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On the Degree of Approximation by the Woronoi-
Norlund and Riesz Type Means in the GHM
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Abstract. The first results on approximation in the Holder metric is based on the study
of Prossdorf. In 1979, Leindler’s paper on the generalizations of Prossdorf’s theorems
appeared. Later, in 2009, Leindler studied a similar problem on approximation by the
Woronoi-Noérlund and the Riesz means which are more general than the Cesaro means
with respect to the generalized Holder metric (GHM) given by Das, Nath and Ray. In
this paper, our aim is to give some results extending those of Leindler on the degree of
approximation in GHM by using more general methods of means on the classes larger
than classes of sequences used in Leindler’s study.
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1. Introduction and some notations
Let f be a 2mr—periodic function and f € L, := L, (0,27) for p > 1. Then by

1 n n
sp(fix) = zao+ Z(ak coskx + by sinkz) = ZAk(f;x),
k=1

2
k=1
we denote a partial sum of the first (n + 1) terms of the Fourier series of f €
L,(p>1) at a point z.

The degree of approximation of the sum s, (f;x) in different spaces has been
studied by many authors. In [20], Quade investigated approximation properties
of the partial sum of Fourier series in L, norms. Chandra in [4] and Leindler in
[13] generalized the results of Quade using the Woronoi-Nérlund and the Riesz
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means of Fourier series for some sequence classes. A similar problem was studied
for more general means in [7] and [8].
The space

Ho ={f € Cor : |f(x) — f(y)| £ K|z —y|*,0 < a <1},

where K is a positive constant, not necessarily the same at each occurrence, is a
Banach space (see Prossdort, [18]) with the norm || - ||, defined by

| flle = Ifllc + sup A% f(z,y), (1)
TF#Y
where @) = 1)
A® =B 7 T
f(z,y) P— (z #y),

by convention A?f(x,y) =0 and

[fllc="sup [f(z)].

z€[—m,7]

The metric generated by the norm (1) on H,, is called the Holder metric. Prosdorff
has studied the degree of approximation by Cesidro means in the Holder metric
and proved the following theorem.

Theorem 1 ([18]). Let f € Ho(0 < a<1) and 0 < < a < 1. Then

nP—a 0<a<l;
nf~llnn ,a=1,

lou(F) - flls = om{

where o, (f) is the Cesdro means of the Fourier series of f.

The case f = 0 in Theorem 1 has been considered by Alexits [1]. Leindler
introduced more general classes than the Holder classes of 2w-periodic continuous
functions, generalized the results of Prossdorf [12]. Chandra obtained a gener-
alization of Theorem 1 by considering the Woronoi-Norlund transform [3]. In
[16], Mohapatra and Chandra considered the problem by a matrix means of the
Fourier series of f € H,.

Further generalizations of the Hoélder metric was given in [5] and [6]. In [5],
Das et al. studied the degree of approximation by infinite matrix means involved
in the deferred Cesaro means in a generalized Holder metric. In [9], the degree of
approximation of functions with respect to the norm given in [5] by the deferred
Woronoi-Norlund means and the deferred Riesz means of the Fourier series of the
functions has been considered.
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The modulus of continuity of f € Co, is defined by

w(f,0) = sup |f(z+h)—f(z)],

0<|h|<6

where Cy, is a space of all 27-periodic and continuous functions defined on [0, 27]
with the supremum norm. According to this, the class of functions H* is defined
by
H? :={f € Cor 1 w(f,8) = O(w(d))},
where w(d) is a modulus of continuity.
In [15], Mazhar and Totik estimated, to the best possible extent, the degree
of approximation of a function f € Cyr by the T-means of its Fourier series for

the class H*. A generalization of H¥ space has been given by Das et al. in [6]:
if f € L,(0,2m), p > 1, then

HI(,"J) ={fel,: A(f,w) < oo},
where w is a modulus of continuity

I 10,
S (T R

|-]|, denotes Ly-norm with respect to = and is defined by

2w %
I£1,i={5r [ 1 ds

The norm in the space H,S“’) is given by
AU = 11 fllo + A(f, @), (2)

and the metric generated by the norm (2) on H,S“) is called the generalized Holder
metric (GHM). Das et al. proved the following theorem.
Theorem 2 ([6]). Let v and w be moduli of continuity such that % is nonde-

creasing. If f € H,(,w), p>1, then

||5n_fH;()v):O Mlogn —|—O(1)l " ﬁdt
ol /) o ey

In [13], Leindler has established the following result improving Theorem 2.
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18 nonde-

w(t)
(

Theorem 3 ([14]). Let v and w be moduli of continuity such that FG)

creasing. Moreover, let the function

(t
(t

be nonincreasing for some 0 <e < 1. If f € H]()w), p>1. Then

HSn*fH;v) =O< ((11//”))1 gn> forall n>2.

According to this theorem, Leindler showed that if there exists an € > 0 such
that t*E% is also nonincreasing, then the second term in Theorem 2 can be re-

(@)

moved. In that paper, he also considered the degree of approximation of f € H,
by the Woronoi-Norlund and the Riesz means defined as follows, respectively. Let
{pn} be a positive sequence,

~—

g

v(t) := (v, w,e;t) :=1t"°

)

~—

1

n

7 . ansmfa )a

n
m=0

n(fv (13) . pmSm(f,(L'),

1
In =0
where P, = po+p1+p2+...4+p, #0 (n > 0), and by convention p_; = P_1 = 0.
Moreover, the results on the degree of approximation to functions by matrix
means of Fourier series which are more general than the Woronoi-Norlund and
the Riesz means in GHM under some conditions can be found in [10]. Finally, let

us recall some sequence classes. Assume that u := (u,) is a nonnegative sequence

and C':= (Cp) = - +1 E Um. A sequence u is called almost monotone decreasing

(briefly u € AMDS) (mcreasmg (briefly u € AMIS)), if there exists a constant
K := K(u) which only depends on u such that

uy, < Kugy, (Kup, > )

for all n > m.

If C € AMDS (C € AMIS), then we say that the sequence u is almost
monotone decreasing (increasing) mean sequence and denote u € AMDMS (u €
AMIMS). Moreover, Mohapatra and Szal showed that the following embedding
relations are true (see [17]):

AMDS Cc AMDMS
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and
AMIS Cc AMIMS.

Throughout this paper, we shall use notations D < R (R < D) in in-
equalities if there exists a positive constant K such that D < KR (R < KD).
However, K may be different in different occurrences of 7 < ”. We shall also use
the notation

Aay = ayp — apt1-

2. Woronoi-Norlund and Riesz type submethods

In this section we will give some definitions stated in [2] and [7], and also state
results related to inclusions demonstrating the importance of these methods given
in [7].

Let {A(n)}22, be a strictly increasing sequence of positive integers. The
Ceséro submethod C), is defined as

(C)\{L‘)n* Tk ,(n:O,l,Q,...),

where z; is a sequence of real or complex numbers. Therefore, the Cy-method
yields a subsequence of the Cesdro method C, and hence it is regular for any .
(), is obtained by deleting a set of rows from Cesaro matrix.

Let E = {A(n)}52; and F = {p(n)}5°; be infinite subsets of N. In [2] it was
shown that C) C C if and only if F'\ F is finite. Moreover, C) is equivalent to
C}, if and only if the symmetric difference E A F' is finite. In particular, we see
that Cy C C) for any A. The basic properties of C\-method can be found in [2]
and [19].

In [7], the Woronoi-Nérlund submethod and Riesz submethod are given as
follows, respectively:

N)(f; )

1),

A(n)
R)(f;2) =

(f;@

where

Pxny=Po+p1+D2+ .+ D3y #0  (A(n) >n>0),
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and by convention p_; = P_y = 0. The case p, = 1 for all (n > 0) of either
Np(fix) or Ry(f;) yields

A(n)

1
W Z sm(f;2).

m=0

on(fiz) =

Note that if we take A(n) = n in the last equality, then it coincides with the Cesaro
means. Now let us give some inclusions stated in [11] due to these methods.
Assume that E' = {A(n)}22; and F' = {p(n)}>2, are infinite subsets of N.

Theorem 4 ([11]). N, C N} if and only if F\ E is finite, where Pam)/Pagny — 0
and pun)/Pum) — 0 as n — oo.

The next result is related to Theorem 4 taking into account E A F = (E'\

Theorem 5 ([11]). N} ~ N} if and only if FAFE is finite, where Pan)/ Pra@n) — 0
and pyny/ Pumn) — 0 as n — oo.

Remark 1. In particular, we see that N,, C N} for any p. Because the set
F\{0,1,2,...} is empty.

Remark 2. The similars of Theorem 4 and Theorem & can be also stated for
the Riesz submethod in case Py) — oo and P, — 00 as n — oo instead of
Pa(n)/ Prn) = 0 and pumy/Pumy — 0 as n — oo in Theorem 4 and Theorem 5,
respectively.

Theorem 6 ([11]). Let {p,} be a positive nonincreasing sequence. If

then the N -method is equivalent to the N,-method for bounded sequences.
Remark 3. The similar theorem for Riesz method can be stated by taking

Py(nt1) — Paxn)

lim sup =0

n—oo P)\(n)

instead of the condition (2) in Theorem 6. In this case, we don’t need impose any
monotonicity condition on the sequence {py}.



128 U. Deger, H. Baymdir

3. Approximation by Woronoi-Norlund and Riesz submethods in
GHM

In this part, we shall consider the degree of approximation to the functions

)

belonging to the class H}(,w by trigonometric polynomials given in [7] on large

classes of sequences.

3.1. Some auxiliary results

Since 7(¢) is nonincreasing, we have

w(/Mm) e L
o1/amy) = N2 3y ®)

Furthermore, we have

w(1/A(n)) _ w(1/A(n))
v(1/A(n)) S W1/
w(t)

because 777 is nondecreasing, where A(n) denotes the integer part of A(n)/2. We

need the following lemmas to prove main theorems in this section.

(4)

Lemma 1. Let v and w be moduli of continuity such that % 15 mondecreasing.

Moreover, let the function

—ew(t)
V(t) =t o(0)
be nonincreasing for some 0 <e <1. If f € HZS“’), p>1. Then
A ) o w(@/A(n)) oS
l[sp — [l < (/A logA\(n) forall Xn)>n>2. (5)

Proof. By Theorem 2, we easily obtain

A — o (/A L w()
s = Fllp O<v(7r/)\<n>) log A( )>+0(1)A(n) /Wn) t%(t)dt. (6)

Since ~(t) is nonincreasing, the second term on the right-hand side of (6) is
estimated as follows

vy ™ —& € T
/ ;U(t) dt:/ L w(t)tht:/ V()2
x/\(n) °U(t) xam  v(t) 1 )

™

log A(n), e=1;
An)'TE 0<e< 1

<~(1/A(n)) /

t772dt < y(1/\(n)) {
w/A(n)
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Therefore, if the two cases are taken into consideration, we have

Lo w® L W) ), A
An) /m(n) 2o ™ < X ) oAy e los A, AR) )

wAm) |
() loAm). 7)

Consequently (5) is obtained from (6) and (7). «

<

Lemma 2. If the conditions of Lemma 1 are satisfied with 0 < & < 1, then

o} = 17 < S log ), A(n) 2 > 2 0
" ") < @A)
lon — sally” < Wlog A(n), An)>n>2. 9)
Proof. By using Theorem 3 and (3), we easily get
A(n)
lon — 115 +1Z|!8m fIIgY

A(n)
1
= — f||) — f||) — @)
A(n)H(sO I+ lor = 187+ fom fp)

A(n)

1 w(1/m) et
A+ 1 (Hmzz o(1/m) %8 )

1 w(1/A(n) U
<<)\(n)(1+>\(n) WlogA Zm )
w(I/Am) | wl/Am) | wl/Am)

o(I/Am) T vIAm) (n) < v(1/Xn)) 8 ()

This proves the first part of lemma. Now let us prove the second part. Ac-
cording to (5) and (8), we have

<

w(l/A(n))
v(1/A(n))

A

sl < llon = FIEY + 1 = sallS” < log A(n).

lo
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Therefore, the proof of lemma is completed. «

If we take A(n) = n in (8), it will give us the result of Leindler in [14]. That

_w/n)
o(1/n)

Lemma 3 ([8]). The following inequalities are valid:

is,

low — 115" ogn, n=2. (10)

-1

and if
A(n)—1
Z m|Apm| < Pyn),
m=1
then
Oxrn) K Prxm)/A(n).
Lemma 4. If
Aln)—1
> E|Apk| < Py
k=0

and the conditions of Lemma 1 with 0 < € < 1 are satisfied, then

A W) w(1/A(n)) S 0>
[Ny = sally” < (/A logA(n), A(n)>n>2. (11)
Proof. By Abel’s transformation, we get
A(n)
Nr)z\(fax) - Z P/\(n)—mAm(f;‘r),
A(n) m=0
and thus
A(n)
Si\L(fafL‘)_N:L\(f,x) = Am(fo)P)\(n (n) )\(n ZP)\(n —mA )
m=0
A(n)
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Hence, again by Abel’s transformation we obtain

sn(fix) = N)(f;2) =
A(n)

= Py D> An(m —Py\(n)—m ZkAk f;x) ZkAk f;x)

m:l

Therefore, we have

53 = NS < Pty S 18mm ™ (Pany = Prun))| 11 kAR IS+
k=1

A(n)
D7 kALY
k=1

an(fix) = sp(fix) = ZkAk f;x)

by (9) we have

A(n)

v v w(1/A(n))
IIZkAk M = (An )+1)||02—82H§,)<<>\(n)“7
Combining these results, we obtain

A A () 1 w(l/
||Sn Nn”p < P,\(n)A(n) (1

X Z ’Am(mil(P)\(n) - P)\(n)fm))’ + 1}(/))

m=1

By Lemma 3, we get

R L L )
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Lemma 5 ([8]). Let
(pn) € AMDMS

or
(pn) € AMIMS  and satisfy (A(n) + 1)prm) < Prm)-

Then, for 0 < a < 1,

>

(n

)
> (m+ 1) prmy—m < (A(n) + 1) Py

m=0

Lemma 6 ([8]). Let
(pn) € AMIMS

or
(pn) € AMDMS  and satisfy (A(n) +1) < Pyp)-

Then, for 0 < a < 1,
A(n)
D (A4 1) < (A(n) + 1) Pyy.

3.2. Main results

Based on Section 2, we can state the following results, and we see that the
results of Leindler are extended in the direction of improving the degree of ap-
proximation in GHM by using the methods of means on the classes larger than
classes of sequences used in [14].

Theorem 7. Let v and w be moduli of continuity such that % s nondecreasing.
Moreover, let the function
_w(t)
t) =t °*—=
(1) (D)’
be nonincreasing for some 0 <e < 1. If f € ngw
additional conditions are satisfied:
(i) (pn) € AMDMS,
(ii) (pn) € AMIMS and (A(n) + 1)pr(n) < Py(n), then

), p > 1, and one of the following

I Ny = W< ) log A(n)  for all A(n) >n>2. (12)
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Proof. Let us prove case (i). Since

A(n)
N (f;2) —

m(sm(f;2) — f(z)),

we can write the following mequahty

A(n)
1Ny = FIIS < A > Pagy—mllsm — FIS
") m=0

Let us split the sum on the right-hand side into four parts

A(n)
1
Pa)—mllsm — FIS) =
P, F Z (n)

1 1
= Pawllso — FIS) + Pam—1lls1 = FII&+
Prn) (n) P Prn) (n) P
1 A(n) 1 A(n)
+P Z p)x(n)—mHSm - fH](JU) + 5 Z p)x(n)—mHsm - f||§;v)
An) =2 " m=(n)+1

= Lh+L+1I3+ 14

First let us consider I; and Ip. If (p,) € AMDMS, then we know that (Cy(,)) €
AMDS, where

A(n)
1
Cin) = W kzopk.

Since Cy(n) < Cyn)—1 <K Cy(n)—2, We have

< B and < 7P)\(n)
Px(n) )\(n) Pxr(n)-1 /\(n) 1
Therefore we get
1 1
1 — d I —_—
1<yl B < g

According to (3), we have

w(1/A(n))
v(1/A(n))

w(1/A(n))
L < logA\(n) and I, < ng A(n). (13)
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Now, considering (4), Theorem 3 and Lemma 5, we obtain

A(n)
1 (m+1)%w(1l/m)
I3 < E DPr(n)—m logm
Py 2= 07 (4 1) 0(1/m)

A(n)

< log A(n Pan)—m(m +1
Py(n) (1/A (” & Z Alr)=m A
w(1/A(n))
Iz K log A(n 14
Finally, let us estimate I4. By Theorem 3 and (4), we see that
A(n)
1 w(l/m)
I < PA(n)—m log
P R & PT(1m)
m=A\(n)
v A(n)
1 w(l/A(n))
< log A(n) D> Pa(m)—ms
Pray v(1/A(n)) 27
w(1/A(n))
I —L—2log \(n). 1

Therefore, according to (13)-(15), we have (12). In the case of (i7), the proof runs
along the same lines as that of (). The proof is completed. «

Remark 4. Note that since N,, C N, for any A\, and AMDS C AMDMS and
AMIS ¢ AMIMS, by taking A(n) = n in Theorem 7, the cases (i) and (ii) of
Theorem 2 in [14] are obtained, respectively. Also, N)\(f,x) gives the method of
o) f,x) in Theorem 7 in case p, = 1. So we have

lop — £IS) < ng An), An)>n>2.

Theorem 8. If the conditions of Theorem 7 with 0 < e < 1 are satisfied and

A(n)—1
Z m|Apm| < Pyn),
m=1
then
w(1/A(n))

A |(0) o LT

log A(n)

forall  An)>n>2.
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Proof. Taking into account (5) and (11), we obtain
IV = IS <IN = spll$7 + [lsp = FIISY <
<

Theorem 9. If the conditions of Theorem 7 with 0 < e < 1 are satisfied and

A(n)—1

1 Prn)
A | —— E >n > 2, 1
| (m—i— 1 kzop/\(n ) < A(n)’ M) 2m = (16)

m=0

then
A ) w(L/A(n)

Proof. An elementary calculations yield

log A(n). (17)

A(n)
Ny(fr) = m(sm(f32) = f(2).
Using Abel’s transformation, we get
A(n)—k
> (snlfi0) = smaalfi) 32508 + () fia) = S (@)
m=0 k=0 n

A(n)—
= (Sg(f,:l?) - f(:l?)) - P)\( Z m + 1) erl(fa )BA (n),m>

where
1 m
B)\(n)ﬁn = m kzzopx(n)—k-

By applying Abel’s transformation on the sum at the right-hand side, we have

N (f;2) = f(z) = (sp(fi2) — f(x))—

A(n)—2 m
1
" Py > (Bamym — Bamyms1) D (k+ DA (fi2)+
™ m=0 k=0

Aln)—1 Aln)—1
1 n)
(B ) 8

k=

[en]
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Hence
INA(F3) = FOUS < llsh(£5) = FOIR+
oy 2 | AnBrom) I 3 AT ) uv>+i ||ZmA (5 1)
" m=0 k=1

1
< |lsn(fs.) = f(~)”;(;v) + ?(){’ Bxtm),o = Baxm)a | + | Bxin)1 — Bamy2 I}

S BBl nfm () 1Y
Py m{Px(n),m 2 ko) lp
A(n)
+7 [ Z mAn, (18)
Since
R R 1 )
splfr2) —op(fix) = A 12 kAR(f; ),
using (9), we see that
A ([ < Ay M)
I kz_: kAR(f; )l < A(H)W log A(n). (19)
Therefore, using (5), (18) and (19) we get
A(n)—1
N} = SO < S o) + DONEMEIRNCY
Finally, taking into account (16), (3) and (20) we obtain (17) for A(n) > n > 2.

<

Theorem 10. Let the conditions of Theorem 7 with 0 < € < 1 and one of the
following additional conditions be satisfied:

(i) (pn) € AMIMS,

(ii) (pn) € AMDMS and holds (A(n) + 1) < Py(p)-

Then

| R) — f |]§,”)<< ) logA(n)  forall Xn)>n>2. (21)



On the Degree of Approximation in the GHM 137

Proof. Simple calculation shows that

A(n)
1
Balfso) = f(@) = 5~ > pmom{fi) = f(2).
") m=0
Hence )
1 n
IRy — fIIL) < Pnllsm — |V
S 7;) s
< L pollso — £ + =—pafls — £+
Px(n) Pxn)
) w1 A(n) "
+ pmHSm_fHU + 5 pmHsm—fHU.
Py) ,;2 P Py 2 P

m=A(n)+1

Proceeding similar to the proof of (13)-(15), we get the expected result (21).
Moreover, the proof of the case (ii) is obtained by the similar way. <«

Theorem 11. If the conditions of Theorem 7 with 0 < € < 1 and the conditions

A(n)—1
(A(n) + D)prg) < Pany and Z m' | Apy,| < PymyA(n)~* (22)
m=0
hold, then
A ) W(L/A(R))
I RS = 1 19 S log Am)
forall  An)>n>2.
Proof. We know that
1 A
Balf5) = () = 5= > pmlsm(f32) = £(2).
") m=0

By applying Abel’s transformation, we have

1 An)—1 k A(n)
P ( Z ((Z(Sm - f)) (pr — pk+1)) + ( (sk — f)) px(n))
An) k=0 m=0 k=0

Aln)—1 m A(n)
1 m+1 A(n)+1
= Pun ( Apmm 1 Z(Sk f)+ o) + 1P (sk f))

m=0 k=0
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A(n)—1
= Pj( ) > (m+1D)Apm(om — f) + (An) + Dpag (07 — f)) :
n m=0

By considering (8) and (10), we see that
IRy = f 11y <

A(n)—1
1
<5 ( Y m DAl [ om = f 15 +A0) + Dpa@) || on = f ,@)

(”) =0

]' v v
< ey (oo = £+ 2lpy = pol o = £17) +

PA(n)

Aln)—1
( 5 o a7 ;bgmwmﬂmmbm)
=2

1 w(1/m) w(1/A(n))
P)\( ( )+ Z m|Ap m| (1/m )logm—i-/\( n)pa 1}(1/)\(71))10g>\(n)>'

Since ~y(t) is nonincreasing, we easily get

Aln)—1 Aln)—

w(1/m) e cw(l/m)
mEQ m|App, | o(1/m) logm < g m | Ap,,|m o(1/m) logm
cw(1/A(n) “Z”“ . w(1/A(n))

under the condition (22). Hence, combining these relations and using (3) we
obtain

IR —F 0 < (M T (P + A)pagy) DA A<n>)

P)\(n) U(l/)\(n))
1 w(1/A(n)) M e
< 3w ) B S Ay e

<

Remark 5. Since N, C N} for any p, in case u(n) = n, the result in Theorem
11 is reduced to the result of Theorem 3 in [14]. Also, R)(f,z) gives the method
of o) (f,x) in Theorem 11 in the case p, = 1. Therefore, we have

loy — £IS) < mlog An), An)>n>2.
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Theorem 12. If the conditions of Theorem 7 with 0 < ¢ < 1 are satisfied and
Aln)—1

B, P)\(n)
AL >n >
g |Am(m+1)\<< ) A(n) >n>2,

m=0

then (1/A())
o(1/A(m)) B

Since the proof of Theorem 12 is similar to the proof of Theorem 9, we will

IRy = f )< (n).

omit it.

Remark 6. Note that the conditions in Theorem 9 and Theorem 12 are different
from the conditions of results in [14].
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