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Abstract. In this paper, we establish the existence of at least three weak solutions for a
parametric problem for doubly eigenvalue elliptic systems involving the (p1(x), . . . , pn(x))-
Laplacian operator. Our technical approach is based on variational methods and recent
three critical points theorem obtained by Bonanno and Marano.
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1. Introduction

In this work, we deal with the multiplicity of weak solutions for nonlinear
elliptic system:

−∆pi(x)ui + ai(x)|ui|pi(x)−2ui = λFui(x, u1, u2, ..., un) in RN , (1)

for 1 ≤ i ≤ n, where ∆pi(x)ui := div (|∇ui|pi(x)−2∇ui) is the pi(x)-Laplacian
operator for all 1 ≤ i ≤ n, pi(x) are continuous real-valued functions such that
1 < p−i = infx∈RN pi(x) ≤ pi(x) ≤ p+

i = supx∈RN pi(x) < N (N ≥ 2) for all x ∈
RN , λ is a positive parameter, ai ∈ L∞(RN ) such that ai := ess infx∈RN ai(x) > 0,
the real function F belongs to C1(RN × Rn), Fui denotes the partial derivative
of F with respect to ui.

The p(x)-Laplacian operator possesses more complicated non-linearities than
p-Laplacian operator, mainly due to the fact that it is not homogeneous. The
study of various mathematical problems involving p(x) growth condition have
seen a strong rise of interest in recent years, we can, for example, refer to
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[8, 9, 10, 11, 14, 17, 19, 22, 23, 28]. This great interest may be justified by
various physical applications of this operator. In fact, there are applications
concerning nonlinear elasticity theory [30], electro-rheological fluids [26, 27], sta-
tionary thermorheological viscous flows [2] and continuum mechanics [3], etc. It
also has wide applications in different research fields, such as image processing
model [12], and the mathematical description of the filtration process of an ideal
barotropic gas through a porous medium [4].

The goal of this work is to establish the existence of some interval which
includes λ, where the system (1) admits at least three weak solutions, by means
of a very recent abstract critical points result of G. Bonanno and S.A. Marano [7],
which is a more precise version of Theorem 3.2 of [6]. For other basic notations
and definitions we refer to [29].

Lemma 1 (see [7, Theorem 3.6]). Let X be a reflexive real Banach space; Φ :
X → R be a coercive, continuously Gâteaux differentiable and sequentially weakly
lower semicontinuous functional whose Gâteaux derivative admits a continuous
inverse on X∗; Ψ : X → R be a continuously Gâteaux differentiable functional
whose Gâteaux derivative is compact such that

Φ(0) = Ψ(0) = 0.

Assume that there exist r > 0 and x ∈ X, with r < Φ(x), such that

(a1)
supΦ(x)≤r Ψ(x)

r < Ψ(x)
Φ(x) ;

(a2) for each λ ∈ Λr :=] Φ(x)
Ψ(x) ,

r
supΦ(x)≤r Ψ(x) [ the functional Φ− λΨ is coercive.

Then, for each λ ∈ Λr the functional Φ − λΨ has at least three distinct critical
points in X.

The rest of the paper is organized as follows. Section 2 contains some basic
preliminary knowledge of the variable exponent spaces and some results which
will be needed later. In Section 3, we establish our main results and give an
example of potential function F satisfying the assumptions requested in our main
results.

2. Preliminaries and basic notations

In this section, we introduce some definitions and results which will be used in
the next section. Firstly, we introduce some theories of Lebesgue-Sobolev spaces
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with variable exponent. The details can be found in [16, 20, 21]. Denote by
S(RN ) the set of all measurable real functions on RN . Set

C+(RN ) = {p ∈ C(RN ) : inf
x∈RN

p(x) > 1}.

For any p ∈ C+(RN ) we define

p− := inf
x∈RN

p(x) and p+ := sup
x∈RN

p(x).

For any p ∈ C+(RN ), we define the variable exponent Lebesgue space as

Lp(x)(RN ) =

{
u ∈ S(RN ) :

∫
RN
|u(x)|p(x)dx <∞

}
,

endowed with the Luxemburg norm

|u|p(x) := |u|Lp(x)(RN ) = inf

{
µ > 0 :

∫
RN

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
.

Let a ∈ S(RN ), and a(x) > 0 for a.e x ∈ RN . Define the weighted variable

exponent Lebesgue space L
p(x)
a (RN ) by

Lp(x)
a (RN ) =

{
u ∈ S(RN ) :

∫
RN

a(x)|u(x)|p(x)dx <∞
}
,

with the norm

|u|p(x),a(x) := |u|
L
p(x)
a (RN )

= inf

{
µ > 0 :

∫
RN

a(x)

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
.

From now on, we suppose that a ∈ L∞(RN ) with a := ess infx∈RN a(x) > 0.

Then obviously L
p(x)
a is a Banach space (see [13] for details).

On the other hand, the variable exponent Sobolev space W 1,p(x)(RN ) is de-
fined by

W 1,p(x)(RN ) = {u ∈ Lp(x)(RN ) : |∇u| ∈ Lp(x)(RN )},

and is endowed with the norm

‖u‖1,p(x) := ‖u‖W 1,p(x)(RN ) = |u|p(x) + |∇u|p(x), ∀u ∈W 1,p(x)(RN ).

Next, the weighted-variable exponent Sobolev space W
1,p(x)
a (RN ) is defined

by
W 1,p(x)
a (RN ) = {u ∈ Lp(x)

a (RN ) : |∇u| ∈ Lp(x)
a (RN )},
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with the norm

‖u‖a := inf

{
µ > 0 :

∫
RN

∣∣∣∣∇u(x)

µ

∣∣∣∣p(x)

+ a(x)

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
,∀u ∈W 1,p(x)

a (RN ).

Then the norms ‖u‖a and ‖u‖p(x) are equivalent in W
1,p(x)
a (RN ).

If p− > 1, then the spaces Lp(x)(RN ), W 1,p(x)(RN ) and W
1,p(x)
a (RN ) are

separable, reflexive and uniformly convex Banach spaces.

Here we display some facts which will be used later.

Proposition 1 (see [16, 20]). The conjugate space of Lp(x)(Ω) is Lp
′(x)(Ω), where

1

p(x)
+

1

p′(x)
= 1.

Moreover, for any (u, v) ∈ Lp(x)(Ω)× Lp′(x)(Ω), we have

|
∫

Ω
uvdx| ≤ (

1

p−
+

1

(p′)−
)|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x).

Proposition 2 (see [16, 20]). Denote ρ(u) =
∫
RN |u|

p(x)dx, for all u ∈ Lp(x)(RN ).
We have

min{|u|p
−

p(x), |u|
p+

p(x)} ≤ ρ(u) ≤ max{|u|p
−

p(x), |u|
p+

p(x)},

and the following implications are true:

(i) |u|p(x) < 1 (resp. = 1, > 1) ⇔ ρ(u) < 1 (resp. = 1, > 1),

(ii) |u|p(x) > 1⇒ |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x),

(iii) |u|p(x) < 1⇒ |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x).

From Proposition (2), we have:

‖u‖p−a ≤
∫
RN

(
|∇u(x)|p(x) + a(x) |u(x)|p(x)

)
dx ≤ ‖u‖p+

a if ‖u‖a ≥ 1. (2)

‖u‖p+

a ≤
∫
RN

(
|∇u(x)|p(x) + a(x) |u(x)|p(x)

)
dx ≤ ‖u‖p−a if ‖u‖a ≤ 1. (3)



Multiple Solutions to a (p1(x), . . . , pn(x))-Laplacian-type Systems 7

Proposition 3 (see [18]). Let p(x) and q(x) be measurable functions such that
p ∈ L∞(RN ) and 1 ≤ p(x), q(x) ≤ ∞ almost everywhere in RN . If u ∈ Lq(x)(RN ),
u 6= 0. Then, we have

|u|p(x)q(x) ≤ 1⇒ |u|p
−

p(x)q(x) ≤
∣∣|u|p(x)

∣∣
q(x)
≤ |u|p

+

p(x)q(x),

|u|p(x)q(x) ≥ 1⇒ |u|p
+

p(x)q(x) ≤
∣∣|u|p(x)

∣∣
q(x)
≤ |u|p

−

p(x)q(x).

In particular, if p(x) = p is constant, then

||u|p|q(x) = |u|ppq(x).

For all x ∈ RN denote by

p∗(x) =

{
Np(x)
N−p(x) for p(x) < N

+∞ for p(x) ≥ N

the critical Sobolev exponent of p(x).

Proposition 4 (see [16, 18]). Let p ∈ C0,1
+ (RN ) be the space of Lipschitz-

continuous functions defined on RN . Then, there exists a positive constant c
such that

|u|p∗(x) ≤ c‖u‖a, ∀u ∈W 1,p(x)
a (RN ).

Proposition 5 (see [16, 18]). Assume that p ∈ C(RN ) with p(x) > 1 for each
x ∈ RN . If q ∈ C(RN ) and 1 < q(x) < p∗(x) for each x ∈ Ω, then there exists a
continuous and compact embedding W 1,p(x)(RN ) ↪→ Lq(x)(RN ).

In the following discussions, we will use the product space

X :=

n∏
i=1

W 1,pi(x)
ai (RN ),

which is equipped with the norm

‖u‖ :=

n∑
i=1

‖u‖ai , ∀u = (u1, u2, ..., un) ∈ X,

where ‖u‖ai is the norm of W
1,pi(x)
ai (RN ). The space X? denotes the dual space

of X equipped with the usual dual norm.
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Definition 1. u = (u1, u2, ..., un) ∈ X is called a weak solution of the system (1)
if

n∑
i=1

∫
RN

(
|∇ui(x)|pi(x)−2∇ui∇vi + ai(x) |ui|pi(x)−2 uivi

)
dx−

−λ
n∑
i=1

Fui(x, u1, ...un)vi dx = 0

for all v = (v1, v2, ..., vn) ∈ X.

We denote by Eλ the energy functional associated with the problem (1)

Eλ(.) := Φ(.)− λΨ(.),

where Φ,Ψ : X −→ R are defined as follows:

Φ(u) =
n∑
i=1

∫
RN

1

pi(x)

(
|∇ui(x)|pi(x)dx+ ai(x)|ui(x)|pi(x)

)
dx,

Ψ(u) =

∫
RN

F (x, u1(x), ..., un(x))dx.

for any u = (u1, ..., un) in X.

It is well known that Eλ ∈ C1(X,R) and a critical point of Eλ corresponds
to a weak solution of problem (1).

Hypotheses. We assume some growth conditions:

(H1) F ∈ C1(RN × Rn,R) and F (x, 0, ..., 0) = 0.

(H2) There exist positive functions bij (1 ≤ i, j ≤ n), such that

∣∣∣ ∂F
∂ui

(x, u1, ..., un)
∣∣∣ ≤ n∑

j=1

bij(x)|uj |µij−1,

where 1 < µij < infx∈RN pi(x), and pi(x) > N
2 , for all x ∈ RN and for all

i ∈ {1, 2, ..., n}. The weight-functions bii (resp bij if i 6= j) belong to the
generalized Lebesgue spaces Lαi(RN ) (resp Lαij (RN )), with

αi(x) =
pi(x)

pi(x)− 1
, αij(x) =

p∗i (x)p∗j (x)

p∗i (x)p∗j (x)− p∗i (x)− p∗j (x)
.
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(H3) Assume that there exist r > 0 and w = (w1, ..., wn) ∈ X such that the
following conditions are satisfied:

(c1)
∑n

i=1

min

{
‖wi‖p

−
ai
,‖wi‖p

+

ai

}
p+
i

> r

(c2)

∫
RN sup(ξ1,...ξn)∈K(sr) F (x, ξ1, ...ξn)dx

r
<

∫
RN F (x,w1, ..., wn)dx∑n

i=1 max
{
‖wi‖p

−
ai , ‖wi‖

p+

ai

}
where K(t) :=

{
(ξ1, ...ξn) ∈ RN :

∑n
i=1 min

{
|ξi|(p

?)−

p?(x) , |ξi|
(p?)−

p?(x)

}
≤ t
}

with

t > 0
and s = min

{
p+
i min

{
c

(p?i )−

pi(x) , c
(p?i )+

pi(x)

}}
, such that cpi(x) represent the con-

stants associated with Proposition (4).

3. The main results

We will use the three critical points theorem obtained by Bonanno and Marano
together with the following lemmas to get our main results.

Lemma 2. The functional Φ is continuously Gâteaux differentiable and sequen-
tially weakly lower semicontinuous, coercive whose Gâteaux derivative admits a
continuous inverse on X?.

Proof. It is well-known that the functional Φ is well defined and is con-
tinuously Gâteaux differentiable functional whose derivative at the point u =
(u1, ..., un) ∈ X is the functional Φ

′
(u) given by

Φ′(u)(v) =

∫
Ω

n∑
i=1

(
|∇ui(x)|pi(x)−2∇ui(x)∇vi(x) + ai(x)|ui(x)|pi(x)ui(x)vi(x)

)
dx,

for every v = (v1, ..., vn) ∈ X.
Let us show that it is coercive. By using (2) and (3), we have for all u =

(u1, ..., un) ∈ X

Φ(u) =

∫
RN

n∑
i=1

1

pi(x)

(
|∇ui(x)|pi(x)dx+ ai(x)|ui(x)|pi(x)

)
dx,

≥
n∑
i=1

1

p+
i

∫
RN

(
|∇ui(x)|pi(x)dx+ ai(x)|ui(x)|pi(x)

)
dx,

≥
n∑
i=1

1

p+
i

min

{
‖ui‖

p−i
ai , ‖ui‖

p+
i
ai

}
.
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This shows that Φ(u)→ +∞ as ‖u‖ → ∞; that is , Φ is coercive on X.

Now we recall the elementary inequality (see, e.g., Chapter I in [15]) for any
α, β ∈ RN{
|α− β|γ ≤ 2γ

(
|α|γ−2α− |β|γ−2β

)
· (α− β) if γ ≥ 2

|α− β|2 ≤ (|α|+ |β|)2−γ (|α|γ−2α− |β|γ−2β
)
· (α− β) if 1 < γ < 2

(4)

where · denotes the standard inner product in RN .
Let us define the sets of RN dependent on pi

Upi :=
{
x ∈ RN pi(x) ≥ 2

}
,

Vpi :=
{
x ∈ RN 1 < pi(x) < 2

}
.

Now we show that Φ′ is uniformly monotone. Indeed,(
Φ′(u1)− Φ′(u2)

)
(u1 − u2) =

=
n∑
i=1

∫
RN

(
|∇u1

i |pi(x)−2∇u1
i − |∇u2

i |pi(x)−2∇u2
i

)
(∇u1

i −∇u2
i ) dx

+
n∑
i=1

∫
RN

(
ai(x)|u1

i |pi(x)u1
i − ai(x)|u2

i |pi(x)u2
i

)
(u1
i − u2

i ) dx,

Using the elementary inequality (4), we get(
Φ′(u1)− Φ′(u2)

)
(u1 − u2) ≥

n∑
i=1

∫
Upi

1

2p(x)

(
|∇(u1

i − u2
i )|pi(x) + ai(x)|u1

i − u2
i |pi(x)

)
dx

+
n∑
i=1

∫
Vpi

|∇(u1
i − u2

i )|pi(x)

(
|∇u1

i −∇u2
i |

|∇u1
i |+ |∇u2

i |

)2−pi(x)

dx

+
n∑
i=1

∫
Vpi

ai(x)|u1
i − u2

i |pi(x)

(
|u1
i − u2

i |
|u1
i |+ |u2

i |

)2−pi(x)

dx.

Due to the facts

0 ≤
(
|∇u1

i −∇u2
i |

|∇u1
i |+ |∇u2

i |

)2−pi(x)

≤ 1
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and

0 ≤
(
|u1
i − u2

i |
|u1
i |+ |u2

i |

)2−pi(x)

≤ 1,

we have
|(Φ′(u1)− Φ′(u2))(u1 − u2)| ≥

≥
n∑
i=1

∫
RN

1

2p(x)

(
|∇(u1

i − u2
i )|pi(x) + ai(x)|u1

i − u2
i |pi(x)

)
dx,

in other words, we have

(Φ′(u1)− Φ′(u2))(u1 − u2) ≥

≥ min

{
1

2pi(x)

} n∑
i=1

∫
RN

(
|∇(u1

i − u2
i )|pi(x) + ai(x)|u1

i − u2
i |pi(x)

)
dx

≥ 1

2N

n∑
i=1

min

{
‖u1

i − u2
i ‖
p−i
ai , ‖u1

i − u2
i ‖
p+
i
ai

}
≥ 0

for all u1 = (u1
1, ..., u

1
n), u2 = (u2

1, ..., u
2
n) ∈ X. Hence Φ′ is uniformly monotone

and therefore coercive (see (2)). Since Φ′ is semicontinuous in X, by applying
Minty-Browder theorem (Theorem 26.A of [29]), Φ′ admits a continuous inverse
on X?. Moreover, the monotony of Φ′ on X? assures us that Φ is sequentially
lower semicontinuous on X (see [29], Proposition 25. 20). J

Lemma 3. Under the assumptions (H1) and (H2), the functional Ψ is well
defined, and it is of class C1 on X. Moreover, its derivative is

Ψ
′
(u)h =

n∑
i=1

∫
RN

∂F

∂ui
(x, u1(x), ..., un(x)hi(x) dx

∀u = (u1, ..., un), h = (h1, ..., hn) ∈ X.

Proof. For all u = (u1, ..., un) ∈ X, under the assumptions (H1) and (H2),
we can write

F (x, u1, ..., un) =
n∑
i=1

∫ ui

0

∂F

∂s
(x, u1, ..., s, ..., un) ds+ F (x, 0, ..., 0),

F (x, u1, ..., un) ≤ c1

 n∑
i=1

 n∑
j=1

bij(x)|uj(x)|µij−1|ui(x)|

 . (5)
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Then,

∫
RN

F (x, u1, ..., un) dx ≤ c2

 n∑
i=1

∫
RN

n∑
j=1

bij(x)|uj(x)|µij−1|ui(x)| dx

 . (6)

If we consider the fact that W 1,p(x)(RN ) ↪→ Lµ(x)(RN ), for µ(x) > 1, then there
exists c > 0 such that

||u|µ|p(x) = |u|µµp(x) ≤ c‖u‖
µ
p(x),

and if we apply Propositions 1, 3 and 4 and take bii ∈ Lαi(x), bij ∈ Lαij(x) if
i 6= j, then we have∫

RN
F (x, u1, ..., un) ≤ c3

[ n∑
i=1

( n∑
j=1

|bij |αij(x)||uj |µij−1|p?j (x)|ui|p?i (x)

)]
(7)

≤ c3

[ n∑
i=1

( n∑
j=1

|bij |αij(x)|uj |
µij−1

(µij−1)p?j (x)|ui|p?i (x)

)]
(8)

≤ c3

[ n∑
i=1

( n∑
j=1

|bij |αij(x)‖uj‖
µij−1

pj(x) ‖ui‖pi(x)

)]
<∞. (9)

Hence, Ψ is well defined. Moreover, one can easily see that Ψ′ is also well defined
on X. Indeed, using (F2) for all h = (h1, ..., hn) ∈ X, we have

Ψ′(u)h =
n∑
i=1

∫
RN

∂F

∂ui
(x, u1, ..., un)hi dx

≤
n∑
i=1

( n∑
j=1

bij(x)|uj(x)|µij−1
)
|hi(x)|dx.

Following Hölder inequality, we obtain

Ψ′(u)h ≤ c4

[ n∑
i=1

( n∑
j=1

|bij |αij(x)||uj |µij−1|p?j (x)|hi|p?i (x)

)]
.

The above propositions yield

Ψ′(u)h ≤ c
[ n∑
i=1

( n∑
j=1

|bij |βij(x)‖uj‖
µij−1

pj(x) ‖hi‖pi(x)

)]
<∞.
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Now let us show that Ψ is differentiable in the sense of Frechet, that is, for
fixed u = (u1, ..., un) ∈ X and given ε > 0, there must be a δ = δε,u1,...,un > 0
such that

|Ψ(u1+h1, ..., un+hn)−Ψ(u1, ..., un)−Ψ
′
(u1, ..., un)(h1, ..., hn)| ≤ ε

n∑
i=1

(‖hi‖pi(x))

for all h = (h1, ..., hn) ∈ X with
∑n

i=1(‖hi‖pi(x)) ≤ δ.
Let BR be the ball of radius R which is centered at the origin of RN and denote

B
′
R = RN −BR. Moreover, let us define the functional ΨR on

∏n
i=1W

1,pi(x)
ai (BR)

as follows:

ΨR(u) =

∫
BR

F (x, u1(x), ..., un(x)) dx.

If we consider (H1) and (H2), it is easy to see that ΨR ∈ C1(
∏n
i=1W

1,pi(x)
ai (BR)),

and in addition for all h = (h1, ..., hn) ∈
∏n
i=1W

1,pi(x)
ai (BR), we have

Ψ
′
R(u)h =

n∑
i=1

∫
BR

∂F

∂ui
(x, u1(x), ..., un(x))hi(x) dx.

Also as we know, the operator Ψ
′
R : X → X? is compact [20]. Then, for all

u = (u1, ..., un), h = (h1, ..., hn) ∈ X, we can write
|Ψ(u1 + h1, ..., un + hn)−Ψ(u1, ..., un)−Ψ

′
(u1, ..., un)(h1, ..., hn)|

≤ |ΨR(u1 + h1, ..., un + hn)−ΨR(u1, ..., un)−Ψ
′
R(u1, ..., un)(h1, ..., hn)|

+

∣∣∣∣∣
∫
B
′
R

(
F (x, u1 + h1, ..., un + hn)− F (x, u1, ..., un)−

−
n∑
i=1

∫
BR

∂F

∂ui
(x, u1, ..., un)hi

)
dx

∣∣∣∣∣ .
According to a classical theorem, there exist ξ1, ..., ξn ∈]0, 1[ such that∣∣∣∣∣

∫
B
′
R

(
F (x, u1 + h1, ..., un + hn)− F (x, u1, ..., un)

)
−

−
n∑
i=1

∫
BR

∂F

∂ui
(x, u1, ..., un)hi dx

∣∣∣∣∣
=

∣∣∣∣∣
∫
B
′
R

(
n∑
i=1

∂F

∂ui
(x, u1, ..., ui + ξihi, ..., un)hi −

n∑
i=1

∂F

∂ui
(x, u1, ..., un)

)
dx

∣∣∣∣∣ .
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Using the condition (H2), we have

∣∣∣ ∫
B
′
R

(
F (x, u1+h1, ..., un+hn)−F (x, u1, ..., un)

)
−

n∑
i=1

∫
BR

∂F

∂ui
(x, u1, ..., un)hi dx

∣∣∣
≤
∣∣∣ n∑
i=1

( n∑
j=1

∫
B
′
R

bij(x)(|uj + ξjhj |µij−1 − |uj |µij−1)hidx
)∣∣∣.

Using the elementary inequality |a + b|s ≤ 2s−1(|a|s + |b|s) for a, b ∈ RN , we
can write

≤
n∑
i=1

( n∑
j=1

(
(2µij−1 − 1)

∫
B
′
R

bij(x)|uj |µij−1|hi|dx+

+(ξj2)µij−1

∫
B
′
R

bij(x)|hj |µij−1|hi|dx
))
.

Then, applying Propositions 1, 3, and 4, we have

≤
n∑
i=1

c
( n∑
j=1

(
|bij(x)|αij‖uj‖

µij−1

p?1(x) + |bij(x)|αij‖hj‖
µij−1

p?j (x)

))
‖hi‖pi(x),

and by the fact that

|bii(x)|
Lαi (B

′
R)
−→ 0,

|bij(x)|
Lαij (B

′
R)
−→ 0

for 1 ≤ i, j ≤ n, as R→∞, and for R sufficiently large, we obtain the estimate∣∣∣∣∣
∫
B
′
R

(
F (x, u1 + h1, ..., un + hn)− F (x, u1, ..., un)−

−
n∑
i=1

∂F

∂ui
(x, u1, ..., un)hi

)
dx

∣∣∣∣∣ ≤ ε
n∑
i=1

(‖hi‖pi(x)).

It remains only to show that Ψ
′

is continuous on X. Let um = (um1 , ..., u
m
n ) be

such that um → u as m→∞. Then, for h = (h1, ..., hn) ∈ X, we have

|Ψ′(um)h−Ψ
′
(u)h| ≤ |Ψ′R(um)h−Ψ

′
R(u)h|

+
n∑
i=1

∫
B
′
R

∣∣∣( ∂F
∂ui

(x, um1 , ..., u
m
n )hi −

∂F

∂ui
(x, u1, ..., un)hi) dx

∣∣∣.
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Since Ψ′R is continuous on
∏n
i=1W

1,pi(x)
ai (BR)(see [20]), we have

|Ψ′R(um)h−Ψ
′
R(u)h| −→ 0,

as m→∞. Now, using (H2) once again and taking into account that the other
terms on the right-hand side of the above inequality tend to zero, we conclude
that Ψ′ is continuous on X. J

Lemma 4. Under the assumptions (H1) and (H2), Ψ
′

is compact from X to
X?.

Proof. Let um = (um1 , ..., u
m
n ) be a bounded sequence in X. Then, there exists

a subsequence (we denote it also as um = (um1 , ..., u
m
n ) ) which converges weakly

in X to u = (u1, ..., un) ∈ X. Then, if we use the same arguments as above, we
have

|Ψ′(um)h−Ψ
′
(u)h| ≤ |Ψ′R(um)h−Ψ

′
R(u)h|

+

n∑
i=1

∫
B
′
R

|( ∂F
∂ui

(x, um1 , ..., u
m
n )hi −

∂F

∂ui
(x, u1, ..., un)hi) dx|

Since the restriction operator is continuous, we have um ⇀ u in
∏n
i=1W

1,pi(x)
ai (BR).

Because of the compactness of Ψ
′
, the first expression on the right-hand side of

the inequality tends to 0, as m −→∞, and, as above, for sufficiently large R we
obtain

n∑
i=1

∫
B
′
R

∣∣∣( ∂F
∂ui

(x, um1 , ..., u
m
n )hi −

∂F

∂ui
(x, u1, ..., un)hi

)
dx
∣∣∣ −→ 0.

This implies Ψ
′

is compact from X to X?. J

Theorem 1. Under the assumptions (H1)− (H3), for each

λ ∈


∑n

i=1 max

{
‖wi‖

p−i
ai , ‖wi‖

p+
i
ai

}
∫
RN F (x,w1(x), ..., wn(x))dx

,
r∫

RN sup(ξ1,...ξn)∈K(sr) F (x, ξ1, ..., ξn)dx

 ,
the system (1) admits at least three distinct weak solutions in X.
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Proof. By Lemma 2, Φ is coercive and Φ(0) = Ψ(0) = 0. Also, we see that
the required hypothesis Φ(x) > r follows from (c1) and the definition of Φ by
choosing x = w = (w1, ..., wn). Moreover, by applying Proposition 4, for each

ui ∈W 1,pi(x)
ai

|ui|p?i ≤ c‖ui‖ai ,

with 1 ≤ i ≤ n, we have for each u = (u1, ..., un) ∈ X

1

s

n∑
i=1

min
{
|ui|p

−

p?i
, |ui|p

+

p?i

}
≤

n∑
i=1

1

p+
i

min
{
‖ui‖p

−
ai , ‖ui‖

p+

ai

}
(10)

with s = min
{
p+
i min

{
c

(p?i )−

pi(x) , c
(p?i )+

pi(x)

}}
. From (10), for each r > 0 we obtain

Φ−1(]−∞, r[) = {u = (u1, ..., un) ∈ X : Φ(u) ≤ r}

=

{
u = (u1, ..., un) ∈ X :

n∑
i=1

1

p+
i

min

{
‖ui‖

p−i
ai , ‖ui‖

p+
i
ai

}
≤ r

}

⊆

{
u = (u1, ..., un) ∈ X :

n∑
i=1

min

{
|ui|

p−i
p?i
, |ui|

p+
i
p?i

}
≤ sr

}
.

Then,

sup
u∈Φ−1(]−∞,r[)

Ψ(u) = sup
u∈Φ−1(]−∞,r[)

∫
RN

F (x, u1, ..., un)dx,

≤
∫
RN

sup
(ξ1,...ξn)∈K(sr)

F (x, ξ1, ..., ξn)dx.

Therefore, from the condition (c2), we have

sup
u∈Φ−1(]−∞,r[)

Ψ(u) ≤ r
∫
RN F (x,w1(x), ..., wn(x))dx∑n
i=1 max

{
‖wi‖

p−i
ai , ‖wi‖

p+
i
ai

} ,
≤ rΨ(w)

Φ(w)
.

from which (a1) of Lemma 1 follows.
To show that the functional Φ − λΨ is coercive, we use the inequallity (9).

Then for all u ∈ X, we have by virtue of (H1) and (H2)

Φ(u)− λΨ(u) =

n∑
i=1

∫
RN

1

pi(x)

(
|∇ui(x)|pi(x)dx+ ai(x)|ui(x)|pi(x)

)
dx
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− λ
∫
RN

F (x, u1(x), ..., un(x))dx,

≥
n∑
i=1

1

p+
i

∫
RN

(
|∇ui(x)|pi(x)dx+ ai(x)|ui(x)|pi(x)

)
dx

− c3

[ n∑
i=1

( n∑
i=j

|bij |αij(x)‖uj‖
µij−1

pj(x) ‖ui‖pi(x)

)]
.

Using Young’s inequality, we obtain

Φ(u)− λΨ(u) ≥
n∑
i=1

1

p+
i

‖ui‖
p−i
ai − c3

[ n∑
i=1

( n∑
j=1

|bij |αij(x)

(µij − 1

µij
‖uj‖

µij
pj(x)

+
1

µij
‖ui‖

µij
pi(x)

))]
,

≥
n∑
i=1

1

p+
i

‖ui‖
p−i
ai − c4

[ n∑
i=1

( n∑
j=1

(
|bij |αij(x)‖uj‖

µij
pj(x)

+ |bij |αij(x)‖ui‖
µij
pi(x)

))]
.

This shows that Φ−λΨ→ +∞ as ‖u‖X → +∞, since 1 < µij < infx∈RN pi(x);
that is, Φ − λΨ is coercive on X for every parameter λ, in particular, for every
λ ∈ Λr :=] Φ(w)

Ψ(w) ,
r

supΦ(w)≤r Ψ((w) [. Then, condition (a2) also holds. Now all the

hypotheses of Lemma 1 are satisfied. Also note that the solutions of the equation
Φ
′
(u)− λΨ

′
(u) = 0 are exactly the weak solutions of(1). Thus for each

λ ∈


∑n

i=1 max

{
‖wi‖

p−i
ai , ‖wi‖

p+
i
ai

}
∫
RN F (x,w1(x), ..., wn(x))dx

,
r∫

RN sup(ξ1,...ξn)∈K(sr) F (x, ξ1, ..., ξn)dx


the system (1) admits at least three weak solutions in X. J

Example

Let
F (x, u, v) = a(x)|u|β(x)|v|γ(x),

where β(x)
p(x) + γ(x)

q(x) < 1 and a is a positive function in Ls(x)(RN ) such that

s(x) =
p?(x)q?(x)

p?(x)q?(x) − β(x)q?(x) − γ(x)p?(x)
for each x ∈ RN .
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We can easily verify that F (x, u, v) satisfies the conditions (H1) and (H3).
Moreover, by using Young inequality we easily check that the condition (H2) is
also satisfied, and then the conclusion of Theorem 1 holds true.
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