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On an Inverse Spectral Problem for a Perturbed
Harmonic Oscillator
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Abstract. The inverse spectral problem for perturbed harmonic oscillators on a semi-
axis with the same spectrum is investigated. The main equation of the inverse problem
is obtained. The unique solvability of the main equation is proved.
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1. Introduction

Over the past few years, many papers have appeared dedicated to various
problems of spectral analysis of a perturbed harmonic oscillator (see [1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11], and references therein). McKean and Trubowitz [2] considered
the problem of reconstruction for perturbed oscillator on the real line

T = T̂ + q (x) ,
_
T= − d2

dx2
+ x2.

They gave an algorithm for the reconstruction of q (x) from norming constants for
the class of real infinitely differentiable potentials, vanishing rapidly at ±∞, for
fixed eigenvalues λn (q) = λn (0) for all n and “norming constants” → 0 rapidly
as n → ∞. Later on, B.M. Levitan [3] reproved some results of [11] without
an exact definition of the class of potentials. It was also noted there that the
perturbation potentials may be constructed by the standard procedure of the
method of inverse problem.
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We consider the perturbed oscillator T0, generated by the anharmonic equa-
tion

−y′′ + x2y + q (x) y = λy, 0 < x <∞, λ ∈ C, (1)

and the boundary condition
y′ (0) = 0, (2)

where the real potential q (x) satisfies the conditions

q (x) ∈ C(1) [0,∞) ,

∫ ∞
0

∣∣xjq (x)
∣∣ dx <∞, j = 0, 1, 2. (3)

It is well known that the spectrum of T0 is purely discrete and consists of
simple eigenvalues (see, e.g., [1, 8]) λn, n = 0, 1, ..., where λn → +∞ as n →
∞. The corresponding normalized eigenfunctions

{
f(x,λn)
αn

}∞
n=0

, where αn =√∫∞
0 |f (x, λn)|2 dx, form an orthonormal basis for the space L2 (0,∞). Further,

as in [2, 3], we assume that the perturbed oscillators have the same spectrum.
In present paper the inverse spectral problem for the perturbed oscillator T0

is investigated by the method of transformation operators, i.e, the problem of re-
constructing the perturbation potential q (x) from spectral data {λn, αn > 0}∞n=0.
The obtained results can also be used to rigorously substantiate some formal
statements of [3].

It should be noted that, in different statement, the inverse problems for per-
turbed harmonic oscillators have been studied in [6, 7, 8].

In the next section the transformation operator for the perturbed harmonic
oscillator is constructed. The last section is dedicated to the solution of the
inverse spectral problem. Note that inverse spectral problems for the Schródinger
equation with some unbounded potentials were considered in [12, 13, 14].

2. The transformation operator

Consider the unperturbed equation

−y′′ + x2y = λy, 0 < x <∞, λ ∈ C. (4)

It has [15] the solutionf0 (x, λ) in the form

f0 (x, λ) = Dλ
2
− 1

2

(√
2x
)
,

where Dν (x) is the Weber function. It is well known (see [7, 15]) that for each
x ∈ [0,∞) the function f0 (x, λ) is entire and the following asymptotic holds

f0 (x, λ) =
(√

2x
)λ−1

2
e−

x2

2
(
1 +O

(
x−2

))
, x→∞, (5)
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uniformly with respect to λ on bounded domains. It was shown in [1, 8], that
the spectrum of T̂0 is purely discrete and consists of simple eigenvalues λ0n =
4n + 1, n = 0, 1, .... The corresponding eigenfunctions

{
f0
(
x, λ0n

)}∞
n=0

form an
orthogonal basis for the space L2 (0,∞). We have the equalities

f0
(
x, λ0n

)
= D2n

(√
2x
)

= 2−ne−
x2

2 H2n (x) ,

where Hn (x) is the Hermite polynomial. From the well-known properties of
Hermite polynomials it follows that

(
α0
n

)2
=

∫ ∞
0

∣∣f0 (x, λ0n)∣∣2 dx = (2n)!

√
π

2
.

The functions

{
f0(x,λ0n)

α0
n

}∞
n=0

are normalized eigenfunctions of T̂0. Consequently,

∞∑
n=0

f0
(
x, λ0n

)
α0
n

f0
(
y, λ0n

)
α0
n

= δ (x− y) , (6)

where δ (x) is Dirac’s delta.
We now consider the perturbed equation (1). As is shown in [2, 7, 8], the

equation (1) under condition (3) has a solution f (x, λ) with asymptotic behavior
f (x, λ) = f0 (x, λ) (1 + o (1)) , x→∞. We set

σ (x) =

∫ ∞
x
|q (t)| dt, σ1 (x) =

∫ ∞
x

σ (t) dt .

In the next theorem, by means of the transformation operator, a representation
of the solution f (x, λ) is obtained.

Theorem 1. If q (x) satisfies the condition (3) for j = 1, then for every λ the
equation (1) has a solution f (x, λ), representable in the form

f (x, λ) = f0 (x, λ) +

∫ ∞
x

K (x, t) f0 (t, λ) dt, (7)

where the kernel K (x, t) is a continuous function and satisfies the following re-
lations

|K (x, t)| ≤ 1

2
σ

(
x+ t

2

)
eσ1(

x+t
2 ), (8)

K (x, x) =
1

2

∫ ∞
x

q (t) dt. (9)
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Proof. Substituting the representation (7) into equation (1), we find that the
function (7) satisfies equation (1), if only the kernel K(x, t) satisfies a hyperbolic
equation of second order

∂K (x, t)

∂x2
− ∂K (x, t)

∂t2
−
(
x2 − t2 − q (t)

)
K (x, t) = 0, 0 < x < t, (10)

and the conditions

K (x, x) =
1

2

∫ ∞
x

q (t) dt, (11)

lim
x+t→∞

K (x, t) = 0. (12)

Reduce problem (10)-(12) to an integral equation. To this end, we reduce
equation (10) to the canonical form. Assume

U (ξ, η) = U

(
t+ x

2
,
t− x

2

)
= K (x, t) = K (ξ − η, ξ + η) .

For this function we find

L [U ] ≡ ∂2U (ξ, η)

∂ξ∂η
− 4ξηU (ξ, η) = U (ξ, η) q (ξ + η) (13)

with boundary conditions

U(ξ, 0) =
1

2

∫ ∞
ξ

q (α) dα, (14)

lim
ξ→∞

U(ξ, η) = 0, η > 0. (15)

Introduce the Riemann function R(ξ, η; ξ0, η0) of the equation L [U ] = ψ(ξ, η),
where ψ(ξ, η) = U(ξ, η)q(ξ + η), i.e., the function satisfying the equation

L∗(R) ≡ ∂2R

∂ξ ∂η
− 4ξ η R = 0


0 < η < η0,
ξ0 < ξ <∞,
0 < η < ξ,

and the conditions on the characteristics

R(ξ, η; ξ0, η0) |ξ=ξ0 = 1, 0 ≤ η ≤ η0,

R(ξ, η; ξ0, η0) |η=η0 = 1, ξ0 ≤ ξ <∞.

Let

R (ξ, η, ξ0, η0) = J0 (z) =
∞∑
n=0

(−1)n

(n!)2

(z
2

)2n
, z = 2

√(
ξ2 − ξ20

) (
η20 − η2

)
, (16)
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where Jn (z) is the Bessel function of the first kind. It is easy to verify that
this function satisfies the last three relations. In other world, R(ξ, η, ξ0, η0)
is the Riemann function of the equation (13) and has the symmetric property
R (ξ, η, ξ0, η0) = R (ξ0, η0, ξ, η). Using the well-known properties of the Bessel
function, we find that the following relations hold

∂R
∂ξ = O (ξ) , ∂R

∂η = O (ξ) , ∂
2R

∂ξ∂η = O (ξ) , ξ →∞,
∂2R
∂ξ2

= O
(
ξ2
)
, ∂

2R
∂η2

= O
(
ξ2
)
, ξ →∞.

(17)

Now, apply the Riemann method (see [16]) to the equation (13). Then we
obtain the following integral equation for U(ξ0, η0):

U(ξ0, η0) =
1

2

∫ ∞
ξ0

R(ξ, 0; ξ0, η0)q(ξ)dξ−
∫ ∞
ξ0

dξ

∫ η0

0
U(ξ, η)q(ξ+η)R(ξ, η; ξ0, η0)dη.

(18)
Thus, for solving problem (13)-(15) it is enough to solve integral equation (18)
with respect to U(ξ0, η0). Solving the above integral equation by the method of
successive approximations with the relation |R| ≤ 1 taken into account, we obtain

|U (ξ0, η0)| ≤
1

2
σ (ξ0) e

σ1(ξ0). (19)

Differentiating equation (18) directly and using relations (17), we find that
the function U (ξ0, η0) and thus the function K (x, t) = U

(
t+x
2 , t−x2

)
are twice

continuously differentiable. Moreover, for each fixed x we have the relations

∂K(x,t)
∂x = O

(
t2
)
, ∂K(x,t)

∂t = O
(
t2
)
,

∂2K(x,t)
∂x2

= O
(
t4
)
, ∂

2K(x,t)
∂t2

= O
(
t4
)
, t→∞.

From this and (19) it follows that the function K (x, t) = U
(
t+x
2 , t−x2

)
satisfies

the problem (10)-(12). This completes the proof of the theorem. J

3. Inverse problem

From the results of the previous section it follows that for each λ the function
f (x, λ) belongs to the space L2 (0,∞). Consequently, the spectrum of problem
(1)-(2) coincides with the roots of the function f (0, λ), i.e. the following relation
holds: f (0, λn) = 0, n = 0, 1, .... As is shown in [1], the following relations are
true

f0 (0, λ) = c02
λ
4 Γ
(
λ+1
4

)
cos
(
π(λ−1)

4

)
, c0 = 2−

1
4π−

1
2 ,

f ′0 (0, λ) = 2c02
λ
4 Γ
(
λ+3
4

)
sin
(
π(λ−1)

4

)
,

ḟ0 (0, λ) = −πc0
4 2

λ
4 Γ
(
λ+1
4

)
sin
(
π(λ−1)

4

)
,

(20)
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where ḟ = ∂f
∂λ . Furthermore, if 0 ≤ x2 ≤

(
λ
4

) 1
2
−ε
, λ ≥ λ0 > 0, 0 < ε < 1

3 , then
we have the asymptotics expansions

f (x, λ) = c02
λ
4 Γ

(
λ+ 1

4

){
cos

[
π
λ− 1

4
−
√
λx

]
+ λ−

1
2

(
2x3 + 2−

1
2

)
O (1)

}
,

(21)

ḟ (x, λ) = c02
λ
4 Γ

(
λ+ 1

4

)
×
{

1

4
cos

[
π
λ− 1

4
−
√
λx

]
ln
λ+ 1

2
−

−π
4

sin

[
π
λ− 1

4
−
√
λx

]
+ λ−

1
2

(
2x3 + 2−

1
2

)
O (1)

}
. (22)

The behavior of f ′ (x, λ) as λ→∞ and 0 ≤ x ≤ x0, x0 > 0 is determined [1] by
the expansion

f ′ (x, λ) = 2c02
λ
4 Γ

(
λ+ 3

4

){
sin

[
π
λ− 1

4
−
√
λx

]
+ λ−

1
2O (1)

}
. (23)

Introduce the Wronskian

{u, v} = uv′ − u′v.

The standard identity (see [8])

f2 =
{
ḟ , f

}′
yields

α2
n =

∫ ∞
0

f2 (x, λn) dx =
{
ḟ (x, λn) , f (x, λn)

}∣∣∣∞
0

= −ḟ (0, λn) f ′ (0, λn) . (24)

Using (20)-(23) and taking into account that λn = 4n+ 1, we obtain

f ′ (0, λn) = f ′0 (0, λn)
[
1 +O

(
n−

1
2

)]
,

ḟ (0, λn) = ḟ0 (0, λn)
[
1 +O

(
n−

1
2

)]
.

Then it follows from (24) that

α−2n =
(
α0
n

)−2 [
1 +O

(
n−

1
2

)]
. (25)

Denote

F (x, y) =
∞∑
n=0

{
(αn)−2 −

(
α0
n

)−2}
f0 (x, λn) f0 (y, λn) . (26)
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Since
(
α0
n

)2
= (2n)!

√
π
2 =

√
π
2 Γ (2n+ 1), by virtue of the well-known relations for

the Gamma function [15]

Γ (az + b) =
√

2πe−az (az)z+b−
1
2
[
1 +O

(
z−1
)]
, z →∞, |arg z| < π,

it follows from (21) that for each fixed x the following relation holds

f0 (x, λn)

α0
n

= O
(
n−

1
4

)
, n→∞.

From this and (25), (26) it follows that for each fixed x the series (26) converges
in the metric of L2 (0,∞). Hence, for each fixed x the function F (x, y) belongs
to L2 (0,∞) as a function of y.

Theorem 2. For each fixed x ≥ 0 the kernel K (x, y) appearing in representation
(7) satisfies the linear integral equation

F (x, y) +K (x, y) +

∫ ∞
x

K (x, t)F (t, y) dt = 0, y > x. (27)

This equation is called the main equation or Gelfand-Levitan-Marchenko equa-
tion.

Proof. The functions
{
f(x,λn)
αn

}∞
n=0

are normalized eigenfunctions of T0. Con-

sequently
∞∑
n=0

f (x, λn)

αn

f (y, λn)

αn
= δ (x− y) , (28)

where δ (x) is Dirac’s delta. On the other hand, one can consider the relation (7)
as a Volterra integral equation with respect to f0 (x, λ). Solving this equation we
obtain

f0(y, λ) = f(y, λ) +

∫ ∞
y

K̃(y, t)f(t, λ)dt. (29)

Moreover, from the well-known properties of the transformation operators [17]
it follows that the kernel K̃ (y, t) satisfies an inequality analogous to (8). From
(28), (29), we have∑∞

n=0
f(x,λn)
αn

f0(y,λn)
αn

=
∑∞

n=0
f(x,λn)
αn

f(y,λn)
αn

+

+
∫∞
y K̃ (y, t)

{∑∞
n=0

f(x,λn)
αn

f(t,λn)
αn

}
dt =

= δ (x− y) +
∫∞
y K̃ (y, t) δ (x− t) dt =

= δ (x− y) + K̃ (y, x) = δ (x− y) ,
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and hence with the help of (7)

∑∞
n=0

f(x,λn)
αn

f0(y,λn)
αn

=
∑∞

n=0
f0(x,λn)
αn

f0(y,λn)
αn

+

+
∫∞
x K (x, t)

{∑∞
n=0

f0(t,λn)
αn

f0(y,λn)
αn

}
dt =

=
∑∞

n=0

f0(x,λ0n)
α0
n

f0(y,λ0n)
α0
n

+
∑∞

n=0

{
f0(x,λn)
αn

f0(y,λn)
αn

− f0(x,λ0n)
α0
n

f0(y,λ0n)
α0
n

}
+

+
∫∞
x K (x, t)

{∑∞
n=0

f0(t,λ0n)
α0
n

f0(y,λ0n)
α0
n

}
dt+

+
∫∞
x K (x, t)

{∑∞
n=0

{
f0(t,λn)
αn

f0(y,λn)
αn

− f0(t,λ0n)
α0
n

f0(y,λ0n)
α0
n

}}
dt =

= δ (x− y) + F (x, y) +K (x, y) +
∫∞
x K (x, t)F (t, y) dt.

Comparing the last two equations, we arrive at (27).

If q (x) satisfies condition (3) for j = 2, then, as is shown in [18, see Lemma
6.3], the kernel F (x, y) of the main equation (27) satisfies the inequality

|F (x, y)| ≤ Cσ
(
x+ y

2

)
. (30)

In addition, function F (x, y) is continuous in the set of arguments. It follows
from (30) that ∫ ∞

0
sup
x>0

∣∣F± (x, y)
∣∣ dy <∞. (31)

J

Theorem 3. If function F (x, y) satisfies condition (31), then for each fixed
x ≥ 0 equation (27) has a unique solution K (x, y) in L2 (x,∞).

Proof. It is easy to check that for each fixed x, the operator

Ωxf (y) =

∫ ∞
x

F (y, t) f (t) dt

is compact in L2 (x,∞). Indeed, we have∫ ∞
x

dt

∫ ∞
x
|F (t, y)|2 dy ≤

∫ ∞
x

sup
y≥x
|F (t, y)| dt

∫ ∞
x
|F (t, y)| dy ≤

≤
∫ ∞
x

sup
y≥x
|F (y, t)| dt

∫ ∞
x

sup
t≥x
|F (t, y)| dt <∞.
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Hence, the operator Ωx is a Hilbert-Schmidt type operator. Since (27) is a Fred-
holm equation, it is sufficient to prove that the homogeneous equation

h (y) +

∫ ∞
x

F (t, y)h (t) dt = 0, (32)

has only the trivial solution h (y) = 0.
Let h (y) be a solution of (32). Then∫ ∞

x
h2 (y) dy +

∫ ∞
x

∫ ∞
x

F (t, y)h (t)h (y) dtdy = 0,

or ∫ ∞
x

h2 (y) dy +

∞∑
n=0

(αn)−2
(∫ ∞

x
h (y) f0 (y, λn) dy

)2

−

−
∞∑
n=0

(
α0
n

)−2(∫ ∞
x

h (y) f0 (y, λn) dy

)2

= 0.

Using Parseval’s equality∫ ∞
x

h2 (y) dy =

∞∑
n=0

(
α0
n

)−2(∫ ∞
x

h (y) f0 (y, λn) dy

)2

,

for the function h (y), extended by zero for y < x, we obtain

∞∑
n=0

(αn)−2
(∫ ∞

x
h (y) f0 (y, λn) dy

)2

= 0.

Since (αn)−2 > 0, we have∫ ∞
x

h (y) f0 (y, λn) dy = 0, n ≥ 0.

The system of functions {f0 (y, λn)}∞0 is orthogonal basis in L2 (x,∞). This yields

h (y) = 0.

J

Remark 1. The solution of the inverse scattering problem can be constructed
by the following algorithm. Calculate the function F (x, y) by the spectral data
{λn, αn > 0}∞n=0 and (26). Find K (x, y) by solving the main equation (27). Con-
struct q (x) by (9). Then, following the techniques of [13], in a narrower class of
potentials one can achieve a complete solution to the inverse problem.

Remark 2. The obtained results also extend to the case when the spectra of
perturbed harmonic oscillators are different. In this case we will have to use the

asymptotic formula (see [1, 8]) λn = 4n+ 1 +O
(
n−

1
2

)
, n→∞.
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