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Characterization of Parabolic Fractional Integral
and Its Commutators in Parabolic Generalized
Orlicz-Morrey Spaces
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Abstract. In this paper, we give necessary and sufficient condition for the Adams type
boundedness of parabolic fractional integral and its commutators in parabolic generalized
Orlicz-Morrey spaces.
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1. Introduction

The theory of boundedness of classical operators of real analysis, such as
maximal operator, fractional maximal operator, Riesz potential, singular integral
operator, etc., from one Lebesgue space to another has been well studied. These
results have good applications in the theory of partial differential equations. How-
ever, in the theory of partial differential equations, along with Lebesgue spaces,
Orlicz spaces also play an important role.

For x € R™ and r > 0, we denote by B(x,r) the open ball centered at x of
radius r, and by GB(Q;, r) we denote its complement. Let |B(z, )| be the Lebesgue
measure of the ball B(x,r).

Let P be a real n x n matrix, all of its eigenvalues having positive real part.
Let A; =t (t > 0), and set v = trP. Then, there exists a quasi-distance p
associated with P such that

(a) p(Ax) =tp(z), t >0, forevery xzeR";
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(0) p(0)=0, plz—y)=ply—2z)=0
and p(z —y) < k(p(z —2) + ply — 2));

(¢) dx=p' Ydo(w)dp, where p=p(z),w=A, 1z

p
and do(w)is a C*°measure on the ellipsoid {w : p(w) = 1}.

Then, {R", p,dz} becomes a space of homogeneous type in the sense of Coifman-
Weiss. Thus R”, endowed with the metric p, defines a homogeneous metric space
([4, 5]). The balls with respect to p, centered at x of radius 7, are just the ellipsoids
E(z,r) = {y e R": p(x —y) < r}, with the Lebesgue measure |E(x,7)| = v,r7,
where v, is the volume of the unit ellipsoid in R". Let also Cg(m, r) =R"\&E(z,7)
be the complement of £(x,r). If P = I, then clearly p(x) = |z| and & (z,r) =
E(x,r). Note that in the standard parabolic case P = (1,...,1,2) we have

/12 /|4 2
p(x):\/a:] VAL MR = (2, 2).

2 )

Let S, = {w € R" : p(w) = 1} be the unit p-sphere (ellipsoid) in R" (n >
2) equipped with the normalized Lebesgue surface measure do. The parabolic

maximal function M f and the parabolic fractional integral I” f, 0 < o < v, of
a function f € L¢(R") are defined by

AfPf<x>-sup\8<x,tﬂ-*u/‘ )|y,
t>0 E(z

7t)

P _ f()
e = | .

z—y)e

If P=1, then M = M({ is the Hardy-Littlewood maximal operator and
I, = I! is the fractional integral operator. It is well known that the parabolic
fractional integral operators play an important role in harmonic analysis (see
[6, 15]).

In this work we present the characterization for parabolic fractional integral
operator I (Theorem 9) and its commutators [b, IL'] (Theorem 11) in generalized
Orlicz-Morrey spaces.

By A < B we mean that A < C'B with some positive constant C' independent
of related quantities. If A < B and B < A, we write A ~ B and say that A and
B are equivalent.
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2. On Young functions and Orlicz spaces

Orlicz space was first introduced by Orlicz in [12, 13] as a generalizations of
Lebesgue spaces LP. Since then, this space has been one of important functional
frames in the mathematical analysis, especially in real and harmonic analysis.
Orlicz space is also a suitable substitute for L' space when the latter does not
work.

First, we recall the definition of Young functions.

Definition 1. A function ® : [0,00) — [0, 00] is called a Young function if ® is
convez, left-continuous, hm <I>( ) =®(0) =0 and lim ®(r) = co.
T—00

From the convexity and ®(0) = 0 it follows that any Young function is in-
creasing. If there exists s € (0, 00) such that ®(s) = oo, then ®(r) = oo for r > s.
The set of Young functions such that

0<P(r) <oo for 0<r<o

will be denoted by Y. If & € Y, then @ is absolutely continuous on every closed
interval in [0, 00) and bijective from [0, 00) to itself.
For a Young function ® and 0 < s < o0, let

O 1(s) = inf{r >0: ®(r) > s}.
If ® € Y, then ®~! is the usual inverse function of ®. It is well known that
r< o (r)d 1 (r) < 2r for r >0, (1)
where ®(r) is defined by

B(r) = { sup{rs — ®(s) : s € [0,00)} , 7 €[0,00)

00 , T =o00.
A Young function @ is said to satisfy the As-condition, denoted as ® € Ao, if
O(2r) < CP(r), r>0

for some C' > 1. If & € Ay, then & € V. A Young function & is said to satisfy
the Vao-condition, denoted by ® € Vo, if

O(r) < %@(C’r) r >0

for some C > 1.
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Note that by the convexity of ® and concavity of @~ we have the following
properties:

Olat) <ad(t), if 0<a<l and o (at) > ad (t), if 0<a<l
O(at) > ad(t), if a>1 O at) < ad®1(t), if a>1.
(2)

The Orlicz space and weak Orlicz space are defined as follows.

Definition 2. For a Young function P,

Ly(R™) = {f e LY°(R") : / O (e| f(x)])dz < oo for some € >0 } ,

(Ralya =inf{A >0: /H<I)<|f(;)>dx < 1},

WLs(R") := {f € L. (R™) : sup ®(r)ds(r) < oo for some € > 0 } ,
r>0

. t
1fllwee = 1nf{)\ >0+ sup®(y)ds(t) < 1},
t>0

where dg(t) = [{z € R : | f(z)] > t}].

Lo |’1J}(Hﬁ Jem<1 )

t
sup (———
>0 |fllwre

We note that

and
)dg(t) <1. (4)

The following analogue of the Hélder’s inequality is well known (see, for ex-
ample, [14]).

Theorem 1. Let 2 C R" be a measurable set and functions f and g be measurable
on ). For a Young function ® and its complementary function ®, the following
mequality is valid

[ 15 @a@ldz < 2050l 0

By elementary calculations we have the following property.

Lemma 1. Let ® be a Young function and € be a parabolic ball in R™. Then

1
IXelle = lIxellwre = W
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By Theorem 1, Lemma 1 and (1) we get the following estimate.

Lemma 2. For a Young function ® and for the parabolic ball £ = E(x,r) the
following inequality is valid:

/5 @)y < 28127 (117 1L oge.

3. Parabolic fractional integral and its commutators in Orlicz
spaces

In [1] the boundedness of the parabolic maximal operator M in Orlicz spaces
Ls(R™) was obtained.

Theorem 2. [1] Let ® be any Young function. Then the parabolic mazimal
operator M¥ is bounded from Lo (R™) to W Lg(R™). Moreover, if ® € Va , then
MP is bounded in Le(R™).

We recall that the space BMO(R") = {b € LL (R") : ||b]s« < oo} is defined

loc
by the seminorm

1
b|l« := sup / b(y) — bg(p.m|dy < 00,
H ” xz€R™,r>0 |5(l‘,’l“)| E(z,r)‘ ( ) &, )‘

where bg(, ) = m fg(:p ") b(y)dy. We refer for instance to [9] and [10] for more
details on this space and its properties.

Lemma 3. [2] Let b € BMO(R"™) and ® be a Young function with ® € Ag. Then

~ _1 - . J—
bl > sup @) [50) = been Ly ey

1

o (R™) and the parabolic maximal oper-

The commutator generated by b € L
ator M* is defined by

My (f)(x) = sup |€(x, 1) / t [b(x) = b(y)[[f (y)|dy.

t>0 E(x,t)

The known boundedness statement for the commutator operator M, bP in Orlicz
spaces is given as follows (see [7, Corollary 2.3]).
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Theorem 3. Let ® be a Young function with ® € Ae NV and b € BMO(R").
Then MY is bounded in Lo(R™) and the inequality

1My £llzo < Collbll<llf e
holds with constant Cy independent of f.
The known boundedness statement for I in Orlicz spaces:

Theorem 4. [11] Let ®,¥ € Y and

/ e lp—t (t*'y) dt < red1 (7“77) for 0 < r < oo, (5)
B Gl I 2 () for 0 <r < . (6)
Then IV is bounded from Lo (R™) to W Ly(R™). Moreover, if ® € Vg, then IL is

bounded from Ly(R™) to Ly (R™).
The following estimate is valid.

Lemma 4. [2] If & := E(zo,70), then r§ S 1Dy g, (@) for every x € &.

0 ~1aX

Theorem 5. [2] Let ®,¥ € Y. If (5) holds, then the condition (6) is necessary
and sufficient for the boundedness of IL from Lg(R™) to W Ly (R™). Moreover,
if ® € Vs, the condition (6) is necessary and sufficient for the boundedness of IY
from Lg(R™) to Ly (R™).

The commutators [b, I], |b, I”| generated by b € L (R") and the operator
IP are defined by

P [ M) )
1510w = [ L p(w)a,

b(x) —b
‘b,Iof)’f(iv):/n Wf(y)dy, 0<a<y,
respectively.

Theorem 6. [2] Let 0 < a <, b€ BMO(R") and ®,¥ € ).
1. If ® € Vo and V¥ € A,, then the condition

o
ro“I)_l(r—V) +/ (1—1—1](1E
r

ol (¢ et < 0T () (7)

for all r > 0, where C' > 0 does not depend on r, is sufficient for the boundedness
of [b, IV] from Le(R™) to Ly (R™).
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2. If U € A, then the condition (6) is necessary for the boundedness of
b, IT| from Lg(R™) to Ly (R™).
3. Let ® € Vo and ¥ € Ay. If the condition

/Too (1 +In ;)fb—l(t‘”) t°dt < Croa™ (r77) ®)

holds for all r > 0, where C' > 0 does not depend on r, then the condition (6) is
necessary and sufficient for the boundedness of |b, IT| from Lo (R™) to Ly (R™).

3.1. Parabolic maximal operator and its commutators in parabolic
generalized Orlicz-Morrey spaces

The parabolic generalized Orlicz-Morrey spaces and the weak parabolic gen-
eralized Orlicz-Morrey spaces are defined as follows.

Definition 3. Let p(r) be a positive measurable function on (0,00) and ® be any
Young function. We denote by Mg , p(R™) the generalized Orlicz-Morrey space,
the space of all functions f € LICI‘)’C(R”) with finite quasinorm

1z g p = 1f 1t g p(Re) = §3p>0¢(r)’1¢’1(!5($7T)!)’l)\lf\lmg(x,r)),

S

where LY¢(R™) is defined as the set of all functions f such that fx. € Lo(R™)
for all ellipsoids £ C R™.

Also by W Mg , p(R™) we denote the weak generalized Orlicz-Morrey space of
all functions f € W LES(R™) for which

[ fllwne, p = I fllwrtg,, p@e) =

= sup () QT H(E@, )TN W Lo @) < 00
zeR™ r>0

where W L2¢(R™) is defined as the set of all functions f such that fx, € W Lg(R™)
for all balls £ C R".

Remark 1. Thanks to (2) we have
N ([E(z, )T =T (rTY).
Therefore we can also write

1fl[sepp = sup ()@ N F Lo
z€R™,r>0

and

1fllwitepp = sup @) ) fllwLeEer):
zeR™ r>0

respectively.
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According to this definition, we recover the parabolic generalized Morrey
space M), p(R™) and weak parabolic generalized Morrey space WM, , p(R")
by choosing ®(r) = P, 1 < p < oco. If &(r) =P, 1 < p < oo and ¢(r) =
P77, 0 < A<, then Mg, p(R") and WM., p(R?) coincide with M, p(R™)
and WM, » p(R"), respectively, and if p(r) = ®~1(r=7), then Mg, p(R™) and
W Mg , p(R™) coincide with the Lg(R™) and W Lg(R™), respectively.

A function ¢ : (0,00) — (0, 00) is said to be almost increasing (resp. almost
decreasing) if there exists a constant C' > 0 such that

o(r) < Cy(s) (resp. ¢(r) > Cp(s)) forr <s.

For a Young function @, we denote by G the set of all almost decreasing functions
¢ :(0,00) = (0,00) such that ¢ € (0,00) — % is almost increasing.

Lemma 5. [3] Let & := E(xo,70). If ¢ € Go, then there exists C' > 0 such that

< [IXg, Il < .
SO(TO) ” 50” P,0,P (TO)
Theorem 7. [3] Let ® € Y, the functions @1, p2 and ® satisfy the condition

sup ! (t_v) ess inf L@)

<C 9
r<t<oo t<s<oo 1 (S—’y) < C (), (9)

where C does not depend on r. Then the parabolic mazximal operator MT is
bounded from Mg o p(R™) to WM ,, p(R") and for ® € Va, the operator MP
is bounded from Mg o, p(R") to Mg 4, p(R™).

Theorem 8. [3] Let ® be a Young function with ® € Aa N'Va, b € BMO(R")
and the functions o1, s and © satisfy the condition

sup (1+ln§)‘1"1(t‘”)essinf A < € o), (10)

r<t<oo t<s<oo (1)71 (Siﬂ/)

where C' does not depend on r. Then the operator Mbp is bounded from Mg o, p(R™)
to Mcp#,%p(Rn).

4. Parabolic fractional integral and its commutators in parabolic
generalized Orlicz-Morrey spaces

The following theorem is one of our main results.
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Theorem 9. Let 0 < a <, ® € Y, B € (0,1), n(t) = p(t)? and U(t) = d(t/).
1. If ® € Vo and p(t) satisfies (9), then the condition

o)+ [ ren T < op) (1)

for allt > 0, where C > 0 does not depend on t, is sufficient for boundedness of
Ig from M@MJD(Rn) to quﬂwp(Rn).
2. If ¢ € Go, then the condition
t%(t) < Cop(t)?, (12)

for all t > 0, where C > 0 does not depend on t, is necessary for boundedness of
IP from Mg, p(R™) to My, p(R™).
3. Let ® € Vo. If p € Gg satisfies the regularity condition

/:o o)L < crop(t), (13)

r

for all t > 0, where C > 0 does not depend on t, then the condition (12) is
necessary and sufficient for boundedness of 1Y from Mg, p(R™) to My, p(R™).

Proof. Proof of the first part of the theorem:
For arbitrary parabolic ball £ = £(z,t) we represent f as

F=h+fa H)=fWxeW), fy)=Ffy)xe(y)

and have

I3 f (@) = 13 fi(@) + I ().
For I fi(x), following Hedberg’s trick, we obtain |IL fi(z)| < C1t*M?T f(x). For
I, f2(x), by Lemma 2, we have

et L /;j

/ / W)l dr
Y
(z,7)\E(z,t) rytl-a

< Cz/t S U fll Lo (@) dr-

Consequently, we have

1P f (@) < M f(a) + / &1 B dr

< M)+ 1 F s / rp(r) 2T

, .
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From (11) we obtain

|12 f (@) S minfp(t)”~ MP f(2), 0671 f | My .0}

< sulgmin{sﬁflMPf(x)a SN f vt}
5>

= (MP @) If 3

where we have used the fact that the supremum is achieved when the minimum
parts are balanced. Hence for every x € R™ we have

12 F @) S (M F@)? 1l e (14)

By using the inequality (14) we have

122 ooy S NOLHP ML) 1 llry

Note that from (3) we get

(MPf(x))° ( MPF f(x) >
7 S ACV [V i (i AC2R DA
/5 IMPFIT, e ' /5 P e ) =

Thus, H(Mpf)ﬁHL\P < HMPfHL @)’ Consequently, by using this inequality we
have
122 Fllwe) S 1MP A1, o) 1 g o (15)

From Theorem 7 and (15), we get

115 fliatgp = sup n(t) " O E NI fll e
z€R™ t>0

S, sop @O EDIMEA, )

B
= 1137, ( sup so(trlcb—l(t—w||MPf||L¢<g>>

z€R™ t>0

S ||f”M<I>,50,P'

Proof of the second part of the theorem.:
Let & = &E(wo,t0) and x € &. By Lemma 4 we have t§ < C’Ifxgo(a:).
Therefore, by Lemma 5 we have

ty < CUH (1€ ™I Xe, lu ) < On(t0) 112 X, Ity
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n(to) -1
< Cnlto)lixe, Mg o p < Cgp(to) = Col(to)’

Since this is true for every ty > 0, we are done.
The third statement of the theorem follows from the first and the second ones.

<

Remark 2. Note that in the isotropic case P = I Theorem 9 was proved in [8,
Theorem 4.5].

Theorem 10. Let 0 < o < v, ® € Y, B € (0,1), n(t) = p(t)? and V() =
D(t1/5).

1. If p(t) satisfies (9), then the condition (11) is sufficient for boundedness
of 1L from Mg, p(R™) to W My ,, p(R™).

2. If € Go, then the condition (12) is necessary for boundedness of IL from
Mq;W,p(Rn) to WMq;,n,p(]Rn).

3. If p € Go satisfies the regularity condition (13), then the condition (12) is
necessary and sufficient for boundedness of IL from Mgy, p(R"™) to WMy, p(R").

Proof. Proof of the first part of the theorem.:
By using the inequality (14) we have

122 Flw ey S IO 1P wraie) 1 gy,

where £ = £(x,t). Note that from (4) we get

th t
supU | ———— | d P a(tﬁ):sup<1><>d pe(t) < 1.
>0 ‘|MPfH€VL®(g) (ME1) t>0 IMP fllw Lo e) M
Thus, ||(MPf)5HWL\P(5) < HMPfH Consequently, by using this inequality
we have
125 flwraie) S HMPfHWLq)(g) [FilEri (16)

From Theorem 7 and (16), we get

11 fllwatg,p = sup ) " O ENNIL fllwrge)
TER™ >0

1— _
SII . s 007 0TI I

B
= I, ( sup so(t)-l@-l(w)HManWLq)(g))

zER™ >0
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SJ ”f”MCI),Lp,P'
Proof of the second part of the theorem: Let & = E(xo,tp) and = € &. By
Lemma 4 we have t§ < CIV X¢, (z). Therefore, by Lemma 5
tg < CU (€L Xe, | < On(to) 11 xe, |
0= 0 a Xeg IWLg (&) = CTIN0) [Ha Xey IWMg 1,y p

n(to) —1
< On(to)llxe, 1Me, 0 p < Cgo(to) = Co(to)” .

Since this is true for every to > 0, we are done.
The third statement of the theorem follows from the first and the second ones.

<4

Lemma 6. Ifb e L] (R") and & := E(xg, 1), then
r§1b(x) = bey| S [0, 15 |xe, ()

for every x € &), where bg, = ﬁ fSo b(y)dy.

Proof. If z,y € &, then p(x —y) < kp(x — xg) + kp(y — xg) < 2krg. Since
0<a<~,wegetrg | < Cp(x—y)* 7. Therefore

10,7 e, (1) = /S ) = bt~ )y > O /g () = bl

> Crg_’y

JRCCE b(y))dy\ = Cr§b(z) — bey).

The following theorem is one of our main results.

Theorem 11. Let 0 < o <, ® € ¥, b € BMO(R"), 8 € (0,1), n(t) = ¢(t)?
and U(t) = o(tV/P).
1. If ® € Ay N Vy and ¢ satisfies (10), then the condition

ro(r) + /Too (1 +1In ;)gp(t)to‘% < Co(r)?, (17)

for all v > 0, where C' > 0 does not depend on r, is sufficient for the boundedness
of (b, 1] from Mg, p(R™) to My, p(R™).

2. If ® € Ay and ¢ € Gg, then the condition (12) is necessary for the
boundedness of |b, IL| from Mg , p(R™) to My, p(R™).
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3. Let ® € AoNVs. If p € Gg satisfies the conditions

sup (1 +In ;)go(t) < Co(r)

r<t<oo

and

0 t dt
_ (6 < o
/T (1 +1n T)cp(t)t ;= Crp(r)

for allr > 0, where C > 0 does not depend on r, then the condition (12) is neces-
sary and sufficient for the boundedness of |b, IL | from Mg, p(R™) to My, p(R™).

Proof. For arbitrary xg € R", set £ = E(xq,r) for the ball centered at z¢ and
of radius r. Write f = f1 + fo with f1 = fx,,. and fo = fx, , where k is the
(2kE)
constant from the triangle inequality.
If we use the same notation and proceed as in the proof of Theorem 6, for
x € £ we have

[e.9]

a t — -
To@) + I S [Wlr ML A+ ol [ (L4 ) 1 g manen® () 5

2r

S0 (M 1)+ e [ (14100 o055,

Thus, by (17) we obtain
Jo(@) + A S bl min{eo(r) P M £ (@), 0)° | Fll vt oo}
S Il sup minds™ M £(2), 5% |l vt}
= |Ibll-(MF F@)? 1 £l -

Consequently, for every x € £ we have
@)+ 1 S bl (ME @) 17152 (18)
By using the inequality (18) we have
10 + Tillzg e S Wl IOE D e 11
Note that from (3) we get

(M f(x))° My f (@)
V| ————)de= | | ——— |dx <1
/g |ME £2 : /5 <||szijLq>(5) t=

Lg(E)
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Thus, [[(M)F)°|| Ly () < M 117, ) Therefore, we have

190() + Till g e) S Il NG FIL o) 1z o

If we again use the same notation and proceed as in the proof of Theorem 6,
we get,

1 _ _
12l Ly ) S HbH*W/? 1F 112 (8 o,y @ (¢77) 27 it
From this estimate and condition (17) we have

|16l /°° di
< t%p(t)—
12l Ly ) S v )IIfIIMWp . p(t)

151 Sl 07

< B0t
N\I}_(

Consequently, by using Theorem 8, we get

106, 131 £ |t = Sup >077(7")’1‘I”1(T’”)Il[b, La]fllLuce)
zoER™,r

B
S 16l Hflqu) » ( sup <P(T)_1<1>_1(T_7)|szjflqu)(g)) + [0l f | Mg,
zo€ER™,r>0
S ol f 124 p-
We shall now prove the second part. Let & = E(zo,r0) and = € &. By

Lemma 6 we have r{|b(z) — bg,| < C1b, 15|X£0 (). Therefore, by Lemma 3 and
Lemma 5

116, P|Xgo||Lq,($o
16(-) = beoll Ly €0y ~ IIbH

nr —
nro) 15 I e sy < Coa(ro)llxe, ntg 00 < O ; < Colro)* .

116, 22 Xy | £ ) 2 (r77)

C
= Toll.

Since this is true for every ro > 0, we are done.
The third statement of the theorem follows from the first and the second ones.

D |

Remark 3. Note that in the isotropic case P =1 Theorem 11 was proved in [8,
Theorem 6.4].
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