
Azerbaijan Journal of Mathematics
V. 9, No 1, 2019, January
ISSN 2218-6816

Bézier Curves and Surfaces Based on Modified
Bernstein Polynomials

Kh. Khan∗, D.K. Lobiyal, A. Kilicman

Abstract. In this paper, Bézier curves and surfaces have been constructed based on
modified Bernstein bases functions with shifted knots for t ∈

[
α

n+β ,
n+α
n+β

]
. Various prop-

erties of these modified Bernstein bases are studied. A de Casteljau type algorithm has
been developed to compute Bézier curves and surfaces with shifted knots. Furthermore,
some fundamental properties of Bézier curves and surfaces with modified Bernstein bases
are also discussed. Introduction of parameters α and β enable us to shift Bernstein bases
functions over subintervals of [0, 1]. These new curves have some properties similar to
classical Bézier curves. We get Bézier curves defined on [0, 1] when we set the parameters
α, β to the value 0. Simulation study is performed through MATLAB R2010a. It has
been concluded that Bézier curves that are generated over any subinterval of [0, 1] based
on modified Bernstein bases functions are similar to the Bézier curves that are generated
based on classical Bernstein bases functions over the interval [0, 1].

Key Words and Phrases: degree elevation, degree reduction, de Casteljau algorithm,
Bernstein blending functions with shifted knots, Bézier curve, tensor product, shape
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1. Introduction and preliminaries

It was S.N. Bernstein [1] in 1912, who first introduced his famous operators
Bn : C[0, 1]→ C[0, 1] defined for any n ∈ N and for any function f ∈ C[0, 1] where
C[0, 1] denote the set of all continuous functions on [0, 1] which is equipped with
sup-norm ‖.‖C[0,1]

Bn(f ;x) =
n∑
k=0

(
n
k

)
xk(1− x)n−kf

(
k

n

)
, x ∈ [0, 1]. (1)
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and named them Bernstein polynomials to prove the Weierstrass theorem [9].
Bernstein showed that if f ∈ C[0, 1], then Bn(f ;x) ⇒ f(x) where ” ⇒ ” repre-
sents the uniform convergence. One can find a detailed information about the
Bernstein polynomials in [10].

Later it was found that Bernstein polynomials possess many remarkable prop-
erties and have various applications in areas such as approximation theory [9],
numerical analysis, computer-aided geometric design, and theory of differential
equations due to their fine properties of approximation [23].

In computer-aided geometric design (CAGD), Bernstein polynomials and their
variants are used in order to preserve the shape of the curves or surfaces. One
of the most important curve in CAGD [27] is the classical Bézier curve [2] con-
structed with the help of Bernstein basis functions. Other works related to differ-
ent generalizations of Bernstein polynomials and Bézier curves and surfaces can
be found in [3, 4, 5, 7, 8, 11, 12, 13, 18, 20, 21, 23, 24, 26]

A new analogue of Bernstein operators using the concept of post quantum
calculus ((p, q)-calculus) in approximation theory have been introduced recently
by Mursaleen et al. in [12]. Later, based on (p, q)-integers, some approximation
results for Bernstein-Stancu operators, Bernstein-Kantorovich operators, (p, q)-
Lorentz operators, Bleimann-Butzer and Hahn operators and Bernstein-Shurer
operators etc. have also been introduced in [13, 14, 15, 16, 17].

Also see a recent work in approximation theory On Approximation by Stancu
type Jakimovski-Leviatan-Durrmeyer operators [19].

In [7, 8], Khalid et al. have shown applications of post quantum calculus in
computer-aided geometric design in terms of flexibility and applied these Bern-
stein bases for construction of (p, q)-Bézier curves and surfaces which is further
generalization of q-Bézier curves and surfaces [21, 23]. For other relevant works
based on Bézier curves, we refer the readers to [4, 5, 11, 18, 21, 22, 23, 25].

In 1968, Stancu [28] showed that the polynomials

(
P (α,β)
n f

)
(x) =

n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k + α

n+ β

)
, (2)

converge to continuous function f(x) uniformly in [0,1] for each real α, β such
that 0 ≤ α ≤ β. The polynomials (2) are called Bernstein-Stancu polynomials.

In 2010, Gadjiev and Ghorbanalizadeh [6] introduced the following construc-
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tion of Bernstein-Stancu type polynomials with shifted knots:

Sn,α,β(f ;x) =

(
n+ β2
n

)n n∑
k=0

(
n

k

)(
x− α2

n+ β2

)k(n+ α2

n+ β2
− x
)n−k

f

(
k + α1

n+ β1

)
(3)

where α2
n+β2

≤ x ≤ n+α2
n+β2

and αk, βk (k = 1, 2) are positive real numbers provided
0 ≤ α1 ≤ α2 ≤ β1 ≤ β2. It is clear that for α2 = β2 = 0, the polynomials (3)
turn into the Bernstein-Stancu polynomials (2) and if α1 = α2 = β1 = β2 = 0,
then these polynomials turn into the classical Bernstein polynomials.

In recent years, generalization of the Bézier curve with shape parameters has
received continuous attention. Several authors were concerned with the problem
of changing the shape of curves and surfaces, while keeping the control polygon
unchanged and thus they generalized the Bézier curves in [7, 8, 22, 23].

The outline of this paper are as follows. Section 2 introduces a modified
Bernstein functions with shifted knots Gkn,α,β and their properties. In Section
3, Bézier curves based on modified Bernstein bases alongwith degree elevation
and a de Casteljau algorithm are presented. In Section 4, we define a tensor
product patch based on Algorithm 1 and we discuss its geometric properties
as well as a degree elevation technique. Furthermore, tensor product of Bézier
surfaces on

[
α

n+β ,
n+α
n+β

]
×
[

α
n+β ,

n+α
n+β

]
for Bernstein polynomials with shifted knots

is introduced and its properties inherited from the univariate case are discussed.
In Sections 5 and 6, we have given concluding remarks and MATLAB codes.

In next section, we construct basis functions with shifted knots with the help
of (3).

2. Modified Bernstein bases functions with shifted knots

The modified Bernstein bases functions with shifted knots are defined with
the help of (3) as follows:

Gkn,α,β(t) =

(
n

k

)
1

( n
n+β )n

(
t− α

n+ β

)k(n+ α

n+ β
− t
)n−k

, (4)

where α
n+β ≤ t ≤

n+α
n+β and α, β are positive real numbers provided 0 ≤ α ≤ β.

2.1. Properties

Theorem 1. The modified Bernstein bases functions with shifted knots possess
the following properties:

1. Non-negativity : Gkn,α,β (t) ≥ 0 k = 0, 1, · · · , n, t ∈
[

α
n+β ,

n+α
n+β

]
.
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2. Partition of unity :

n∑
k=0

Gkn,α,β (t) = 1, for every t ∈
[

α

n+ β
,
n+ α

n+ β

]
.

3. End-point interpolation:

Gkn,α,β

(
α

n+ β

)
=


1, if k = 0

0, k 6= 0

Gkn,α,β

(
n+ α

n+ β

)
=


1, if k = n

0, k 6= n.

4. Reducibility : when α = β = 0, formula (4) reduces to the classical Bernstein
basis on [0, 1].

Proof. All these properties can be deduced from (4). J

Figure 1: Modified Bernstein bases functions with shifted knots

Figure 1 shows the modified Bernstein bases functions of degree 3 with shifted
knots for α = 4, β = 6. Here we can observe that the sum of blending functions is
always unity and also satisfies end point interpolation property. In case α = β =
0, it turns out to be classical Bernstein basis on [0, 1] which is shown in Figure 2.
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Figure 2: Classical cubic Bernstein bases functions

2.2. Identities

Below we state some important identities which we will use later.(
n+ α

n+ β
− t
)
Gkn,α,β (t) =

(
n+ 1− k
n+ 1

)(
n

n+ β

)
Gkn+1,α,β (t) (5)

and (
t− α

n+ β

)
Gkn,α,β (t) =

(
n

n+ β

)(
k + 1

n+ 1

)
Gk+1
n+1,α,β (t). (6)

Proof.

Consider

(
n+ α

n+ β
−t
)
Gkn,α,β(t) =

(
n+ α

n+ β
−t
){(

n

k

)
1

( n
n+β )n

(
t− α

n+ β

)k(n+ α

n+ β
−t
)n−k}

(
n+ α

n+ β
−t
)
Gkn,α,β (t) =

(
n
k

)(
n+1
k

)(n+ 1

k

)
1

( n
n+β )n

(
t− α

n+ β

)k(n+ α

n+ β
−t
)n−k+1

(
n+ α

n+ β
− t
)
Gkn,α,β (t) =

{ (
n
k

)(
n+1
k

) (
n

n+ β

)}
Gkn+1,α,β (t)

(
n+ α

n+ β
− t
)
Gkn,α,β (t) =

(
n+ 1− k
n+ 1

)(
n

n+ β

)
Gkn+1,α,β (t).
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Similarly(
t− α

n+ β

)
Gkn,α,β(t) =

(
n

n+ β

)(
k + 1

n+ 1

)
Gk+1
n+1,α,β(t)

(
t− α

n+ β

)
Gkn,α,β(t) =

(
x− α

n+ β

){(
n

k

)
1

( n
n+β )n

(
t− α

n+ β

)k(n+ α

n+ β
−t
)n−k}

.

(
t− α

n+ β

)
Gkn,α,β (t) =

=

(
x− α

n+ β

){(
n

k

)
1

( n
n+β )n

(
t− α

n+ β

)k(n+ α

n+ β
− t
)n−k}

=

(
n

k

)
1

( n
n+β )n

(
t− α

n+ β

)k+1(n+ α

n+ β
− t
)n−k

=

(
n
k

)(
n+1
k+1

)(n+ 1

k + 1

)
1

( n
n+β )n

(
t− α

n+ β

)k+1(n+ α

n+ β
− t
)n−k

=

(
n

n+ β

)(
k + 1

n+ 1

)
Gk+1
n+1,α,β(t). J

Theorem 2. Every modified Bernstein function with shifted knots of degree n
is a linear combination of two modified Bernstein functions with shifted knots of
degree n+ 1 :

Gkn,α,β (t) =

(
n+ 1− k
n+ 1

)
Gkn+1,α,β (t) +

(
k + 1

n+ 1

)
Gk+1
n+1,α,β (t) (7)

where
α

n+β ≤ t ≤
n+α
n+β and α, β are positive real numbers satisfying 0 ≤ α ≤ β.

Proof.

We have(
n

n+ β

)
Gkn,α,β (t) = Gkn,α,β

(
n+ α

n+ β
− t+ {t− α

n+ β
}
)

or (
n

n+ β

)
Gkn,α,β (t) =

(
n+ α

n+ β
− t
)
Gkn,α,β +

(
t− α

n+ β

)
Gkn,α,β.
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On using equalities (5), (6), we can easily get

Gkn,α,β (t) =

(
n+ 1− k
n+ 1

)
Gkn+1,α,β (t) +

(
k + 1

n+ 1

)
Gk+1
n+1,α,β (t). J

Theorem 3. Every modified Bernstein function with shifted knots of degree n
is a linear combination of two modified Bernstein functions with shifted knots of
degree n− 1 :

Gkn,α,β (t) =
n+ β

n

(
t− α

n+ β

)
Gk−1n−1,α,β (t)+

n+ β

n

(
n+ α

n+ β
−t
)
Gkn−1,α,β (t), (8)

where
α

n+β ≤ t ≤
n+α
n+β and α, β are positive real numbers satisfying 0 ≤ α ≤ β.

Proof.
On using Pascal type relation

(
n
k

)
=
(
n−1
k−1
)

+
(
n−1
k

)
, we get

Gkn,α,β (t) =

(
n

k

)
1

( n
n+β )n

(
t− α

n+ β

)k(n+ α

n+ β
− t
)n−k

=

{(
n− 1

k − 1

)
+

(
n− 1

k

)}
1

( n
n+β )n

(
t− α

n+ β

)k(n+ α

n+ β
− t
)n−k

=

(
n− 1

k − 1

)
1

( n
n+β )n

(
t− α

n+ β

)k(n+ α

n+ β
− t
)n−k

+

(
n− 1

k

)
1

( n
n+β )n

(
t− α

n+ β

)k(n+ α

n+ β
− x
)n−k

=
n+ β

n

(
t− α

n+ β

)
Gk−1n−1,α,β (t) +

n+ β

n

(
n+ α

n+ β
− t
)
Gkn−1,α,β (t).

When α = β = 0, equalities (7), (8) reduce to the degree evaluation formula
of the classical Bernstein bases functions. J

3. Bézier curves based on modified Bernstein bases

Using modified Bernstein bases functions with shifted knots, the Bézier curves
of degree n are defined as follows:

P(t;α, β) =

n∑
k=0

Pk G
k
n,α,β(t), (9)



10 Kh. Khan, D.K. Lobiyal, A. Kilicman

where Pk ∈ R3 (k = 0, 1, · · · , n), and Pk are control points. The adjacent points
Pk, k = 0, 1, 2, · · · , n are joined to obtain a polygon which is called the control
polygon of Bézier curves.

3.1. Properties

Theorem 4. Bézier curves based on modified Bernstein bases have the following
basic properties:

1. Bézier curves have geometric and affine invariance.

2. Bézier curves lie inside the convex hull of their control polygons.

3. The end-point interpolation property: P( α
n+β ;α, β) = P0, P(n+αn+β ;α, β) =

Pn.

4. Reducibility: When α = β = 0 formula (9) reduces to a classical Bézier
curve.

Proof. These properties of Bézier curves based on modified Bernstein bases
can be easily deduced. J

Theorem 5. The end-point property of derivative:

P′
(

α

n+ β
;α, β

)
= (n+β)(P1−P0)

(
n− 1 + β

n− 1

)n−1(n− 1 + α

n− 1 + β
− α

n+ β

)n−1−k
(10)

P′
(
n+ α

n+ β
;α, β

)
= (n+β)(Pn−Pn−1)

(
n− 1 + β

n− 1

)n−1(n+ α

n+ β
− α

n− 1 + β

)n−1
(11)

i.e. Bézier curves with shifted knots are tangent to fore-and-aft edges of their
control polygons at end points.

Proof.
Let

P(t;α, β) =

n∑
k=0

Pk G
k
n,α,β(t)

=

n∑
k=0

Pk

(
n

k

)
1

( n
n+β )n

(
t− α

n+ β

)k(n+ α

n+ β
− t
)n−k
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= V(t;α, β)

or

P(t;α, β) = V(t;α, β).

On differentiating both sides with respect to ‘t’, we have

P′(t;α, β) = V′(t;α, β).

Let

Ank(t;α, β) =

(
n

k

)
1

( n
n+β )n

(
t− α

n+ β

)k(n+ α

n+ β
− t
)n−k

.

Then

V(t;α, β) =

n∑
k=0

PkA
n
k(t;α, β).

(Ank(t;α, β)′ =

(
n

k

)
1

( n
n+β )n

k

(
t− α

n+ β

)k−1(n+ α

n+ β
− t
)n−k

−
(
n

k

)
1

( n
n+β )n

(
t− α

n+ β

)k
(n− k)

(
n+ α

n+ β
− t
)n−k−1

= (n+ β){An−1k−1(t;α, β)−An−1k (t;α, β)},

which implies

V′(t;α, β) =
n∑
k=0

Pk(Ank(t;α, β)′.

Now

V′
(

α

n+ β
;α, β

)
= P′(

α

n+ β
;α, β) = (n+ β)(P1 −P0)An−10 (t;α, β)

and

P′
(

α

n+ β
;α, β

)
= (n+β)(P1−P0)

(
n− 1 + β

n− 1

)n−1(n− 1 + α

n− 1 + β
− α

n+ β

)n−1−k
.

Similarly after some computation, we have
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V′
(
n+ α

n+ β
;α, β

)
= P′

(
n+ α

n+ β
;α, β

)
= (n+ β)(Pn −Pn−1)An−1k−1

(
n+ α

n+ β

)
,

P′
(
n+ α

n+ β
;α, β

)
= (n+β)(Pn−Pn−1)

(
n− 1 + β

n− 1

)n−1(n+ α

n+ β
− α

n− 1 + β

)n−1
.

J

3.2. Degree elevation for Bézier curves with shifted knots

Bézier curves with shifted knots have a degree elevation algorithm that is
similar to that possessed by the classical Bézier curves. Using the technique of
degree elevation, we can increase the flexibility of a given curve.

As we know, Bézier curves based on modified Bernstein bases with shifted
knots are given by

P(t;α, β) =

n∑
k=0

Pk G
k
n,α,β (t).

Then after applying degree elevation algorithm on this, we have

P(t;α, β) =

n+1∑
k=0

P∗k G
k
n+1,α,β (t)

as Bézier curves based on modified Bernstein bases of degree n+ 1, where

P∗k =

(
1− k

n+ 1

)
Pk−1 +

(
k

n+ 1

)
Pk. (12)

The equation above can be derived from Theorem 2. If we denote by P =
(P0, P1, · · · , Pn)T the vector of control points of the initial Bézier curve of degree
n, and by P(1) = (P ∗0 , P

∗
1 , · · · , P ∗n+1) the vector of control points of the degree

elevated Bézier curve of degree n+ 1, then we can represent the degree elevation
procedure as

P(1) = Tn+1P,

where



Bézier Curves and Surfaces based 13

Tn+1 =
1

n+ 1



n+ 1 0 . . . 0 0
n+ 1− n n . . . 0 0

...
...

. . .
...

...
0 . . . n+ 1− 2 2 0
0 0 . . . n+ 1− 1 1
0 0 . . . 0 n+ 1


(n+2)×(n+1)

.

For any l ∈ N, the vector of control points of the degree elevated Bézier curve
of degree n + l is P(l) = Tn+l Tn+2 · · · .Tn+1P. As l −→ ∞, the control polygon
P(l) converges to a Bézier curve.

3.3. de Casteljau type algorithm for Bézier curves with shifted
knots

The recursive de Casteljau type algorithm for Bézier curves with shifted knots
of degree n can be expressed as follows:


P0

i (t;α, β) ≡ P0
i ≡ Pi i = 0, 1, 2 · · · , n

Pr
i (t;α, β) = n+β

n

(
t− α

n+β

)
Pr−1

i+1 (t;α, β) + n+β
n

(
n+α
n+β − t

)
Pr−1

i (t;α, β)

r = 1, · · · , n, i = 0, 1, 2 · · · , n− r., α
n+β ≤ t ≤

n+α
n+β , 0 ≤ α ≤ β.

(13)

Then

P(t;α, β) =
n−1∑
i=0

P1
i (t;α, β) = · · · =

∑
Pr

i (t;α, β)Gin−r,α,β(t) = · · · = Pn
0 (t;α, β).

(14)

It is clear that this result can be obtained from Theorem (3). When α = β =
0, the formulas (13) and (14) recover the de Casteljau algorithms for classical
Bézier curves. Let P 0 = (P0, P1, · · · , Pn)T , P r = (P r0 , P

r
1 , · · · , P rn−r)T . Then de

Casteljau algorithm can be expressed in matrix form as follows:

Pr(t;α, β) = Mr(t;α, β) · · ·M2(t;α, β)M1(t;α, β)P0, (15)

where Mr(t;α, β) is a (n− r + 1)× (n− r + 2) matrix and

Mr(t;α, β) =
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=
n+ β

n



(
n+α
n+β − t

) (
t− α

n+β

)
. . . 0 0

0
(
n+α
n+β − t

) (
t− α

n+β

)
0 0

...
...

. . .
...

...
0 . . .

(
n+α
n+β − t

) (
t− α

n+β

)
0

0 0 . . .
(
n+α
n+β − t

) (
t− α

n+β

)

 .

4. Tensor product Bézier surfaces with shifted knots on[
α

n+β
, n+α
n+β

]
×
[

α
n+β

, n+α
n+β

]
We define a two-parameter family P(u, v) of tensor product Bézier surfaces

of degree m× n as follows:

P(u, v) =

m∑
i=0

n∑
j=0

Pi,jG
i
m,α,β(u)Gjn,α,β(v), (u, v) ∈

[
α

n+ β
,
n+ α

n+ β

]
×
[

α

n+ β
,
n+ α

n+ β

]
, (16)

where Pi,j ∈ R3 (i = 0, 1, · · · ,m, j = 0, 1, · · · , n), and Gim,α,β(u), Gjn,α,β(v) are
modified Bernstein functions, respectively. We refer to the Pi,j as the control
points. By joining up adjacent points in the same row or column, we obtain a
net which is called the control net of tensor product Bézier surface.

4.1. Properties

Bézier surfaces with shifted knots have the following properties:

1. Geometric invariance and affine invariance property: Since

m∑
i=0

n∑
j=0

Gim,α,β(u) Gjn,α,β(v) = 1, (17)

P(u, v) is an affine combination of its control points.

2. Convex hull property: P(u, v) is a convex combination of Pi,j and lies in
the convex hull of its control net.

3. Isoparametric curves property: The isoparametric curves v = v∗ and u = u∗

of a tensor product Bézier surface are the Bézier curves with shifted knots
of degree m and degree n, respectively. Namely
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P(u, v∗) =

m∑
i=0

( n∑
j=0

Pi,j G
j
n,α,β(v∗)

)
Gim,α,β(u) , u ∈

[ α

n+ β
,
n+ α

n+ β

]
,

P(u∗, v) =
n∑
j=0

( m∑
i=0

Pi,j G
j
n,α,β(u∗)

)
Gim,α,β(v) , v ∈

[ α

n+ β
,
n+ α

n+ β

]
.

The boundary curves of P(u, v) are evaluated by P(u, α
n+α), P(u, n+αn+β ),

P( α
n+α , v) and P(n+αn+β , v).

4. Corner point interpolation property: The corner control net coincides with
the four corners of the surface. Namely, P( α

n+α ,
α

n+α) = P0,0, P( α
n+α ,

n+α
n+β ) =

P0,n, P(m+α
m+β ,

α
n+α) = Pm,0, P(m+α

m+β ,
n+α
n+β ) = Pm,n.

5. Reducibility: When α = β = 0, the formula (16) reduces to a classical
tensor product Bézier patch.

4.2. Degree elevation and de Casteljau algorithm

Let P(u, v) be a tensor product Bézier surface with shifted knots of degree
m× n. As an example, let us consider obtaining the same surface as a surface of
degree (m+1)× (n+1). Hence, we need to find new control points P∗i,j such that

P(u, v) =

m∑
i=0

n∑
j=0

Pi,jG
i
m,α,β(u)Gjn,α,β(v) =

m+1∑
i=0

n+1∑
j=0

P∗i,jG
i
m+1,α,β(u)Gjn+1,α,β(v).

(18)
Let αi = 1− m+1−i

m+1 , βj = 1− n+1−j
n+1 .

Then

P∗i,j = αi βj Pi−1,j−1 + αi (1− βj) Pi−1,j + (1− αi) (1− βj) Pi,j , (19)

which can be written in a matrix form as[
1− [m+1−i]

[m+1]
[m+1−i]
[m+1]

]
X

[
Pi−1,j−1 Pi−1,j
Pi,j−1 Pi,j

][
1− [n+1−j]

[n+1]
[n+1−j]
[n+1]

]
.

De Casteljau algorithm can also be easily extended to evaluate points on
a Bézier surface. Given the control points Pi,j ∈ R3, i = 0, 1, · · · ,m, j =
0, 1, · · · , n, we have
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

P0,0
i,j (u, v) ≡ P0,0

i,j ≡ Pi,ji = 0, 1, 2 · · · ,m; j = 0, 1, 2 · · · , n.

Pr,r
i,j (u, v) =

[
m+β
m

(
m+α
m+β

− t

)
m+β
m

(
t− α

m+β

)][
Pr−1,r−1
i,j Pr−1,r−1

i,j+1

Pr−1,r−1
i+1,j Pr−1,r−1

i+1,j+1

] [n+β
n

(
n+α
n+β

− t
)

n+β
n

(
t− α

n+β

) ]
r = 1, · · · , k, k = min(m,n) i = 0, 1, 2 · · · ,m− r; j = 0, 1, · · · , n− r, α

n+β
≤ t ≤ n+α

n+β
.

(20)

When m = n, one can directly use the algorithms above to get a point on
the surface. When m 6= n, to get a point on the surface after k applications of
formula (20), we use formula (15) for obtaining the intermediate point Pk,k

i,j .

Note: We get classical Bézier surfaces for (u, v) ∈
[

α
n+β ,

n+α
n+β

]
×
[

α
n+β ,

n+α
n+β

]
when we set the parameter α = β = 0.

5. Concluding remarks

Bézier curves and surfaces are constructed with the help of modified Bernstein
bases functions with shifted knots for t ∈

[
α

n+β ,
n+α
n+β

]
. Introduction of parameters

α and β enable us to shift Bernstein bases functions over subintervals of [0, 1].
We get Bernstein functions on [0, 1], when we set the parameters α = β = 0.

Simulation study is performed through MATLAB R2010a. It has been found
out that Bézier curves that are generated over any subinterval of [0, 1] based on
modified Bernstein bases functions which satisfy the properties of non negativity,
partition of unity and end point interpolation property are similar to the Bézier
curves that are generated based on classical Bernstein bases functions over the
interval [0, 1]. This result is shown in Figure 3 where Bézier curves based on
modified Bernstein bases functions is shown by blue curve get overwrite by Bézier
curves based on classical Bernstein bases functions shown by green curve.

6. MATLAB Code

m=[4,0]; % value of alpha

l=[5,0]; % value of beta

cpx=[37 40 39 29 23 26 45 ] % x-coordinate of control points

cpy=[38 37 27 26 36 50 56 ] % y-coordinate of control points
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(a) (b)

(c)

Figure 3: Bézier curves based on modified Bernstein bases

for shifloop=1:2

i=1;

α = m(shifloop);β = l(shifloop);
n=6;

d=1;

for y = α
n+β : 0.01 : n+αn+β
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d=d+1;

end

bezierx=[1:d-1];

beziery=[1:d-1];

for x = α
n+β : 0.01 : n+αn+β

bezierbernsteinx=0;bezierbernsteiny=0;

for k=0:n

bezierbernsteinx = bezierbernsteinx+

[
n
k

](
x− α

n+ β

)k(
n+ α

n+ β
− x

)n−k
cpx(k + 1);

bezierbernsteiny = bezierbernsteiny +

[
n
k

](
x− α

n+ β

)k(
n+ α

n+ β
− x

)n−k
cpy(k + 1);

end

bezierx(i) = bezierbernsteinx ∗
(
n+β
n

)n
;

beziery(i) = bezierbernsteiny ∗
(
n+β
n

)n
;

i=i+1;

end

if (shifloop==1)

c=plot(bezierx,beziery)

set(c,’Color’,’blue’,’LineWidth’,2)

else

c=plot(bezierx,beziery,’g’)

set(c,’Color’,’green’,’LineWidth’,2)
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end

hold on

end

plot(cpx,cpy,’--k*’);

hleg1 = legend(’Modified Bernstein bases’,’Classical Bernstein bases (green

overwrite blue)’,’control polygon’,’location’,’northwest’);

set(hleg1,’Box’,’off’)

hold on
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