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On the Degree of Approximation by the Woronoi-
Nörlund and Riesz Type Means in the GHM

U. Deǧer∗, H. Bayındır

Abstract. The first results on approximation in the Hölder metric is based on the study
of Prössdorf. In 1979, Leindler’s paper on the generalizations of Prössdorf’s theorems
appeared. Later, in 2009, Leindler studied a similar problem on approximation by the
Woronoi-Nörlund and the Riesz means which are more general than the Cesáro means
with respect to the generalized Hölder metric (GHM ) given by Das, Nath and Ray. In
this paper, our aim is to give some results extending those of Leindler on the degree of
approximation in GHM by using more general methods of means on the classes larger
than classes of sequences used in Leindler’s study.
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1. Introduction and some notations

Let f be a 2π−periodic function and f ∈ Lp := Lp (0, 2π) for p ≥ 1. Then by

sn(f ;x) =
1

2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx) ≡
n∑
k=1

Ak(f ;x),

we denote a partial sum of the first (n+ 1) terms of the Fourier series of f ∈
Lp (p ≥ 1) at a point x.

The degree of approximation of the sum sn(f ;x) in different spaces has been
studied by many authors. In [20], Quade investigated approximation properties
of the partial sum of Fourier series in Lp norms. Chandra in [4] and Leindler in
[13] generalized the results of Quade using the Woronoi-Nörlund and the Riesz
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means of Fourier series for some sequence classes. A similar problem was studied
for more general means in [7] and [8].

The space

Hα = {f ∈ C2π : |f(x)− f(y)| ≤ K|x− y|α, 0 < α ≤ 1},

where K is a positive constant, not necessarily the same at each occurrence, is a
Banach space (see Prössdorf, [18]) with the norm ‖ · ‖α defined by

‖f‖α = ‖f‖C + sup
x 6=y

∆αf(x, y), (1)

where

∆αf(x, y) =
|f(x)− f(y)|
|x− y|α

(x 6= y),

by convention ∆0f(x, y) = 0 and

‖f‖C = sup
x∈[−π,π]

|f(x)|.

The metric generated by the norm (1) onHα is called the Hölder metric. Prösdorff
has studied the degree of approximation by Cesáro means in the Hölder metric
and proved the following theorem.

Theorem 1 ([18]). Let f ∈ Hα(0 < α ≤ 1) and 0 ≤ β < α ≤ 1. Then

‖σn(f)− f‖β = O(1)

{
nβ−α , 0 < α < 1;
nβ−1 lnn , α = 1,

where σn(f) is the Cesáro means of the Fourier series of f .

The case β = 0 in Theorem 1 has been considered by Alexits [1]. Leindler
introduced more general classes than the Hölder classes of 2π-periodic continuous
functions, generalized the results of Prössdorf [12]. Chandra obtained a gener-
alization of Theorem 1 by considering the Woronoi-Nörlund transform [3]. In
[16], Mohapatra and Chandra considered the problem by a matrix means of the
Fourier series of f ∈ Hα.

Further generalizations of the Hölder metric was given in [5] and [6]. In [5],
Das et al. studied the degree of approximation by infinite matrix means involved
in the deferred Cesàro means in a generalized Hölder metric. In [9], the degree of
approximation of functions with respect to the norm given in [5] by the deferred
Woronoi-Nörlund means and the deferred Riesz means of the Fourier series of the
functions has been considered.
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The modulus of continuity of f ∈ C2π is defined by

ω(f, δ) := sup
0<|h|≤δ

|f(x+ h)− f(x)|,

where C2π is a space of all 2π-periodic and continuous functions defined on [0, 2π]
with the supremum norm. According to this, the class of functions Hω is defined
by

Hω := {f ∈ C2π : ω(f, δ) = O(ω(δ))},

where ω(δ) is a modulus of continuity.
In [15], Mazhar and Totik estimated, to the best possible extent, the degree

of approximation of a function f ∈ C2π by the T -means of its Fourier series for
the class Hω. A generalization of Hω space has been given by Das et al. in [6]:
if f ∈ Lp(0, 2π), p ≥ 1, then

H(ω)
p := {f ∈ Lp : A(f, ω) <∞},

where ω is a modulus of continuity

A(f, ω) := sup
t6=0

||f(·+ t)− f(·)||p
ω(|t|)

,

‖.‖p denotes Lp-norm with respect to x and is defined by

‖f‖p :=

{
1

2π

∫ 2π

0
|f(x)|p dx

} 1
p

.

The norm in the space H
(ω)
p is given by

||f ||(ω)p := ||f ||p +A(f, ω), (2)

and the metric generated by the norm (2) on H
(ω)
p is called the generalized Hölder

metric (GHM ). Das et al. proved the following theorem.

Theorem 2 ([6]). Let v and w be moduli of continuity such that w(t)
v(t) is nonde-

creasing. If f ∈ H(ω)
p , p ≥ 1, then

‖sn − f‖(v)p = O

(
w(π/n)

v(π/n)
log n

)
+O(1)

1

n

∫ π

π/n

w(t)

t2v(t)
dt.

In [13], Leindler has established the following result improving Theorem 2.
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Theorem 3 ([14]). Let v and w be moduli of continuity such that w(t)
v(t) is nonde-

creasing. Moreover, let the function

γ(t) := γ(v, w, ε; t) := t−ε
w(t)

v(t)
,

be nonincreasing for some 0 < ε ≤ 1. If f ∈ H(ω)
p , p ≥ 1. Then

||sn − f ||(v)p = O

(
w(1/n)

v(1/n)
log n

)
for all n ≥ 2.

According to this theorem, Leindler showed that if there exists an ε > 0 such
that t−ε ω(t)v(t) is also nonincreasing, then the second term in Theorem 2 can be re-

moved. In that paper, he also considered the degree of approximation of f ∈ H(ω)
p

by the Woronoi-Nörlund and the Riesz means defined as follows, respectively. Let
{pn} be a positive sequence,

Nn(f ;x) :=
1

Pn

n∑
m=0

pn−msm(f ;x),

Rn(f ;x) :=
1

Pn

n∑
m=0

pmsm(f ;x),

where Pn = p0 +p1 +p2 + ...+pn 6= 0 (n ≥ 0), and by convention p−1 = P−1 = 0.
Moreover, the results on the degree of approximation to functions by matrix

means of Fourier series which are more general than the Woronoi-Nörlund and
the Riesz means in GHM under some conditions can be found in [10]. Finally, let
us recall some sequence classes. Assume that u := (un) is a nonnegative sequence

and C := (Cn) = 1
n+1

n∑
m=0

um. A sequence u is called almost monotone decreasing

(briefly u ∈ AMDS) (increasing (briefly u ∈ AMIS)), if there exists a constant
K := K(u) which only depends on u such that

un ≤ Kum (Kun ≥ um)

for all n ≥ m.
If C ∈ AMDS (C ∈ AMIS), then we say that the sequence u is almost

monotone decreasing (increasing) mean sequence and denote u ∈ AMDMS (u ∈
AMIMS). Moreover, Mohapatra and Szal showed that the following embedding
relations are true (see [17]):

AMDS ⊂ AMDMS
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and

AMIS ⊂ AMIMS.

Throughout this paper, we shall use notations D � R (R � D) in in-
equalities if there exists a positive constant K such that D ≤ KR (R ≤ KD).
However, K may be different in different occurrences of ”� ”. We shall also use
the notation

∆an = an − an+1.

2. Woronoi-Nörlund and Riesz type submethods

In this section we will give some definitions stated in [2] and [7], and also state
results related to inclusions demonstrating the importance of these methods given
in [7].

Let {λ(n)}∞n=1 be a strictly increasing sequence of positive integers. The
Cesáro submethod Cλ is defined as

(Cλx)n =
1

λ(n) + 1

λ(n)∑
k=0

xk , (n = 0, 1, 2, ...),

where xk is a sequence of real or complex numbers. Therefore, the Cλ-method
yields a subsequence of the Cesáro method C1, and hence it is regular for any λ.
Cλ is obtained by deleting a set of rows from Cesáro matrix.

Let E = {λ(n)}∞n=1 and F = {µ(n)}∞n=1 be infinite subsets of N. In [2] it was
shown that Cλ ⊂ Cµ if and only if F \ E is finite. Moreover, Cλ is equivalent to
Cµ if and only if the symmetric difference E 4 F is finite. In particular, we see
that Cλ ⊂ C1 for any λ. The basic properties of Cλ-method can be found in [2]
and [19].

In [7], the Woronoi-Nörlund submethod and Riesz submethod are given as
follows, respectively:

Nλ
n (f ;x) =

1

Pλ(n)

λ(n)∑
m=0

pλ(n)−msm(f ;x),

Rλn(f ;x) =
1

Pλ(n)

λ(n)∑
m=0

pmsm(f ;x),

where

Pλ(n) = p0 + p1 + p2 + ...+ pλ(n) 6= 0 (λ(n) ≥ n ≥ 0),
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and by convention p−1 = P−1 = 0. The case pn = 1 for all (n ≥ 0) of either
Nλ
n (f ;x) or Rλn(f ;x) yields

σλn(f ;x) =
1

λ (n) + 1

λ(n)∑
m=0

sm(f ;x).

Note that if we take λ(n) = n in the last equality, then it coincides with the Cesàro
means. Now let us give some inclusions stated in [11] due to these methods.
Assume that E = {λ(n)}∞n=1 and F = {µ(n)}∞n=1 are infinite subsets of N.

Theorem 4 ([11]). Nλ
n ⊆ N

µ
n if and only if F \E is finite, where pλ(n)/Pλ(n) → 0

and pµ(n)/Pµ(n) → 0 as n→∞.

The next result is related to Theorem 4 taking into account E 4 F = (E \
F ) ∪ (F \ E).

Theorem 5 ([11]). Nλ
n ∼ N

µ
n if and only if F4E is finite, where pλ(n)/Pλ(n) → 0

and pµ(n)/Pµ(n) → 0 as n→∞.

Remark 1. In particular, we see that Nn ⊆ Nµ
n for any µ. Because the set

F \ {0, 1, 2, . . .} is empty.

Remark 2. The similars of Theorem 4 and Theorem 5 can be also stated for
the Riesz submethod in case Pλ(n) → ∞ and Pµ(n) → ∞ as n → ∞ instead of
pλ(n)/Pλ(n) → 0 and pµ(n)/Pµ(n) → 0 as n → ∞ in Theorem 4 and Theorem 5,
respectively.

Theorem 6 ([11]). Let {pn} be a positive nonincreasing sequence. If

lim sup
n→∞

λ(n+ 1)− λ(n)

Pλ(n)
= 0, (2)

then the Nλ
n -method is equivalent to the Nn-method for bounded sequences.

Remark 3. The similar theorem for Riesz method can be stated by taking

lim sup
n→∞

Pλ(n+1) − Pλ(n)
Pλ(n)

= 0

instead of the condition (2) in Theorem 6. In this case, we don’t need impose any
monotonicity condition on the sequence {pn}.
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3. Approximation by Woronoi-Nörlund and Riesz submethods in
GHM

In this part, we shall consider the degree of approximation to the functions

belonging to the class H
(w)
p by trigonometric polynomials given in [7] on large

classes of sequences.

3.1. Some auxiliary results

Since γ(t) is nonincreasing, we have

w(1/λ(n))

v(1/λ(n))
� λ(n)−ε ≥ 1

λ(n)
. (3)

Furthermore, we have
w(1/λ̃(n))

v(1/λ̃(n))
� w(1/λ(n))

v(1/λ(n))
, (4)

because w(t)
v(t) is nondecreasing, where λ̃(n) denotes the integer part of λ(n)/2. We

need the following lemmas to prove main theorems in this section.

Lemma 1. Let v and w be moduli of continuity such that w(t)
v(t) is nondecreasing.

Moreover, let the function

γ(t) = t−ε
w(t)

v(t)

be nonincreasing for some 0 < ε ≤ 1. If f ∈ H(ω)
p , p ≥ 1. Then

||sλn − f ||(v)p �
w(1/λ(n))

v(1/λ(n))
log λ(n) for all λ(n) ≥ n ≥ 2. (5)

Proof. By Theorem 2, we easily obtain

‖sλn − f‖(v)p = O

(
w(π/λ(n))

v(π/λ(n))
log λ(n)

)
+O(1)

1

λ(n)

∫ π

π/λ(n)

w(t)

t2v(t)
dt. (6)

Since γ(t) is nonincreasing, the second term on the right-hand side of (6) is
estimated as follows∫ π

π/λ(n)

w(t)

t2v(t)
dt =

∫ π

π/λ(n)

t−εw(t)

v(t)

tε

t2
dt =

∫ π

π/λ(n)
γ(t)tε−2dt

� γ(1/λ(n))

∫ π

π/λ(n)
tε−2dt� γ(1/λ(n))

{
log λ(n), ε = 1;

λ(n)1−ε, 0 < ε < 1.
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Therefore, if the two cases are taken into consideration, we have

1

λ(n)

∫ π

π/λ(n)

w(t)

t2v(t)
dt� 1

λ(n)
λ(n)ε

w(1/λ(n))

v(1/λ(n))
max(log λ(n), λ(n)1−ε)

� w(1/λ(n))

v(1/λ(n))
log λ(n). (7)

Consequently (5) is obtained from (6) and (7). J

Lemma 2. If the conditions of Lemma 1 are satisfied with 0 < ε < 1, then

‖σλn − f‖(v)p �
w(1/λ(n))

v(1/λ(n)
log λ(n), λ(n) ≥ n ≥ 2 (8)

and

‖σλn − sλn‖(v)p �
w(1/λ(n))

v(1/λ(n))
log λ(n), λ(n) ≥ n ≥ 2. (9)

Proof. By using Theorem 3 and (3), we easily get

‖σλn − f‖(v)p ≤
1

λ(n) + 1

λ(n)∑
m=0

‖sm − f‖(v)p

=
1

λ(n) + 1

‖s0 − f‖(v)p + ‖s1 − f‖(v)p +

λ(n)∑
m=2

‖sm − f‖(v)p


� 1

λ(n) + 1

1 +

λ(n)∑
m=2

w(1/m)

v(1/m)
logm


� 1

λ(n)

1 + λ(n)ε
w(1/λ(n))

v(1/λ(n))
log λ(n)

λ(n)∑
m=1

m−ε


� w(1/λ(n))

v(1/λ(n))
+
w(1/λ(n))

v(1/λ(n))
log λ(n)� w(1/λ(n))

v(1/λ(n))
log λ(n).

This proves the first part of lemma. Now let us prove the second part. Ac-
cording to (5) and (8), we have

‖σλn − sλn‖(v)p ≤ ‖σλn − f‖(v)p + ‖f − sλn‖(v)p �
w(1/λ(n))

v(1/λ(n))
log λ(n).
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Therefore, the proof of lemma is completed. J

If we take λ(n) = n in (8), it will give us the result of Leindler in [14]. That
is,

‖σn − f‖(v)p �
w(1/n)

v(1/n)
log n, n ≥ 2. (10)

Lemma 3 ([8]). The following inequalities are valid:

Θλ(n) :=

λ(n)∑
m=1

∣∣∆m(m−1(Pλ(n) − Pλ(n)−m))
∣∣� λ(n)−1∑

m=0

|∆pm|,

and if
λ(n)−1∑
m=1

m|∆pm| � Pλ(n),

then

Θλ(n) � Pλ(n)/λ(n).

Lemma 4. If
λ(n)−1∑
k=0

k|∆pk| � Pλ(n)

and the conditions of Lemma 1 with 0 < ε < 1 are satisfied, then

‖Nλ
n − sλn‖(v)p �

w(1/λ(n))

v(1/λ(n))
log λ(n), λ(n) ≥ n ≥ 2. (11)

Proof. By Abel’s transformation, we get

Nλ
n (f ;x) =

1

Pλ(n)

λ(n)∑
m=0

Pλ(n)−mAm(f ;x),

and thus

sλn(f ;x)−Nλ
n (f ;x) =

λ(n)∑
m=0

Am(f ;x)Pλ(n)P
−1
λ(n) − P

−1
λ(n)

λ(n)∑
m=0

Pλ(n)−mAm(f ;x)

= P−1λ(n)

λ(n)∑
m=1

(Pλ(n) − Pλ(n)−m)Am(f ;x).
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Hence, again by Abel’s transformation we obtain

sλn(f ;x)−Nλ
n (f ;x) =

= P−1λ(n)

λ(n)∑
m=1

∆m(m−1(Pλ(n)−Pλ(n)−m))

m∑
k=1

kAk(f ;x)+(λ(n)+1)−1
λ(n)∑
k=1

kAk(f ;x).

Therefore, we have

‖sλn −Nλ
n‖(v)p ≤ P−1λ(n)

λ(n)∑
m=1

|∆m(m−1(Pλ(n) − Pλ(n)−m))| ‖
m∑
k=1

kAk(f ; ·)‖(v)p +

+(λ(n) + 1)−1‖
λ(n)∑
k=1

kAk(f ; ·)‖(v)p .

As

σλn(f ;x)− sλn(f ;x) = (λ(n) + 1)−1
λ(n)∑
k=1

kAk(f ;x),

by (9) we have

‖
λ(n)∑
k=1

kAk(f ; ·)‖(v)p = (λ(n) + 1)‖σλn − sλn‖(v)p � λ(n)
w(1/λ(n))

v(1/λ(n))
log λ(n).

Combining these results, we obtain

‖sλn −Nλ
n‖(v)p � P−1λ(n)λ(n)

w(1/λ(n))

v(1/λ(n))
log λ(n)×

×
λ(n)∑
m=1

|∆m(m−1(Pλ(n) − Pλ(n)−m))|+ w(1/λ(n))

v(1/λ(n))
log λ(n).

By Lemma 3, we get

‖Nλ
n − sλn‖(v)p �

w(1/λ(n))

v(1/λ(n))
log λ(n).

J
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Lemma 5 ([8]). Let

(pn) ∈ AMDMS

or

(pn) ∈ AMIMS and satisfy (λ(n) + 1)pλ(n) � Pλ(n).

Then, for 0 < α < 1,

λ(n)∑
m=0

(m+ 1)−αpλ(n)−m � (λ(n) + 1)−αPλ(n).

Lemma 6 ([8]). Let

(pn) ∈ AMIMS

or

(pn) ∈ AMDMS and satisfy (λ(n) + 1)� Pλ(n).

Then, for 0 < α < 1,

λ(n)∑
m=0

(m+ 1)−αpm � (λ(n) + 1)−αPλ(n).

3.2. Main results

Based on Section 2, we can state the following results, and we see that the
results of Leindler are extended in the direction of improving the degree of ap-
proximation in GHM by using the methods of means on the classes larger than
classes of sequences used in [14].

Theorem 7. Let v and w be moduli of continuity such that w(t)
v(t) is nondecreasing.

Moreover, let the function

γ(t) = t−ε
w(t)

v(t)
,

be nonincreasing for some 0 < ε ≤ 1. If f ∈ H(ω)
p , p ≥ 1, and one of the following

additional conditions are satisfied:

(i) (pn) ∈ AMDMS,

(ii) (pn) ∈ AMIMS and (λ(n) + 1)pλ(n) � Pλ(n), then

‖ Nλ
n − f ‖(v)p �

w(1/λ(n))

v(1/λ(n))
log λ(n) for all λ(n) ≥ n ≥ 2. (12)
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Proof. Let us prove case (i). Since

Nλ
n (f ;x)− f(x) =

1

Pλ(n)

λ(n)∑
m=0

pλ(n)−m(sm(f ;x)− f(x)),

we can write the following inequality

‖Nλ
n − f‖(v)p ≤

1

Pλ(n)

λ(n)∑
m=0

pλ(n)−m‖sm − f‖(v)p .

Let us split the sum on the right-hand side into four parts

1

Pλ(n)

λ(n)∑
m=0

pλ(n)−m‖sm − f‖(v)p =

=
1

Pλ(n)
pλ(n)‖s0 − f‖(v)p +

1

Pλ(n)
pλ(n)−1‖s1 − f‖(v)p +

+
1

Pλ(n)

λ̃(n)∑
m=2

pλ(n)−m‖sm − f‖(v)p +
1

Pλ(n)

λ(n)∑
m=λ̃(n)+1

pλ(n)−m‖sm − f‖(v)p

=: I1 + I2 + I3 + I4.

First let us consider I1 and I2. If (pn) ∈ AMDMS, then we know that (Cλ(n)) ∈
AMDS, where

Cλ(n) =
1

λ(n) + 1

λ(n)∑
k=0

pk.

Since Cλ(n) � Cλ(n)−1 � Cλ(n)−2, we have

pλ(n) <
Pλ(n)

λ(n)
and pλ(n)−1 <

Pλ(n)

λ(n)− 1
.

Therefore we get

I1 �
1

λ(n)
and I2 �

1

λ(n)− 1
.

According to (3), we have

I1 �
w(1/λ(n))

v(1/λ(n))
log λ(n) and I2 �

w(1/λ(n))

v(1/λ(n))
log λ(n). (13)
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Now, considering (4), Theorem 3 and Lemma 5, we obtain

I3 � 1

Pλ(n)

λ̃(n)∑
m=2

pλ(n)−m
(m+ 1)ε

(m+ 1)ε
w(1/m)

v(1/m)
logm

� (λ(n) + 1)ε

Pλ(n)

w(1/λ(n))

v(1/λ(n))
log λ(n)

λ̃(n)∑
m=2

pλ(n)−m(m+ 1)−ε,

I3 �
w(1/λ(n))

v(1/λ(n))
log λ(n). (14)

Finally, let us estimate I4. By Theorem 3 and (4), we see that

I4 � 1

Pλ(n)

λ(n)∑
m=λ̃(n)+1

pλ(n)−m
w(1/m)

v(1/m)
logm

� 1

Pλ(n)

w(1/λ̃(n))

v(1/λ̃(n))
log λ(n)

λ(n)∑
m=0

pλ(n)−m,

I4 �
w(1/λ(n))

v(1/λ(n))
log λ(n). (15)

Therefore, according to (13)-(15), we have (12). In the case of (ii), the proof runs
along the same lines as that of (i). The proof is completed. J

Remark 4. Note that since Nn ⊆ Nλ
n for any λ, and AMDS ⊂ AMDMS and

AMIS ⊂ AMIMS, by taking λ(n) = n in Theorem 7, the cases (i) and (ii) of
Theorem 2 in [14] are obtained, respectively. Also, Nλ

n (f, x) gives the method of
σλn(f, x) in Theorem 7 in case pn = 1. So we have

‖σλn − f‖(v)p �
ω(1/λ(n))

v(1/λ(n))
log λ(n), λ(n) ≥ n ≥ 2.

Theorem 8. If the conditions of Theorem 7 with 0 < ε < 1 are satisfied and

λ(n)−1∑
m=1

m|∆pm| � Pλ(n),

then

‖ Nλ
n − f ‖(v)p �

w(1/λ(n))

v(1/λ(n))
log λ(n)

for all λ(n) ≥ n ≥ 2.
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Proof. Taking into account (5) and (11), we obtain

‖Nλ
n − f‖(v)p � ‖Nλ

n − sλn‖(v)p + ‖sλn − f‖(v)p �
w(1/λ(n))

v(1/λ(n))
log λ(n).

J

Theorem 9. If the conditions of Theorem 7 with 0 < ε < 1 are satisfied and

λ(n)−1∑
m=0

|∆m

(
1

m+ 1

m∑
k=0

pλ(n)−k

)
| �

Pλ(n)

λ(n)
, λ(n) ≥ n ≥ 2, (16)

then

‖ Nλ
n − f ‖(v)p �

w(1/λ(n))

v(1/λ(n))
log λ(n). (17)

Proof. An elementary calculations yield

Nλ
n (f ;x)− f(x) =

1

Pλ(n)

λ(n)∑
m=0

pλ(n)−m(sm(f ;x)− f(x)).

Using Abel’s transformation, we get

λ(n)−1∑
m=0

(sm(f ;x)− sm+1(f ;x))
m∑
k=0

pλ(n)−k

Pλ(n)
+ (sλn(f ;x)− f(x))

= (sλn(f ;x)− f(x))− 1

Pλ(n)

λ(n)−1∑
m=0

(m+ 1)Am+1(f ;x)Bλ(n),m,

where

Bλ(n),m :=
1

(m+ 1)

m∑
k=0

pλ(n)−k.

By applying Abel’s transformation on the sum at the right-hand side, we have

Nλ
n (f ;x)− f(x) = (sλn(f ;x)− f(x))−

− 1

Pλ(n)

λ(n)−2∑
m=0

(Bλ(n),m −Bλ(n),m+1)
m∑
k=0

(k + 1)Ak+1(f ;x)+

+

λ(n)−1∑
m=0

(m+ 1)Am+1(f ;x)

 1

λ(n)

λ(n)−1∑
k=0

pλ(n)−k

Pλ(n)
.
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Hence
‖Nλ

n (f ; .)− f(.)‖(v)p ≤ ‖sλn(f ; .)− f(.)‖(v)p +

+
1

Pλ(n)

λ(n)−2∑
m=0

| ∆m(Bλ(n),m) |‖
m+1∑
k=1

kAk(f ; .) ‖(v)p +
1

λ(n)
‖
λ(n)∑
m=1

mAm(f ; .) ‖(v)p

� ‖sλn(f ; .)− f(.)‖(v)p +
1

Pλ(n)
{| Bλ(n),0 −Bλ(n),1 | + | Bλ(n),1 −Bλ(n),2 |}

+
1

Pλ(n)

λ(n)−2∑
m=2

| ∆m(Bλ(n),m) |‖
m+1∑
k=1

kAk(f ; .) ‖(v)p

+
1

λ(n)
‖
λ(n)∑
m=1

mAm(f ; .) ‖(v)p . (18)

Since

sλn(f ;x)− σλn(f ;x) =
1

λ(n) + 1

λ(n)∑
k=1

kAk(f ;x),

using (9), we see that

‖
λ(n)∑
k=1

kAk(f ; .)‖(v)p � λ(n)
w(1/λ(n))

v(1/λ(n))
log λ(n). (19)

Therefore, using (5), (18) and (19) we get

‖Nλ
n (f ; .)− f(.)‖(v)p ≤

w(1/λ(n))

v(1/λ(n))
log λ(n) +

1

Pλ(n)

λ(n)−1∑
m=0

| ∆m(Bλ(n),m) | . (20)

Finally, taking into account (16), (3) and (20) we obtain (17) for λ(n) ≥ n ≥ 2.
J

Theorem 10. Let the conditions of Theorem 7 with 0 < ε < 1 and one of the
following additional conditions be satisfied:

(i) (pn) ∈ AMIMS,
(ii) (pn) ∈ AMDMS and holds (λ(n) + 1)� Pλ(n).
Then

‖ Rλn − f ‖(v)p �
w(1/λ(n))

v(1/λ(n))
log λ(n) for all λ(n) ≥ n ≥ 2. (21)
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Proof. Simple calculation shows that

Rλn(f ;x)− f(x) =
1

Pλ(n)

λ(n)∑
m=0

pm(sm(f ;x)− f(x)).

Hence

‖Rλn − f‖(v)p ≤
1

Pλ(n)

λ(n)∑
m=0

pm‖sm − f‖(v)p

≤ 1

Pλ(n)
p0‖s0 − f‖(v)p +

1

Pλ(n)
p1‖s1 − f‖(v)p +

+
1

Pλ(n)

λ̃(n)∑
m=2

pm‖sm − f‖(v)p +
1

Pλ(n)

λ(n)∑
m=λ̃(n)+1

pm‖sm − f‖(v)p .

Proceeding similar to the proof of (13)-(15), we get the expected result (21).
Moreover, the proof of the case (ii) is obtained by the similar way. J

Theorem 11. If the conditions of Theorem 7 with 0 < ε < 1 and the conditions

(λ(n) + 1)pλ(n) � Pλ(n) and

λ(n)−1∑
m=0

m1−ε|∆pm| � Pλ(n)λ(n)−ε (22)

hold, then

‖ Rλn − f ‖(v)p �
w(1/λ(n))

v(1/λ(n))
log λ(n)

for all λ(n) ≥ n ≥ 2.

Proof. We know that

Rλn(f ;x)− f(x) =
1

Pλ(n)

λ(n)∑
m=0

pm(sm(f ;x)− f(x)).

By applying Abel’s transformation, we have

1

Pλ(n)

λ(n)−1∑
k=0

((
k∑

m=0

(sm − f)

)
(pk − pk+1)

)
+

λ(n)∑
k=0

(sk − f)

 pλ(n)



=
1

Pλ(n)

λ(n)−1∑
m=0

∆pm
m+ 1

m+ 1

m∑
k=0

(sk − f) +
λ(n) + 1

λ(n) + 1
pλ(n)

λ(n)∑
k=0

(sk − f)


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=
1

Pλ(n)

λ(n)−1∑
m=0

(m+ 1)∆pm(σm − f) + (λ(n) + 1)pλ(n)(σ
λ
n − f)

 .

By considering (8) and (10), we see that

‖ Rλn − f ‖(v)p ≤

≤ 1

Pλ(n)

λ(n)−1∑
m=0

(m+ 1)|∆pm| ‖ σm − f ‖(v)p +(λ(n) + 1)pλ(n) ‖ σλn − f ‖(v)p


� 1

Pλ(n)

(
p0‖σ0 − f‖(v)p + 2|p1 − p0|‖σ1 − f‖(v)p

)
+

+
1

Pλ(n)

λ(n)−1∑
m=2

(m+ 1)|∆pm|
w(1/m)

v(1/m)
logm+ (λ(n) + 1)pλ(n)

w(1/λ(n))

v(1/λ(n))
log λ(n)


� 1

Pλ(n)

pλ(n) +

λ(n)−1∑
m=2

m|∆pm|
w(1/m)

v(1/m)
logm+ λ(n)pλ(n)

w(1/λ(n))

v(1/λ(n))
log λ(n)

 .

Since γ(t) is nonincreasing, we easily get

λ(n)−1∑
m=2

m|∆pm|
w(1/m)

v(1/m)
logm�

λ(n)−1∑
m=2

m1−ε|∆pm|mεw(1/m)

v(1/m)
logm

� λ(n)ε
w(1/λ(n))

v(1/λ(n))
log λ(n)

λ(n)−1∑
m=0

m1−ε|∆pm| � Pλ(n)
w(1/λ(n))

v(1/λ(n))
log λ(n)

under the condition (22). Hence, combining these relations and using (3) we
obtain

‖ Rλn − f ‖(v)p � 1

Pλ(n)

(
pλ(n) + (Pλ(n) + λ(n)pλ(n))

w(1/λ(n))

v(1/λ(n))
log λ(n)

)
� 1

λ(n)
+
w(1/λ(n))

v(1/λ(n))
log λ(n)� w(1/λ(n))

v(1/λ(n))
log λ(n).

J

Remark 5. Since Nn ⊆ Nµ
n for any µ, in case µ(n) = n, the result in Theorem

11 is reduced to the result of Theorem 3 in [14]. Also, Rλn(f, x) gives the method
of σλn(f, x) in Theorem 11 in the case pn = 1. Therefore, we have

‖σλn − f‖(v)p �
ω(1/λ(n))

v(1/λ(n))
log λ(n), λ(n) ≥ n ≥ 2.
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Theorem 12. If the conditions of Theorem 7 with 0 < ε < 1 are satisfied and

λ(n)−1∑
m=0

|∆m(
Pm
m+ 1

)| �
Pλ(n)

λ(n)
, λ(n) ≥ n ≥ 2,

then

‖ Rλn − f ‖(v)p �
w(1/λ(n))

v(1/λ(n))
log λ(n).

Since the proof of Theorem 12 is similar to the proof of Theorem 9, we will
omit it.

Remark 6. Note that the conditions in Theorem 9 and Theorem 12 are different
from the conditions of results in [14].

References

[1] G. Alexits, Convergence problems of orthogonal series, New York: Pergamon
Press, 1961.

[2] D H. Armitage, I J. Maddox, A new type of Cesáro mean, Analysis, 9, 1989,
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Fourier series in the generalized Hölder metric, Proc. Indian Acad. Sci.
(Math. Sci.), 106(2), 1996, 139-153.

[6] G. Das, A. Nath, B K. Ray, An estimate of the rate of convergence of Fourier
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