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Fuzzy Normed Linear Spaces and Fuzzy Frames

B. Daraby∗, F. Delzendeh, A. Rostami, A. Rahimi

Abstract. In this paper, we show that every classical inner product on a linear space
induces the fuzzy inner product and fuzzy norm in the sense of Bag and Samanta. We
prove the Cauchy-Schwarz inequality on fuzzy Hilbert spaces. We also define fuzzy frame
on fuzzy Hilbert spaces. As is known, C∞(Ω) is not normable in classical Hilbert space,
but in this paper we show that C∞(Ω) is normable in fuzzy Hilbert space and so defining
fuzzy frame on C∞(Ω) is possible.
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1. Introduction

The idea of fuzzy norms on a linear space was first introduced by Katsaras
[17] in 1984. Later on, many authors, such as Felbin [16], Cheng, Mordeson
[8], Bag and Samanta [2] etc. gave different definitions of fuzzy normed linear
spaces. R. Biswas [7] and A. M. El-Abyad and H. M. El-Hamouly [15] tried to
give a meaningful definition of fuzzy inner product space and associated fuzzy
norm function by restricting to the real linear space. P. Mazumder and S. K.
Samanta introduced the definition of fuzzy inner product space in the sense of
Bag and Samanta fuzzy norm [2]. Moreover, B. T. Bilalov et al. investigated
the intuitionistic fuzzy normed space of coefficients [4], and B. T. Bilalov and F.
A. Guliyeva studied the basicity and weak basicity of system in the intuitionistic
fuzzy metric space in [5, 6]. Recently, B. Daraby and et al. [10] studied some
properties of fuzzy Hilbert spaces and showed that all results in classical Hilbert
spaces are immediate consequences of the corresponding results for Felbin-fuzzy
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Hilbert spaces. Also, they provided an example where the spectrum of the cat-
egory of Felbin- fuzzy Hilbert spaces is broader than that of the category of
classical Hilbert spaces [11].

One of the important concepts in the study of vector spaces is basis, which
allows every vector to be uniquely represented as a linear combination of basis
elements. The main feature of a basis {xk} in a Hilbert space H is that every
x ∈ H can be represented as a linear combination of elements xk in the form:

x =

∞∑
k=1

ck(x)xk. (1)

The coefficients ck(x) are unique. However, the linear independence property
for a basis which implies the uniqueness of coefficients is restrictive in appli-
cations; sometimes it is impossible to find vectors which both fulfill the basis
requirements and satisfy external conditions demanded by applied problems. For
such purposes, a more flexible types of spanning sets are needed. Frames provide
these alternatives. Frames are used in signal and image processing, non-harmonic
Fourier series, data compression, and sampling theory. Today, frame theory has
ever increasing applications to problems in both pure and applied mathematics,
physics, engineering, computer science and etc.

Many physical systems are inherently nonlinear functions and must be de-
scribed by non-linear models. But some systems have an uncertain structure and
it is not possible to provide an accurate mathematical model. Therefore, the
conventional control models cannot be applied to these systems. To solve these
problems, we need to use a new concept, namely, fuzzy frames theory and fuzzy
waveletes. Fuzzy frame and fuzzy wavelet came from frame theory, wavelet theory
and fuzzy concepts. For more information on approximation functions, control
and identification of nonlinear systems, see [3, 20]. It not only retains the frame
and wavelet properties, but also has some advantages such as simple structure for
approximation and good interpretability approximation of non-linear functions.

In this paper, we define fuzzy inner product satisfying (FIP8) and (FIP9)
on linear spaces, so we get the fuzzy norm in the sense of Bag and Samanta. In
Section 4, we introduce fuzzy frame and show that in fuzzy Hilbert space, C∞(Ω)
is normable and so we can define fuzzy frame on C∞(Ω).

2. Preliminaries

In this section, some definitions and preliminary results are given which will
be used in this paper.
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Definition 1. [2]. Let U be a linear space over the field F . A fuzzy subset N of
U × R is called a fuzzy norm on U if for all x, u ∈ U and c ∈ F , the following
conditions are satisfied:

(N1) ∀t ∈ R with t ≤ 0, N (x, t) = 0;

(N2) (∀t ∈ R, t > 0, N (x, t) = 1) iff x = 0;

(N3) ∀t ∈ R, t > 0, N (cx, t) = N(x, t
|c|) if c 6= 0;

(N4) ∀s, t ∈ R, x, u ∈ U,N (x+ u, s+ t) ≥ min {N (x, s) , N (u, t)};

(N5) N (x, .) is a non-decreasing function on R and limt→∞N (x, t) = 1.

The pair (U,N) will be referred to as a fuzzy normed linear space.

Theorem 1. [2] Let (U,N) be a fuzzy normed linear space. Assume further that,

(N6) ∀t > 0, N (x, t) > 0⇒ x = 0.

Define ‖x‖α =
∧
{t > 0 : N (x, t) ≥ α}, α ∈ (0, 1). Then {‖.‖α : α ∈ (0, 1)} is an

ascending family of norms on U and they are called α- norms on U corresponding
to the fuzzy norm N on U .

Definition 2. [1] Let (U,N) be a fuzzy normed linear space. Let {xn} be a
sequence in U . Then {xn} is said to be convergent if there exists x ∈ U such that
limn→∞N (xn − x, t) = 1, for all t > 0. In that case, x is called the limit of the
sequence {xn} and denoted by limxn.

Proposition 1. [8] Let (U,N) be a fuzzy normed linear space satisfying (N6)
and {xn} be a sequence in U . Then {xn} converges to x iff xn → x w.r.t. ‖.‖α,
for all α ∈ (0, 1).

Definition 3. [1] Let (U,N) be a fuzzy normed linear space and α ∈ (0, 1). A
sequence {xn} in U is said to be α-convergent in U if there exists x ∈ U such
that limn→∞N (xn − x, t) > α, for all t > 0 and x is called the limit of {xn}.

Proposition 2. [19] Let (U,N) be a fuzzy normed linear space satisfying (N6).
If {xn} is an α-convergent sequence in (U,N), then ‖xn − x‖α → 0 as n→∞.

Definition 4. [18] Let U be a linear space over the field C of complex numbers.
Let µ : U × U × C −→ I = [0, 1] be a mapping such that the following conditions
and statements hold:

(FIP1) for s, t ∈ C, µ (x+ y, z, |t|+ |s|) ≥ min {µ (x, z, |t|) , µ (y, z, |s|)};
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(FIP2) for s, t ∈ C, µ (x, y, |st|) ≥ min
{
µ
(
x, x, |s|2

)
, µ
(
y, y, |t|2

)}
;

(FIP3) for t ∈ C, µ (x, y, t) = µ
(
y, x, t

)
;

(FIP4) µ (αx, y, t) = µ(x, y, t
|α|), α ( 6= 0) ∈ C, t ∈ C;

(FIP5) µ (x, x, t) = 0,∀t ∈ C\R+;

(FIP6) (µ (x, x, t) = 1, ∀t > 0) iff x = 0;

(FIP7) µ (x, x, .) : R −→ I is a monotonic non-decreasing function on R and
limt→∞ µ (αx, x, t) = 1.

We call µ fuzzy inner product function on U and (U, µ) fuzzy inner product space
(FIP space).

Theorem 2. [18] Let U be a linear space over C. Let µ be a FIP on U . Then

N(x, t) =

{
µ(x, x, t2)
0

if t ∈ R, t > 0,
if t ≤ 0.

is a fuzzy norm on U . Now if µ satisfies the following conditions:

(FIP8)
(
µ
(
x, x, t2

)
> 0,∀t > 0

)
⇒ x = 0 and

(FIP9) for all x, y ∈ U and p, q ∈ R,

µ
(
x+ y, x+ y, 2q2

)∧
µ
(
x− y, x− y, 2p2

)
≥ µ

(
x, x, p2

)∧
µ
(
y, y, q2

)
,

then ‖x‖α =
∧
{t > 0 : N (x, t) ≥ α} , α ∈ (0, 1) is an ordinary norm satisfy-

ing parallelogram law. By using polarization identity, we can get ordinary inner
product, called the 〈., .〉α-inner product, as follows:

〈x, y〉α =
1

4

(
‖x+ y‖2α − ‖x− y‖2α

)
+

1

4
i
(
‖x+ iy‖2α − ‖x− iy‖2α

)
, ∀α ∈ (0, 1) .

Definition 5. [18] Let (U, µ) be a FIP space satisfying (FIP8). The linear
space U is said to be level complete if for any α ∈ (0, 1), every Cauchy sequence
converges w.r.t. ‖.‖α (the α-norm generated by the fuzzy norm N which is induced
by fuzzy inner product µ ).

Definition 6. [1] Let T : (U,N1) −→ (V,N2) be a linear operator where (U,N1)
and (V,N2) are fuzzy normed linear spaces. The mapping T is said to be strongly
fuzzy bounded on U if and only if there exists a positive real number M such that
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N2(T (x), s) ≥ N1(x,
s
M ), ∀x ∈ U,∀s ∈ R.

Definition 7. [1] Let T : (U,N1) −→ (V,N2) be a linear operator where (U,N1)
and (V,N2) are fuzzy normed linear spaces. The mapping T is said to be uniformly
bounded if there exists M > 0 such that

‖Tx‖2α ≤M‖x‖1α ∀α ∈ (0, 1),

where ‖.‖1α and ‖.‖2α are α-norms on N1 and N2, respectively.

Remark 1. Let us denote the set of all strongly fuzzy bounded linear operators
from a fuzzy normed linear space (U,N1) to (V,N2) by B(U, V ).

Theorem 3. [1] Let T : (U,N1) −→ (V,N2) be a linear operator where (U,N1)
and (V,N2) are fuzzy normed linear spaces satisfying (N6). Then T is strongly
fuzzy bounded if and only if it is uniformly bounded with respect to α-norms of
N1 and N2.

Definition 8. [1] Let (U,N1) and (V,N2) be two fuzzy normed linear spaces
satisfying (N6). For T ∈ B(U, V ), let

‖T‖′β =
∨
x∈U,x 6=0

‖Tx‖2β
‖x‖1β

, β ∈ (0, 1),

and

‖T‖α =
∨
β≤α ‖T‖

′
β, α ∈ (0, 1).

Then {‖.‖α : α ∈ (0, 1)} is an ascending family of norms in B(U, V ).

Definition 9. [18] Let (U, µ) be a FIP space. The linear space U is said to be a
fuzzy Hilbert space if it is level complete.

Definition 10. [18] Let α ∈ (0, 1) and (U, µ) be a FIP space satisfying (FIP8)
and (FIP9). Now, if x, y ∈ U are such that 〈x, y〉α = 0, then we say that x, y
are α-fuzzy orthogonal to each other and denote it by x ⊥α y. Let M be a subset
of U and x ∈ U . Now if 〈x, y〉α = 0 for all y ∈M , then we say that x is α-fuzzy
orthogonal to M and denote it by x ⊥α M . The set of all α-fuzzy orthogonal
elements to M is called α-fuzzy orthogonal set.

Definition 11. [18] Let (U, µ) be a FIP space satisfying (FIP8) and (FIP9).
Now if x, y ∈ U are such that 〈x, y〉α = 0, for all α ∈ (0, 1), then we say that x, y
are fuzzy orthogonal to each other and denote it by x ⊥ y. Thus x ⊥ y if and only
if x ⊥α y, for all elements α ∈ (0, 1). The set of all elements fuzzy orthogonal to
each other is called fuzzy orthogonal set.
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Definition 12. [19] Let (U, µ) be a FIP space satisfying (FIP8) and (FIP9) and
α ∈ (0, 1). An α-fuzzy orthogonal set M in U is said to be α-fuzzy orthonormal
if the elements have α-norm 1, α ∈ (0, 1), that is for all x, y ∈M ,

〈x, y〉α =

{
1 , x = y
0 , x 6= y,

where 〈., .〉α is an inner product induced by µ.

Definition 13. [19] Let (U, µ) be a FIP space satisfying (FIP8) and (FIP9).
A fuzzy orthonormal set M in U is said to be fuzzy orthonormal if the elements
have α-norm 1 for all α ∈ (0, 1), that is for all x, y ∈M

〈x, y〉α =

{
1 , x = y
0 , x 6= y,

where 〈., .〉α is an inner product induced by µ.

Proposition 3. [19] An α-fuzzy orthonormal set and a fuzzy orthonormal set in
a FIP space are linearly independent.

Proposition 4. [19] Let {ek}∞k=1 be a fuzzy orthonormal sequence in a fuzzy
Hilbert space (U, µ) satisfying (FIP8) and (FIP9). Then the series

∑∞
k=1 αkek

converges if and only if
∑∞

k=1 |αk|2 converges.

Proposition 5. [19] Let (U, µ) be a fuzzy Hilbert space satisfying (FIP8) and
(FIP9), α ∈ (0, 1) and {ek}∞k=1 be an α-fuzzy orthonormal sequence in U . If
the series

∑∞
k=1 βkek is α-convergent w.r.t. N induced by µ, then the coeff-

ficients βk = 〈x, ek〉α, where x denotes the sum
∑∞

k=1 βkek and hence x =∑∞
k=1〈x, ek〉αek.

Theorem 4. [19] Let (U, µ) be a fuzzy Hilbert space satisfying (FIP8) and
(FIP9), α ∈ (0, 1) and {ek}∞k=1 be an α-fuzzy orthonormal sequence in U . If
the series

∑∞
k=1 γkek converges w.r.t. N induced by µ, then

γk = 〈x, ek〉α = 〈x, ek〉β, ∀α, β ∈ (0, 1) ,

where 〈., .〉 denotes the α-inner product induced by µ, x denotes the sum of∑∞
k=1 γkek. Hence

x =
∑∞

k=1〈x, ek〉αek =
∑∞

k=1〈x, ek〉βek, ∀α, β ∈ (0, 1) .

Theorem 5. [19] Let (U, µ) be a fuzzy Hilbert space satisfying (FIP8) and
(FIP9) and {ek}∞k=1 be a fuzzy orthonormal sequence in U . Then the follow-
ing statements are equivalent:
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(i) {ek}∞k=1 is complete fuzzy orthonormal;

(ii) if x ⊥ ei for i = 1, 2, . . ., then x = 0;

(iii) For every x ∈ U, x =
∑∞

k=1〈x, ei〉αei for all α ∈ (0, 1) and hence

〈x, ek〉α = 〈x, ek〉β, ∀α, β ∈ (0, 1) ;

i.e. x is independent of α.

(iv) For every x ∈ U , ‖x‖2α =
∑∞

k=1 |〈x, ei〉α| for all α ∈ (0, 1) and hence

‖x‖2α = ‖x‖2β, ∀α, β ∈ (0, 1) .

We denote by U∗ the set of all strongly fuzzy bounded linear functionals over
(U,N1) (where N1 is a norm induced by fuzzy inner product).

Theorem 6. [19] (Riesz Representation Theorem) Let (U, µ) be a fuzzy Hilbert
space satisfying (FIP8) and (FIP9) and f ∈ U∗. Then for each α ∈ (0, 1), there
is yα ∈ U such that f(x) = 〈x, yα〉α, where yα depends on f and ‖f‖∗α ≥ ‖yα‖α
when α ≥ 1

2
and ‖f‖∗1−α ≤ ‖yα‖1−α when α ≤ 1

2
.

3. Some properties of fuzzy inner product spaces

In this section, we present some properties of the space (B(U, V ), ‖.‖α) and
some properties of fuzzy linear spaces similar to those of ordinary normed spaces.

Proposition 6. Let (U, µ) be a FIP space satisfying (FIP8) and (FIP9). A
fuzzy inner product space (U, µ) with its corresponding norm N satisfies the
Schwartz inequality

|〈x, y〉α| ≤ ‖x‖α‖y‖α ∀α ∈ (0, 1].

Proof. First, we show that for all α ∈ (0, 1), 〈x, x〉α = ‖x‖2α.
According to the definition of α-fuzzy inner product, by supposing x = y we have:

〈x, x〉α =
1

4
(‖x+ x‖2α − ‖x− x‖2α) +

i

4
(‖x+ ix‖2α − ‖x− ix‖2α)

=
1

4
(4‖x‖2α − 0) +

i

4
x(‖1 + i‖2α − ‖1− i‖2α)

= ‖x‖2α.
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Therefore 〈x, x〉α = ‖x‖2α. Let x, y ∈ U be arbitrary. In the special case where
y = 0, the assertion is trivially true. Assume that y 6= 0. Considering λ ∈ C and
λ = 〈x,y〉α

‖y‖2α
, for all α ∈ (0, 1), we have:

0 ≤ ‖x− λy‖2α
= 〈x, x〉α − 〈λy, x〉α − 〈x, λy〉α + 〈λy, λy〉α
= 〈x, x〉α − λ〈y, x〉α − λ〈x, y〉α + λλ〈y, y〉α
= ‖x‖2α − λ〈x, y〉α − λ〈x, y〉α + λλ‖y‖2α

= ‖x‖2α −
|〈x, y〉α|2

‖y‖2α
− |〈x, y〉α|

2

‖y‖2α
+
|〈x, y〉α|2

‖y‖2α

= ‖x‖2α −
|〈x, y〉α|2

‖y‖2α
.

Therefore

0 ≤ ‖x‖2α −
|〈x, y〉α|2

‖y‖2α
,

It follows that |〈x, y〉α| ≤ ‖x‖α‖y‖α. J

Example 1. Let (U, 〈., .〉) be a real inner product space. Define a function µ :
U × U × C→ [0, 1] by

µ(x, y, t) =


|t|

|t|+ ‖x‖‖y‖
0
0

if t > ‖x‖‖y‖,
if t ≤ ‖x‖‖y‖,
if t ∈ C \ R+.

We verify the following conditions.

(FIP1) If at least one of |t| and |s| is zero, then the result is obvious. Suppose that
|t| and |s| are non-zero. Let us assume without loss of generality that µ(x, z, |t|) ≤
µ(y, z, |s|). So, we have

|t|
|t|+ ‖x‖‖z‖

≤
|s|

|s|+ ‖y‖‖z‖
.

It follows that

1 +
‖x‖‖z‖
|t|

≥ 1 +
‖y‖‖z‖
|s|

.

Now, we have
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|s|
|t|
‖x‖‖z‖ ≥ ‖y‖‖z‖.

By adding ‖x‖‖z‖ to both sides of the above inequality, we get

|s|
|t|
‖x‖‖z‖ ≥ ‖x+ y‖‖z‖ − ‖x‖‖z‖.

Therefore

(
|s|
|t|

+ 1)‖x‖‖z‖ ≥ ‖x+ y‖‖z‖.

It follows that

‖x‖‖z‖
|t|

≥
‖x+ y‖‖z‖
|t|+ |s|

.

By adding 1 to both sides of the last inequality, we get

1 +
‖x‖‖z‖
|t|

≥ 1 +
‖x+ y‖‖z‖
|t|+ |s|

.

So, we have

|t|
|t|+ ‖x‖‖z‖

≤
|t|+ |s|

|t|+ |s|+ ‖x+ y‖‖z‖
.

Hence µ (x+ y, z, |t|+ |s|) ≥ min {µ(x, z, |t|), µ(y, z, |s|)}.
(FIP2) If at least one of |t| and |s| is zero, then the condition obviously holds. Let
none of |t| and |s| be non-zero. Without loss of generality we assume µ(x, x, |s|2) ≤
µ(y, y, |t|2). Theno we have

|s|2

|s|2 + ‖x‖2
≤

|t|2

|t|2 + ‖y‖2
.

It follows that

‖x‖4

|s|4
≥
‖y‖2‖x‖2

|t|2|s|2
.

Therefore, we have

‖x‖2

|s|2
≥
‖y‖‖x‖
|t||s|

.
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By adding 1 to both sides of the above inequality, we get

1 +
‖x‖2

|s|2
≥ 1 +

‖y‖‖x‖
|t||s|

,

so

|s|2 + ‖x‖2

|s|2
≥
|t||s|+ ‖y‖‖x‖

|t||s|
.

Hence µ (x, y, |ts|) ≥ min
{
µ(x, x, |s|2), µ(y, y, |t|2)

}
.

(FIP3) For t ∈ C, µ(x, y, t) =
|t|

|t|+ ‖x‖‖y‖
=

|t̄|
|t̄|+ ‖x‖‖y‖

= µ(y, x, t̄).

(FIP4) Suppose that 0 6= α ∈ C and t ∈ C. So we have the following cases:
Case (i) If t 6= 0, then we consider two following cases:
(a) If min{ ‖x‖, ‖y‖} = 0, then we have

µ(αx, y, t) =
|t|

|t|+ ‖αx‖‖y‖
=
|t|
|t|

= 1 =

|t|
|α|

|t|
|α|

+ ‖x‖‖y‖
= µ(x, y,

t

|α|
).

Thus the condition holds.
(b) If min{ ‖x‖, ‖y‖} 6= 0, then we have

µ(αx, y, t) =
|t|

|t|+ ‖αx‖‖y‖
=

|t|
|t|+ |α|‖x‖‖y‖

=

|t|
|α|

|t|
|α|

+ ‖x‖‖y‖
= µ(x, y,

t

|α|
). So,

µ(αx, y, t) = µ(x, y,
t

|α|
).

Case (ii) If t = 0, then µ(αx, y, t) = µ(x, y,
t

|α|
) = 0.

(FIP5) It follows from definition.

(FIP6) Suppose that x = 0.

x = 0⇔ ‖x‖2 = 0⇔ ∀t > 0, µ(x, x, t) =
|t|

|t|+ ‖x‖2
=
|t|
|t|

= 1.
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(FIP7) For all t ∈ R and t > 0,

µ(x, x, t) =
|t|

|t|+ ‖x‖2
=

1

1 +
‖x‖2

|t|

→ 1 as t → ∞ and it is obviously monotoni-

callly non-decreasing.
Hence, we conclude that every classic inner product induces the fuzzy inner

product. In the sequel, we will show that (FIP8) also holds. So, we have fuzzy
norm in the sense of Bag and Samanta.

(FIP8) µ(x, x, t2) > 0, ∀t > 0⇒ t > ‖x‖2 ∀t > 0⇒ x = 0;

‖x‖α =
∧{

t : µ(x, x, t2) ≥ α
}

=
∧{

t :
|t|2

|t|2 + ‖x‖2
≥ α

}

=

√
α

1− α
‖x‖.

It is clear that (FIP9) holds. Using polarization identity, the α-inner product
follows from classic inner product.

‖x− y‖2α + ‖x+ y‖2α =
α

1− α
‖x− y‖2 +

α

1− α
‖x+ y‖2

=
α

1− α
(‖x− y‖2 + ‖x+ y‖2)

=
α

1− α
(2‖x‖2 + 2‖y‖2)

= 2(‖x‖2α + ‖y‖2α).

It follows that

〈x, y〉α =
1

4
(‖x+ y‖2α − ‖x− y‖2α) +

i

4
(‖x+ iy‖2α − ‖x− iy‖2α)

=
α

4(1− α)
(‖x+ y‖2 − ‖x− y‖2) +

αi

4(1− α)
(‖x+ iy‖2 − ‖x− iy‖2)

=
α

1− α
〈x, y〉.

Definition 14. Let (U, µ) and (V, µ) be two fuzzy Hilbert spaces satisfying (FIP8)
and (FIP9), where µ is the same fuzzy inner product. Let T be a fuzzy bounded
linear operator from U to V . If there exists an operator T ∗ from V to U such
that for all α ∈ (0, 1)
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〈Tx, y〉α = 〈x, T ∗y〉α, ∀x ∈ U, y ∈ V ,

then the operator T ∗ is called fuzzy adjoint of T .

Theorem 7. If T : (U,N1) −→ (V,N2) is a strongly fuzzy bounded operator,
where (U,N1) and (V,N2) are fuzzy normed linear spaces, N1 and N2 are the
norms induced by fuzzy inner products on U and V , respectively, then there exists
T ∗ : (V,N2) −→ (U,N1) such that for all x ∈ U, y ∈ V and for all α ∈ (0, 1)

〈x, T (y)〉α = 〈T ∗(x), y〉α . (2)

Proof. To demonstrate the existence of T ∗, we have to show that for every
x ∈ U , there is a vector z ∈ U , depending linearly on x, such that

〈z, y〉α = 〈T ∗(x), y〉α ∀α ∈ (0, 1).

By Theorem 3, T is uniformly bounded and there exists M > 0 such that

‖T (x)‖2α ≤M‖x‖1α ∀α ∈ (0, 1).

Suppose that α ∈ (0, 1), and for fixed x consider the mapping ϕx, defined by

ϕx(y) = 〈x, T (y)〉α .

The mapping ϕx is a fuzzy bounded linear functional on U crossponding to α,
i.e. ϕx ∈ U∗α and ‖ϕx‖α ≤ M‖x‖α. By the Riesz Representation Theorem,
there is a unique z ∈ U such that ϕx(y) = 〈z, y〉α.Thus, the equality (2) holds.
So, we set T ∗(x) = z. The linearity of T ∗ follows from its uniqueness by Riesz
Representation Theorem and from the linearity of the inner product. Since we
have

‖T ∗(x)‖α = ‖z‖ =
∨

‖y‖α=1

|〈y, z〉α|

=
∨

‖y‖α=1

|〈T (y), x〉α|

≤
∨

‖y‖α=1

‖T (y)‖α‖x‖α

≤
∨

‖y‖α=1

‖T‖α‖y‖α‖x‖α = ‖T‖α‖x‖α,

it follows that T ∗ is bounded and ‖T ∗‖α ≤ ‖T‖α for any α ∈ (0, 1). Finally, we
show that T ∗ is unique. Suppose that S ∈ B(U, V ) and 〈T (x), y〉α = 〈S(x), y〉α
for all x ∈ U , y ∈ V and α ∈ (0, 1). For each fixed y and for every x, we have
〈x, S(y)− T ∗(y)〉α = 0. It follows that S(y)− T ∗(y) = 0. Hence S = T ∗. J
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Proposition 7. If T ∈ B(U, V ), then for all α ∈ (0, 1), ‖T ∗‖α = ‖T‖α.

Proof. In Theorem 7, we already showed that

‖T ∗‖α ≤ ‖T‖α ∀α ∈ (0, 1). (3)

For x ∈ U , we have

‖T (x)‖2α = 〈T (x), T (x)〉α
= 〈T ∗T (x), x〉α
≤ ‖T ∗T (x)‖α‖x‖α
≤ ‖T ∗‖α‖T (x)‖α‖x‖α.

Hence ‖T (x)‖α ≤ ‖T ∗‖α ‖x‖α. It follows that

‖T‖α ≤ ‖T ∗‖α ∀α ∈ (0, 1). (4)

From the inequalites (3) and (4) we have

‖T‖α = ‖T ∗‖α ∀α ∈ (0, 1).

J

Theorem 8. Let (U, µ) be a fuzzy Hilbert space satisfying (FIP8) and (FIP9)
and α ∈ (0, 1). Let T be a fuzzy operator on (U, µ). Then T ∗ is also a fuzzy linear
operator on (U, µ) and following properties hold:

i) (T ∗)∗ = T ;

ii) (T1 + T2)
∗ = T ∗1 + T ∗2 ;

iii) (λT )∗ = λT ∗, ∀λ ∈ C;

iv) (ST )∗ = T ∗S∗.

Proof. Suppose that y1, y2 ∈ U and λ, β ∈ C. For each x ∈ U , we have

〈x, T ∗(λy1 + βy2)〉α = 〈Tx, λy1 + βy2〉α
= λ〈Tx, y1〉α + β〈Tx, y2〉α
= 〈x, λT ∗y1 + βT ∗y2〉α.

It follows that T ∗(λy1 + βy2) = λT ∗y1 + βT ∗y2, that is, T ∗ is linear.

For each x, y ∈ U ,
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〈y, (T ∗)∗x〉α = 〈T ∗y, x〉α = 〈x, T ∗y〉α = 〈Tx, y〉α = 〈y, Tx〉α.

Hence (T ∗)∗ = T , so we have (i).
To prove (ii), we note that

〈x, (T1 + T2)
∗y〉α = 〈(T1 + T2)x, y〉α

= 〈T1x, y〉α + 〈T2x, y〉α
= 〈x, T ∗1 y〉α + 〈x, T ∗2 y〉α
= 〈x, (T ∗1 + T ∗2 )y〉α.

(iii) For each α ∈ (0, 1] and λ ∈ C, we have

〈λTx, y〉α = λ〈Tx, y〉α = λ〈x, T ∗y〉α = 〈x, λT ∗y〉α, so we get (iii).

For each x, y ∈ U ,

〈STx, y〉α = 〈Tx, S∗y〉α = 〈x, T ∗S∗y〉α.

Therefore (ST )∗ = T ∗S∗. J

Corollary 1. Let (U, µ) be a fuzzy Hilbert space satisfying (FIP8) and (FIP9)
and α ∈ (0, 1). Let T be a fuzzy operator on (U, µ). Then

‖T ∗T‖α = ‖TT ∗‖α = ‖T‖2α.

Proof. By Theorem 8, proof is straightforward. For all x ∈ U ,

‖T ∗Tx‖α ≤ ‖T ∗‖α‖Tx‖α ≤ ‖T‖2α‖x‖α

and therefore ‖T ∗T‖α ≤ ‖T‖2α.
Also, we can write

‖T ∗T‖α =
∨
β≤α
‖T ∗Tx‖′β

=
∨
β≤α

 ∨
x∈U,x6=0

‖T ∗Tx‖2β
‖x‖1β


>

∨
β≤α

 ∧
x∈U,x 6=0

‖T ∗Tx‖2β
‖x‖1β


=

∨
β≤α

 ∧
x∈U,x 6=0

‖T‖2β‖Tx‖2β
‖x‖1β


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=
∨
β≤α

‖T 2x‖2β
‖x‖1β

= ‖T‖2α.

Hence we get the assertion. J

4. Fuzzy frames theory

In this section, after a brief trip back to the history of frame, we define fuzzy
frame and prove some new results.

Frames were introduced in 1952 by Duffin and Schaeffer in their fundamental
paper [14]; they used frames as a tool in the study of nonharmonic Fourier series,
i.e., sequences of the type {eiλnx}n∈Z , where {λn}n∈Z is a family of real or
complex numbers. Apparently, the importance of the concept was not realized
by the mathematical community; at least it took almost 30 years before the next
publication appeared. Frames were presented in the abstract setting, and again
used in the context of nonharmonic Fourier series. Then, in 1985, as the wavelet
era began, Daubechies, Grossmann and Meyer [12, 13] observed that frames can
be used to find series expansions of functions in L2(R) which are very similar to
expansions using orthogonal bases.

Recall that for a Hilbert space H and a countable index set I, a family of
vectors {xi}i∈I ⊆ H is called a discrete frame for H, if there exist constants
0 < A ≤ B < +∞ such that

A‖x‖2 ≤
∑
i∈I
|〈x, xi〉|2 ≤ B‖x‖2, x ∈ H,

where the constants A and B are called frame bounds. The frame {xi}i∈I is
called tight if A = B and Parseval if A = B = 1. For a very good and useful
reference, we refer to the comprehensive book by Christensen [9]. The concept
of frame has been improved and generalized to Banach spaces, Frechet spaces
and a lot of papers have been published in both pure and applied mathematics
concerning frames. In this manuscript, we will try to present the fuzzy frame
version of frame theorems and related concepts.

In a fuzzy Hilbert space (U, µ) satisfying (FIP8) and (FIP9) when α ∈ (0, 1)
and {ek}∞k=1 is an α-fuzzy orthonormal sequence in U , we say that {ek}∞k=1 is a
basis for U if the following two conditions are satisfied:

(i) U = span {ek}∞k=1

(ii) {ek}∞k=1 is linearly independent.
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So, every x ∈ U has a unique representation in terms of the elements in the
basis, i.e., there exist unique coefficients {βk}∞k=1 such that x =

∑∞
k=1 βkek. By

Proposition 5 and Theorem 4, if (U, µ) is a fuzzy Hilbert space satisfying (FIP8)
and (FIP9) and x ∈ U , then {ek}∞k=1 is a fuzzy orthonormal sequence in U .
Then, since U = span {ek}∞k=1, we can write x =

∑∞
k=1 βkek and βk = 〈x, ek〉α.

Definition 15. Let (U, µ) be a fuzzy Hilbert space satisfying (FIP8) and (FIP9).
A countable family of elements {xk}∞k=1 in U is a fuzzy frame for U if there exist
constants A,B > 0 such that for all x ∈ U and α ∈ (0, 1):

A‖x‖2α ≤
∞∑
k=1

|〈x, xk〉α|2 ≤ B‖x‖2α. (5)

The numbers A and B are called fuzzy frame bounds. Fuzzy frame bounds
are not unique. The optimal lower frame bound is supremum over all lower frame
bounds, and the optimal upper frame bound is the infimum over all upper frame
bounds. Note that the optimal fuzzy frame bounds are actually fuzzy frame
bounds. If ‖xk‖α = 1, the fuzzy frame is normalized. A fuzzy frame {xk}∞k=1 is
tight if A = B and in case A = B = 1, we call it Parseval fuzzy frame. In case
the upper inequality in (5) is satisfied, {xk}∞k=1 is called fuzzy Bessel sequence.
It follows from the definition that if {xk}∞k=1 is a fuzzy frame for (U, µ), then
span {xk}∞k=1 = U .

Theorem 9. Let (U, µ) be a fuzzy Hilbert space satisfying (FIP8) and (FIP9),
α ∈ (0, 1) and {ek}∞k=1 be an α-fuzzy orthonormal sequence in U . Then for every
x ∈ U ,

∞∑
k=1

|〈x, xk〉α|2 ≤ B‖x‖2α.

Proof. Since α-fuzzy orthonormal sequence is orthonormal sequence in
(U, 〈., .〉α), so by Bessel’s inequality in crisp inner product we have

∞∑
k=1

|〈x, xk〉α|2 ≤ B‖x‖2α ∀x ∈ U. J

Example 2. Let (U, 〈 . 〉) be a classic Hilbert space and {xn}∞n=1 be a frame for
U with frame bounds A and B. Then {xn}∞n=1 is a fuzzy frame in fuzzy Hilbert
space (U, 〈 . 〉) satisfying (FIP8) and (FIP9) and α ∈ (0, 1).

Since {xn}∞n=1 is a frame for U , there exist constants A, B > 0 such that
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A‖x‖2 ≤
∞∑
n=1
|〈x, xn〉|2 ≤ B‖x‖2, ∀x ∈ U.

From Example 1, for all x ∈ U and for any α ∈ (0, 1) we have

α

1− α
A‖x‖2 ≤

∞∑
n=1

α

1− α
〈x, xn〉|2 ≤

α

1− α
B‖x‖2.

It follows that

A‖x‖2α ≤
∑∞

n=1 |〈x, xn〉α|2 ≤ B‖x‖2α, ∀x ∈ U,∀α ∈ (0, 1).

We define l2(N) =
{
{βk}∞k=1 |

∑∞
k=1 |βk|2 <∞

}
and consider fuzzy inner

product defined as follows:

µ(x, y, t) =

{
1 , t > ‖x‖l2(N)‖y‖l2(N)
0 , t ≤ ‖x‖l2(N)‖y‖l2(N).

Now we have:

‖x‖α =
∧{

t > 0 | µ(x, x, t2) ≥ α
}

=
∧{

t > 0 | t2 ≥ ‖x‖2l2(N)
}

= ‖x‖l2(N).

Therefore for all α ∈ (0, 1), ‖x‖α = ‖x‖l2(N). As well as on (l2(N), µ) satisfying
parallelogram law.

Proposition 8. Let {xk}∞k=1 be a sequence in the fuzzy Hilbert space (U, µ) sat-
isfying (FIP8) and (FIP9), and suppose that

∑∞
k=1 βkxk is α-convergent. Then

T : l2 (N) −→ U, T {βk} =

∞∑
k=1

βkxk.

defines a fuzzy bounded linear operator. The adjoint operator is given by

T ∗ : U −→ l2 (N) , T ∗x = {〈x, xk〉α}∞k=1 .

Furthermore,
∞∑
k=1

|〈x, xk〉α|2 ≤ ‖T‖2α‖x‖2α, ∀x ∈ U.
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Proof. Consider the sequence of fuzzy bounded linear operators Tn, n ∈ N
defined by

Tn : l2 (N) −→ U, Tn {βk}∞k=1 =
n∑
k=1

βkxk.

Clearly, Tn → T , so by uniform boundedness principle theorem the map T defines
a bounded linear operator. In order to find the expression of T ∗, let x ∈ U and
{βk} ∈ l2 (N). Then

〈x, T {βk}〉α = 〈x,
∞∑
k=1

βkxk〉α =

∞∑
k=1

〈x, xk〉αβk.

Proposition 2 and Proposition 1 imply that the series
∑∞

k=1〈x, xk〉αβk for all
{βk} ∈ l2 (N) is convergent and according to Theorem 4 the series

∑∞
k=1 |〈x, xk〉α|

is convergent. Therefore {〈x, xk〉α}∞k=1 ∈ l2 (N). It follows that the series∑∞
k=1〈x, xk〉αβk for all {βk} ∈ l2 (N) is α-convergent. Thus, we can write

〈x, T{βk}〉U = 〈{〈x, xk〉α}, {βk}〉l2(N)

and conclude that
T ∗x = {〈x, xk〉α}∞k=1 .

Alternatively, when T : l2 (N) −→ U is fuzzy bounded, by Theorem 7 T ∗ is a
fuzzy bounded operator from U to l2 (N). By Proposition 7, ‖T‖α = ‖T ∗‖α.
Therefore

∞∑
k=1

|〈x, xk〉α|2 = ‖T ∗x‖2α ≤ ‖T‖2α‖x‖2α, ∀x ∈ U. J

Consider now a vector space U equipped with a fuzzy frame {xk}∞k=1, and
define a linear mapping

T : l2 (N) −→ U, T {βk}∞k=1 =
∑∞

k=1 βkxk.

T is usually called the pre-fuzzy frame operator or the fuzzy synthesis opera-
tor. The adjoint operator is given by

T ∗ : U −→ l2 (N) , T ∗x = {〈x, xk〉α}∞k=1 ,

and is called the fuzzy analysis operator. Composing T with its adjoint T ∗,
we obtain the fuzzy frame operator,

S : U −→ U, Sx = TT ∗x =

∞∑
k=1

〈x, xk〉αxk.
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Note that in terms of the fuzzy frame operator, we have

〈Sx, x〉α =
∞∑
k=1

|〈x, xk〉α|2, ∀x ∈ U.

Similar to Theorem 3.2.3 of [9], the following Theorem shows that for given fuzzy
Bessel sequence its pre-frame operator is bounded and vice-versa.

Theorem 10. Let {xk}∞k=1 be a sequence in the fuzzy Hilbert space (U, µ) satis-
fying (FIP8) and (FIP9) and B > 0 be given. Then {xk}∞k=1 is a fuzzy Bessel
sequence with fuzzy Bessel bound B if and only if the operator

T : {βk}∞k=1 −→
∞∑
k=1

βkxk

defines a fuzzy bounded linear operator from l2 (N) into U and ‖T‖α ≤
√
B for

all α ∈ (0, 1).

Proof. Assume that {xk} is a fuzzy Bessel sequence with Bessel bound B and
{βk}∞k=1 ∈ l2 (N). We want to show that T {βk}∞k=1 is well-defined, i.e.

∑∞
k=1 βkxk

is α-convergent. Consider n,m ∈ N, n > m. Then

‖
n∑
k=1

βkxk −
m∑
k=1

βkxk‖α = ‖
n∑

k=m+1

βkxk‖α.

Using ‖x‖α =
∨
‖y‖α=1 |〈x, y〉α| and Cauchy-Schwarz’ inequality, we obtain

‖
n∑
k=1

βkxk −
m∑
k=1

βkxk‖α =
∨

‖y‖α=1

|〈
n∑

k=m+1

βkxk, y〉α|

≤
∨

‖y‖α=1

n∑
k=m+1

|βk〈xk, y〉α|

≤

(
n∑

k=m+1

|βk|2
) 1

2 ∨
‖y‖α=1

(
n∑

k=m+1

|〈xk, y〉α|2
) 1

2

≤
√
B

(
n∑

k=m+1

|βk|2
) 1

2

.

Since {βk}∞k=1 ∈ l2 (N),
{∑n

k=1 |βk|2
}∞
n=1

is a Cauchy sequence in C. Thus
{
∑n

k=1 βkxk}
∞
n=1 is a Cauchy sequence in U and therefore convergent. Hence
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T {βk}∞k=1 is well-defined. Clearly T is a fuzzy bounded linear operator and
‖T‖α ≤

√
B.

To prove the opposite assertion, suppose that T defines a fuzzy bounded
operator with ‖T‖α ≤

√
B. Then Proposition 8 shows that {xk}∞k=1 is a fuzzy

Bessel sequence with a fuzzy Bessel bound B. J

One of the most important and useful operators in the study of frames in
Hilbert spaces is the so called frame operator and the invertibility of this oper-
ator has a lot of applications. The following Theorem shows some of its properties
in fuzzy version.

Theorem 11. Let {xk}∞k=1 be a fuzzy frame with fuzzy frame bounds A,B in fuzzy
Hilbert space (U, µ) satisfying (FIP8) and (FIP9). Then fuzzy frame operator
S is fuzzy bounded, invertible and self-adjoint.

Proof. Since S is a composition of two fuzzy bounded operators, it is bounded.

‖S‖α = ‖TT ∗‖α ≤ ‖T‖α‖T ∗‖α = ‖T‖2α ≤ B.

Since S∗ = (TT ∗)∗ = TT ∗ = S, the operator S is self-adjoint. For invertibility
of S, firstly, we show that S is injective. By definition, one has to show that: if
Sx = 0, then x = 0.
If Sx = 0, then 0 = 〈Sx, x〉α =

∑∞
k=1 |〈x, xk〉α|2.

A‖x‖2α ≤
∑∞

k=1 |〈x, xk〉α|2 = 0

A‖x‖2α = 0⇒ ‖x‖2α = 0⇒ x = 0.

Hence S is injective and it follows that S∗ is surjective and S = S∗. Thus S
is surjective. The fuzzy frame condition implies that span {xk}∞k=1 = U . So
the fuzzy synthesis operator T is surjective. For a given x ∈ U , we can find
y ∈ l2(N) such that Ty = x. We can choose y ∈ N⊥T = RT ∗ , so it follows that
RS = RTT ∗ = U . This shows that S is invertible. J

We know that C∞(Ω) is not normable in classical Hilbert spaces, so in this
case, defining frame on C∞(Ω) is not possible. In the next proposition, we show
that C∞(Ω) is normable on fuzzy Hilbert space satisfying (FIP8) and (FIP9)
properties. So we can define fuzzy frame on C∞(Ω).

Proposition 9. The linear space C∞(Ω) (the vector space of all complex valued
continous functions on Ω) is normable on fuzzy Hilbert space satisfying (FIP8)
and (FIP9).
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Proof. For α ∈ (0, 1], there exists n ∈ N such that
1

n+ 1
< α ≤ 1

n
. It is

well known that Ω is a countable union of the sets kn = [
1

n
, 1− 1

n
] 6= ∅. For any

f ∈ C∞(Ω) and
1

n+ 1
< α ≤ 1

n
, we define

fα =

{
‖f‖kn
0

if t ∈ kn,
if otherwise.

gα is defined similarly. Let

µ(f, g, t) = 1− inf{α ∈ (0, 1] : fαgα ≤ t} ∀f, g ∈ C∞(Ω).

We define the norm by

‖f‖2kn = 〈f, f〉kn =
∫
kn
|f(t)|2dt

and define the inner product by

〈f, g〉kn =
∫
kn
f(t)g(t)dt.

We show that µ is Bag-Samanta fuzzy inner product on C∞(Ω).
FIP1): Define

A = {α ∈ (0, 1] : (fα)2 ≤ |t|2},

B = {β ∈ (0, 1] : (gβ)2 ≤ |s|2},

C = {γ ∈ (0, 1] : (fγgγ)2 ≤ (|t|+ |s|)2}.

We show

1− infC ≥ min{1− infA, 1− infB}.

Suppose

1− infA ≤ 1− infB (a.e. infB ≤ infA).

Then there exists β ∈ B such that for all α ∈ A, β < infA, therefore β < α.
thus

fαhα ≤ |t|, gβhβ ≤ |s|, gα ≤ gβ.

Also

(f + g)αhα = fαhα + gαhα ≤ fαhα + gβhβ ≤ |s|+ |t|.
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Hence for all α ∈ A, we have α ∈ C a.e. A ⊂ C.
It follows that infC ≤ infA. So 1 − infA ≤ 1 − infC. Hence for s, t ∈ C,
µ(f + g, h, |t|+ |s|) ≥ min{µ(f, h, |t|), µ(g, h, |s|)}.
FIP2): Define

A = {α ∈ (0, 1] : (fα)2 ≤ |t|2},

B = {β ∈ (0, 1] : (gβ)2 ≤ |s|2},

C = {γ ∈ (0, 1] : (fγgγ)2 ≤ |ts|}.

We show that

1− infC ≥ min{1− infA, 1− infB}.

Suppose that

1− infA ≤ 1− infB (a.e. infB ≤ infA).

Then there exists β ∈ B such that for all α ∈ A, β < infA, therefore β < α.
thus

fα ≤ |t|, gβ ≤ |s|, gα ≤ gβ, fαgα ≤ fαgβ ≤ |st|.

Hence for all α ∈ A we have α ∈ C a.e. A ⊂ C. It follows that infC ≤ infA.
So 1− infA ≤ 1− infC. Hence for s, t ∈ C,

µ(f, g, |ts|) ≥ min{µ(f, f, |t|2), µ(g, g, |s|2)}.

FIP3): It is obvious.
FIP4): We have

µ(αf, g, t) = 1− inf{α ∈ (0, 1] : |α|fαgα ≤ t}

= 1− inf{α ∈ (0, 1] : fαgα ≤ t

|α|
}

= µ(f, g,
t

|α|
).

Hence µ(αf, g, t) = µ(f, g,
t

|α|
), α(6= 0) ∈ C, t ∈ C.

FIP5): It is obvious.
FIP6): We show that (µ(f, f, t) = 1, ∀t > 0) iff f = 0.
If µ(f, f, t) = 1,∀t > 0, then

1− inf{α ∈ (0, 1] : fα ≤ t} = 1,
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therefore

inf{α ∈ (0, 1] : fα ≤ t} = 0.

As a result, for all α ∈ (0, 1], we have fα = 0, thus f = 0. Opposite assertion is
following directly.
FIP7): Is is obvious.
According to our definition of norm,

‖f‖α = inf{t : µ(f, f, t2) ≥ α}
= inf{t : 1− inf{β ∈ (0, 1] : fβ ≤ t} ≥ α}
= inf{t : inf{β ∈ (0, 1] : fβ ≤ t} ≥ 1− α}
= f1−α.

Then ‖f‖α = f1−α = ‖f‖kn . Using polarization identity, we can get ordinary
inner product, called the α-inner product, as follows:

〈f, g〉α =
1

4

(
‖f + g‖2α − ‖f − g‖2α

)
+
i

4

(
‖f + ig‖2α − ‖f − ig‖2α

)
=

1

4

[(
(f + g)1−α

)2 − ((f − g)1−α
)2]

+
i

4

[(
(f + ig)1−α

)2 − ((f − ig)1−α
)2]

= 〈f, g〉kn . J

In the following example, we give a frame on C∞(Ω).

Example 3. Suppose that {gk(.)}∞k=1 is a sequence on C∞(Ω), where gk(x) =

sin
x

k
and 0 < x ≤ 1. We show that {gk(.)}∞k=1 is a fuzzy frame on C∞(Ω).

If α ∈ (0, 1], then there exists n such that
1

n+ 1
< 1 − α ≤ 1

n
. Consider

kn = [
1

n
, 1− 1

n
]. Then Ω =

⋃∞
n=1 kn. For f ∈ C∞(Ω)

∞∑
k=1

|〈f, gk〉α|2 =
∞∑
k=1

(∫
kn

fgkdµ

)2

≤
∞∑
k=1

∫
kn

f2dµ

∫
kn

g2kdµ

= ‖f‖2knµ(kn)

∞∑
k=1

1

k2
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= ((1− 2

n
)
π2

6
)‖f‖2kn

= B‖f‖2kn .

With B = ((1 − 2

n
)
π2

6
), the sequence {gk(.)}∞k=1 is a fuzzy Bessel sequence on

C∞(Ω).
For the lower bound, we consider

A :=
∑∞

k=1 |〈f, gk〉α|2 =
∧{∑∞

k=1 |〈f, gk〉α|2 : f ∈ C∞(Ω), ‖f‖α = 1
}

.

It is clear that A > 0. Now given f ∈ C∞(Ω) and f 6= 0, we have

∞∑
k=1

|〈f, gk〉α|2 =
∞∑
k=1

(∫
kn

fgkdµ

)2

=
∞∑
k=1

(∫
kn

f

‖f‖α
gkdµ

)2

‖f‖2α

≥ A‖f‖2α.

Hence {gk(.)}∞k=1 is a fuzzy frame on C∞(Ω).

5. Conclusion

C∞(Ω) was not normable on classical Hilbert spaces, but in this paper we show
that C∞(Ω) is normable on fuzzy Hilbert spaces and we provide an example of
fuzzy frame on C∞(Ω).
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