA

−j, j = 0, 4, be such that the inequality

q =

4∑
j=0

cj ‖B4−j‖ < 1

holds, where c0 = α−1, c1 = 2−
1
2α−

3
4 , c2 = 2−1α−

1
2 , c3 = 2−

1
4α−

1
2β

1
4 , c4 =

α−
1
2β

1
2 . Then the boundary value problem (1), (2) is regularly solvable.

Proof. After replacing u (t) = v (t) + u0 (t), where v (t) ∈ W 4
2 (R+;H) ,

u0 (t) = eω1tAx1 + eω2tAx2, problem (3), (4) can be written in the form L0v(t) +

L1v(t) = g(t), where L0v (t) = d4v(t)
dt4

+ ρ (t)A4v (t), L1v =
∑4

j=0Ajv
(4−j)(t),

g (t) ∈ L2 (R+;H). Since L0 is an invertible operator, then, assuming L0v = w,
we obtain an equation w + L1L

−1
0 w = g in the space L2 (R+;H). On the other

hand, for any w(t) ∈ L2 (R+;H) we have:

∥∥L1L
−1
0 w

∥∥
L2(R+;H)

= ‖L1v‖L2(R+;H) ≤
4∑
j=0

‖B4−j‖
∥∥∥A4−jv(j)

∥∥∥
L2(R+;H)

.

Taking into account the inequalities (6)-(10) from Theorem 2, we obtain:

∥∥L1L
−1
0 w

∥∥
L2(R+;H)

≤
4∑
j=0

cj ‖B4−j‖ ‖w‖L2(R+;H) = q ‖w‖L2(R+;H) .

Since 0 < q < 1, we have v = L−10

(
E + L1L

−1
0

)−1
g and

‖v‖W 4
2 (R+;H) ≤ const ‖g‖L2(R+;H) .

Then the solution of the boundary value problem (1), (2) is representable in the
form u(t) = v(t) + u0(t). Moreover

‖u‖W 4
2 (R+;H) ≤ ‖v‖L2(R+;H) + ‖u0‖L2(R+;H) ≤

≤ const
(
‖g‖L2(R+;H) + ‖ϕ0‖ 7

2
+ ‖ϕ1‖ 5

2

)
≤

≤ const
(
‖f‖L2(R+;H) + ‖ϕ0‖ 7

2
+ ‖ϕ1‖ 5

2

)
.

Theorem is proved. J
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