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On Non-Existence of Positive Periodic Solution for
Second Order Semilinear Parabolic Equation
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Abstract. Second order semilinear parabolic equation with time-periodic coefficients
is considered in the domain {x; |x| > R} × (−∞,+∞).The absence of global positive
periodic solutions is studied. The exact conditions are found under which the positive
periodic solution does not exist.
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1. Introduction

We will use the following notations: x = (x1, ..., xn) ∈ Rn, n ≥ 3, r =
|x| =

√
x2

1 + ...+ x2
n, BR = {x; |x| < R}, BR1,R2 = {x;R1 < |x| < R2}, B

′
R =

{x; |x| > R} ,QRT = BR × (0, T ), QR1,R2

T = BR1,R2 × (0, T ), QR,∞T = B
′
R × (0, T ),

Q
′
R = B

′
R× (−∞,+∞), SR = {x; |x| = R}× (−∞,+∞), Ω is a bounded domain

in Rn, QT = Ω× (0, T ), Q = Ω× (−∞,+∞).
Consider the equation

∂u

∂t
= div (|x|αA∇u) + a0 (x, t) |u|q−1 u, (1)

in the domain Q
′
R , where q > 1, α < 2, A = A (x, t) = (aij (x, t))ni,j=1, aij (x, t) ,

a0 (x, t) are bounded, measurable, T - periodic in t functions, and there exist the
constants ν1, ν2 such that

ν1 |ξ|2 ≤ (Aξ, ξ) ≤ ν2 |ξ|2 (2)

for every (x, t) ∈ Q′R, ξ = (ξ1, ..., ξn) ∈ Rn.
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HereA∇u denotes the action of the matrixA on the vector∇u =
(
∂u
∂x1

, ..., ∂u∂xn

)
,

i.e., A∇u =

(
n∑
j=1

aij
∂u
∂xj

)n
i=1

and (Aξ, η) =
n∑

i,j=1
aijξiηj , ξ = (ξ1, ..., ξn), η =

(η1, ..., ηn).
We will study the existence of a global positive solution. Before giving a

definition for solution, we consider the following function space:

W
1, 1

2
2 (QT ) =

{
u (x, t) ;u (x, t+ T ) = u (x, t) , u (x, t) ∈W 1,0

2 (QT ) ,

+∞∑
k=−∞

|k|
∫
Ω

|uk (x)|2 dx <∞

 ,

where

uk (x) =
1

T

T∫
0

u (x, t) exp

{
ik

2π

T
t

}
dt.

The norm in this space is defined as follows.

‖u‖2
W

1, 12
2 (QT )

= ‖u‖2L2(QT ) + ‖∇u‖2L2(QT ) +
+∞∑

k=−∞
|k|
∫
Ω

|uk(x)|2 dx.

By
◦
W

1, 1
2

2 (QT ) we mean a completion of C0,∞ (QT ) with respect to the norm
‖·‖

W
1, 12
2 (QT )

, where C0,∞ (QT ) is a set of infinitely differentiable functions on QT ,

which are T periodic in t and vanish in the vicinity of ∂Ω.
The function u(x, t) is called a solution of the equation (1) inQR,∞T , if u (x, t) ∈

W
1, 1

2
2,loc

(
QR,∞T

)
∩ L∞,loc

(
QR,∞T

)
and the integral identity

2π

+∞∑
k=−∞

(ik)

∫
B
′
R

uk (x)ϕ−k (x) dx+

∫∫
QR,∞T

|x|α (A∇u,∇ϕ) dxdt =

=

∫∫
QR,∞T

a0 (x, t) |u|q−1 uϕdxdt,

holds for every ϕ (x, t) ∈
◦
W

1, 1
2

2

(
QR,∞T

)
.
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Throughout this paper we will assume that aij (x, t) , i, j = 1, n are bounded,
measurable, T periodic in t functions which satisfy the condition (2). All the
constants appearing in different estimates will be denoted by C, although they
are different in different estimates.

The matters of existence and non-existence of global solutions for different
classes of differential equations and inequalities play an important role both in
theory and applications, that’s why they have always been the cause for constant
interest from mathematicians. A lot of works have been dedicated to these mat-
ters (see [1-11]). For useful reviews of such works, we refer the readers to the
article [12], the monograph [13], and the book [14].

In particular, the existence of solutions to the periodic parabolic equations
has also been a study object for many researchers (see [15-22]). One of the earliest
works dedicated to periodic parabolic equations was Seidman’s [15], which treated
the existence of non-trivial periodic solution for the following problem:

∂u

∂t
= ∆u+ a(x, t)uq, (x, t) ∈ Ω× (0,+∞), u/∂Ω = 0, (3)

with q = 0, where a(x, t) is a periodic in t function and Ω ⊂ Rn is a bounded
domain. Since then, many authors have considered the problem (3) for q > 0.
Beltramo and Hess [16] studied the problem (3) for q = 1 and showed that for
specially chosen a(x, t) it may have non-trivial periodic solutions. Esteban [17, 18]
proved that for every q > 1 when n ≤ 2 , and for 1 < q < n

n−2 when n > 2 the
problem (3) has positive periodic solutions for any kind of a(x, t) > 0. He also
proved that for n > 2, q ≥ n+2

n−2 , this problem has no positive periodic solution.
In 2004, Quittner [21] proved, with some restrictions on a(x, t), that this problem
has positive solutions for 1 < q < n+2

n−2 .

In [23], the equation (1) has been considered for α = 0 in Q
′
R, and it was

proved that if a0(x, t) ≥ c|x|σ, then there is no positive solution for 2 + σ + (2−
n)(q−1) ≥ 0. In [24], the equation (1) has been again considered for α = 0 in Q

′
R

and it was proved that if a0(x, t) ≥ c|x|σ lns |x|, then there is no positive solution
for 2 + σ+ (2− n)(q− 1) > 0, s ∈ (−∞,+∞) and for 2 + σ+ (2− n)(q− 1) = 0,
s ≥ −1.

In this work, we consider the equation (1) for α < 2 and obtain an exact
criterion for non-existence of positive time-periodic solutions.

2. Auxiliary facts

Denote

Lu ≡ div (|x|αA∇u)− ∂u

∂t
.
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Lemma 1. Let W (x, t) ∈ L∞,loc(QR,∞T ), W (x, t+ T ) = W (x, t). If 0 < u (x, t)

is a solution of the inequality Lu + Wu ≤ 0, then for every f (x) ∈ C∞0
(
B
′
R

)
there holds ∫∫

QR,∞T

W (x, t) f2 (x) dxdt ≤ C
∫
B
′
R

|x|α |∇f |2 dx.

Proof. In the definition of solution, we take ϕh̄(x, t) = 1
h

t∫
t−h

ϕ (x, τ) dτ as a

test function, where ϕ (x, t) = f2(x)
uh(x,t) ,

f (x) ∈ C∞0
(
B
′
R

)
, uh (x, t) =

1

h

t+h∫
t

u (x, τ) dτ.

Taking into account that
T∫

0

uϕh̄dt =

T∫
0

uhϕdt,

we obtain

2π

+∞∑
k=−∞

(ik)

∫
B
′
R

uk (x)ϕh̄(−k) (x) dx+

∫∫
QR,∞T

|x|α (A∇u,∇ϕh̄) dxdt ≥

≥
∫∫
QR,∞T

W (x, t)uϕh̄dxdt, (4)

2π
+∞∑

k=−∞
(ik)

∫
B
′
R

uk (x)ϕh̄(−k) (x) dx = −
∫∫
QR,∞T

u
∂ϕh̄
∂t

dxdt =

= −
∫∫
QR,∞T

u

(
∂ϕ

∂t

)
h̄

dxdt = −
∫∫
QR,∞T

uh
∂ϕ

∂t
dxdt =

=

∫∫
QR,∞T

∂uh
∂t

ϕdxdt =

∫∫
QR,∞T

∂uh
∂t

f2

uh
dxdt =

∫∫
QR,∞T

∂ lnuh
∂t

f2dxdt = 0,

∫∫
QR,∞T

|x|α (A∇u,∇ϕh̄) dxdt =

∫∫
QR,∞T

|x|α ((A∇u)h ,∇ϕ) dxdt =
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= −
∫∫
QR,∞T

|x|α
n∑

i,j=1

(
aij

∂u

∂xj

)
h

∂uh
∂xi

f2

u2
h

dxdt+

+

∫∫
QR,∞T

2 |x|α
n∑

i,j=1

(
aij

∂u

∂xj

)
h

∂f

∂xi

f

uh
dxdt.

Considering the last relations in (4) and passing to the limit as h→ 0, we get∫∫
QR,∞T

Wf2dxdt ≤ −
∫∫
QR,∞T

|x|α (A∇u,∇u)
f2

u2
dxdt+

+

∫∫
QR,∞T

2 |x|α (A∇u,∇f)
f

u
dxdt ≤ −

∫∫
QR,∞T

|x|α (A∇u,∇u)
f2

u2
dxdt+

+

∫∫
QR,∞T

2 |x|α f
u

(A∇u,∇u)
1
2 (A∇f,∇f)

1
2 dxdt ≤

≤
∫∫
QR,∞T

|x|α (A∇f,∇f) dxdt ≤ ν2T

∫
B
′
R

|x|α |∇f |2 dx.

Lemma 1 is proved. J

Lemma 2. Let n ≥ 3, 2 − n ≤ α < 2, the non-negative, continuous function

u (x, t) ∈ W 1, 1
2

2,loc

(
QR,∞T

)
on Q

R,∞
T satisfy the inequality Lu ≤ 0 and u (x, t) > 0

on SR. Then there exists β0 = const > 0 such that u (x, t) ≥ β0 |x|2−n−α for
(x, t) ∈ QR,∞T .

Proof. We first consider the case 2−n < α < 2. Let’s continue the coefficients
aij (x, t) to QRT , assuming aij = δij in QRT . Let Γ (x, t) be a fundamental solution
of the equation Lu = 0 with a singularity at zero. From [25, 26] it follows that if
α < 2, then the following estimates are true for Γ (x, t), t > 0:

µ1t
− n

2−α e−α1
|x|2−α

t ≤ Γ (x, t) ≤ µ2t
− n

2−α e−α2
|x|2−α

t ,

with Γ (x, t) = 0 for t ≤ 0, where µ1, µ2, α1, α2 are positive constants.
Consider the function

Γ′ (x, t) =
∑
q

Γ (x, t+ Tq) . (5)
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Obviously, the series (5) is convergent and determines the solution of the
equation Lu = 0, According to the estimate from below for Γ (x, t+ Tq), we
obtain

Γ′ (x, t) =
∑
q

Γ (x, t+ Tq) ≥
∑
q

µ1 |t+ Tq|−
n

2−α exp

{
−α1

|x|2−α

t+ Tq

}
≥

≥ C
∞∫
− t
T

|t+ Ts|−
n

2−α exp

{
−α1

|x|2−α

t+ Ts

}
ds− C |x|−n ≥

≥ C |x|2−n−α − C |x|−n ≥ C |x|2−n−α .

As u (x, t) > 0 on SR, there exists a constant β0 = const > 0, such that
u (x, t) ≥ β0Γ′ (x, t). Assume W (x, t) = u (x, t)− β0Γ′ (x, t). Then we have

LW (x, t) ≤ 0, W (x, t) ≥ 0 on SR andW (x, t+ T ) = W (x, t) .

Because of u (x, t) ≥ 0 in QR,∞T and Γ′ (x, t) → 0 as |x| → ∞, we have
lim|x|→∞W (x, t) ≥ 0.

The maximum principle implies W (x, t) ≥ 0 in QR,∞T .

Therefore, u (x, t) ≥ β0 |x|2−n−α.

Now let α = 2− n.

Consider the following auxiliary problem

Lvρ = 0 in QR,ρT , (6)

vρ||x|=R = 1, vρ||x|=ρ = 0, vρ(x, t+ T ) = vρ(x, t). (7)

Let’s prove that vρ ↑ 1 as ρ→∞.

Consider the following function

ϕρ(x) =

{
1, |x| ≤ ρ

1
e ,

1 + ln ln ρ
1
e − ln ln |x|, ρ

1
e < |x| < ρ.

Let’s take vρ−ϕρ as a test function in the definition of solution of the problem
(6),(7).

Then we obtain

2π

+∞∑
k=−∞

(ik)

∫
BR,ρ

vρk (vρ − ϕρ)−k dx+
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+

∫∫
QR,ρT

|x|2−n (A∇vρ,∇(vρ − ϕρ)) dxdt = 0. (8)

Just like in Lemma 1, it is easy to show that the first term is equal to zero.

Then from (8) we obtain∫∫
QR,ρT

|x|2−n (A∇vρ,∇vρ) dxdt =

∫∫
QR,ρT

|x|2−n (A∇vρ,∇ϕρ) ≤

≤ 1

2

∫∫
QR,ρT

|x|2−n (A∇vρ,∇vρ) dxdt+
1

2
ν2

∫∫
QR,ρT

|x|2−n |∇ϕρ|2 dxdt.

Hence ∫∫
QR,ρT

|x|2−n (A∇vρ,∇vρ) dxdt ≤ ν2

∫∫
QR,ρT

|x|2−n |∇ϕρ|2 dxdt ≤

≤ C
ρ∫
ρ
1
e

dr

r ln2 r
= C

(
− 1

ln r

)
/ρ
ρ
1
e

=

= C (e− 1)
1

ln ρ
→ 0 as ρ→∞.

It follows from the maximum principle that vρ1 ≤ vρ2 for ρ1 ≤ ρ2. Therefore,
vρ ↑ 1 as ρ→∞.

Obviously, for every ρ > Re we have u(x, t) ≥ C2vρ, where C2 = 1
2 min|x|=R u(x, t).

Then, passing here to the limit as ρ→∞, we get the statement of the lemma.

So Lemma 2 is proved. J

Let’s prove the following analog of the Caccioppoli inequality.

Lemma 3. Let α < 2, and v (x, t) be a non-negative solution of the equation
Lv + β2 |x|α−2 v = 0 in QR,∞T . Then the following inequality holds for ρ > 2R:∫∫

Qρ,2ρT

|x|α|∇v|2dxdt ≤ C
∫

Q
ρ/2,5ρ2

T

|x|α−2 v2dxdt.

Proof.
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Consider the following function

η (x) =



0, as |x| ≤ ρ
2 ,

2
ρ

(
|x| − ρ

2

)
, as ρ

2 ≤ |x| ≤ ρ,
1, as ρ ≤ |x| ≤ 2ρ,

2
ρ

(
5ρ
2 − |x|

)
, as 2ρ ≤ |x| ≤ 5ρ

2 ,

0, as |x| ≤ 5ρ
2 .

Take η2(x)v(x, t) as a test function in the definition of solution. Then we
obtain

2π

+∞∑
k=−∞

(ik)

∫
Bρ/2,5ρ/2

vk
(
η2v
)
−k dx+

∫∫
Q
ρ/2,5ρ/2
T

η2 |x|α (A∇v,∇v) dxdt+

+

∫∫
Q
ρ/2,5ρ/2
T

2ηv |x|α (A∇v,∇η) dxdt− β2

∫∫
Q
ρ/2,5ρ/2
T

|x|α−2 η2v2dx = 0.

As in Lemma 1, it is easy to show that the first term is equal to zero. Using
the inequality 2ab ≤ εa2 + 1

εb
2 in the third integral, we get the statement of the

lemma. J

Lemma 4. Let α < 2, 0 ≤ W (x, t) ∈ L∞,loc(QR,∞T ), W (x, t+ T ) = W (x, t) and

|x|2−αW (x, t) → ∞ as x → ∞. Then there exists no positive solution in QR,∞T
to the inequality

Lu+W (x, t)u ≤ 0.

Proof. Assume the contrary, i.e. assume there is a positive solution u(x, t).
Then all the conditions of Lemma 1 hold. Let the function f(x) satisfy the
following conditions: f ∈ C∞0 (Bρ,2ρ), 0 ≤ f ≤ 1, f = 1 for 5ρ

4 ≤ |x| ≤
7ρ
4 and

|∇f | < 5
ρ . Then, by Lemma 1,

inf
Qρ,2ρT

W (x, t)

∫
Bρ,2ρ

f2dx ≤ 1

T

∫∫
Qρ,2ρT

W (x, t)f2dx ≤

≤ C
∫

Bρ,2ρ

|x|α|∇f |2dx.

Hence
ρn inf

Qρ,2ρT

W (x, t) ≤ Cρα−2+n,
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and
|x|2−αW (x, t) ≤ C,

which contradicts the conditions of the lemma.
Lemma 4 is proved. J

Lemma 5. Let α = 2 − n, 0 ≤ W (x, t) ∈ L∞,loc(QR,∞T ), W (x, t + T ) = W (x, t)
and |x|n ln |x|W (x, t)→∞ as |x| → ∞. Then there exists no positive solution in
QR,∞T to the inequality

Lu+W (x, t)u ≤ 0.

Proof. Assume the contrary, i.e. assume there is a positive solution u(x, t).
Consider the following function

f(x) =


0, as |x| ≤ ρ

1
e ,

1 + ln ln |x| − ln ln ρ, as ρ
1
e ≤ |x| ≤ ρ,

1, as ρ ≤ |x| ≤ 2ρ,
1 + ln ln(2ρ)− ln ln |x|, as 2ρ ≤ |x| ≤ (2ρ)e,

0, as |x| ≥ (2ρ)e,

where ρ > Re.
Again, applying Lemma 1 to such f(x), we obtain

ρn inf
Qρ,2ρT

W (x, t) ≤ C
∫∫

Q
ρ
1
e ,(2ρ)e

T

W (x, t)f2dxdt ≤

≤ C
∫

B
ρ
1
e ,(2ρ)e

|x|2−n|∇f |2dx =

= C

 ∫
B
ρ
1
e ,ρ

|x|2−n|∇f |2dx+

∫
B2ρ,(2ρ)e

|x|2−n|∇f |2dx

 ≤

≤ C


ρ∫

ρ
1
e

1

r ln2 r
dr +

(2ρ)e∫
2ρ

1

r ln2 r
dr

 =

= C

(
1

ln ρ
(e− 1) +

1

ln(2ρ)

(
1− 1

e

))
≤ C 1

ln ρ
.
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Hence
ρn ln ρ inf

Qρ,2ρT

W (x, t) ≤ C,

|x|n ln |x|W (x, t) ≤ C,

which contradicts the conditions of the lemma. So Lemma 5 is proved. J

3. Main results and their proofs

The main results of this work are the following theorems.

Theorem 1. Let n ≥ 3, q > 1, 2 − n ≤ α < 2, a0(x, t) ≥ C|x|σ, σ ∈ R,
C = const > 0. If σ + 2− α+ (2− n− α)(q − 1) ≥ 0, then the equation (1) has
no positive solution in QR,∞T .

Proof. For simplicity, we assume R = 1.
I. Let first 2+σ−α+(2−n−α)(q−1) > 0. Denote W (x, t) = a0(x, t)|u|q−1.

If u(x, t) is a positive solution of the equation (1), then all the conditions of
Lemma 2 are satisfied. So by Lemma 2 we have W (x, t) ≥ C|x|σ|x|(2−n−α)(q−1) =
C|x|α−2|x|σ+2−α+(2−n−α)(q−1). Hence

lim
|x|→∞

|x|2−αW (x, t) =∞.

Then, by Lemma 4, the equation (1) has no positive solution in Q1,∞
T .

II. Now let σ+ 2−α+ (2− n−α)(q− 1) = 0 and α 6= 2− n. If the equation
(1) has a positive solution u(x, t), then, by Lemma 2

Lu+ β2|x|α−2u ≤ 0.

Consider the following linear equation in Q1,∞
T :

Lv + β2|x|α−2v = 0. (9)

Assume that the equation (9) has a non-negative solution v(x, t).
In the definition of solution of the equation (9), we take the test function

ϕ(x, t) as follows:

0 ≤ ϕ(x, t) = ϕ(x) ∈ C∞0 , |∇ϕ| ≤ C/|x|2,

ϕ(x) =


0, as |x| ≤ 1,
1, as 2 ≤ |x| ≤ ρ,
0, as |x| ≥ 2ρ.
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Then

β2

∫∫
Q1,∞
T

|x|α−2vϕdxdt =

∫∫
Q1,∞
T

|x|α(A∇u,∇ϕ)dxdt. (10)

Let’s estimate the left-hand side of (10) from below, and the right-hand side from
above. By Lemma 2, we obtain

β2

∫∫
Q1,∞
T

|x|α−2vϕdxdt ≥ β2

∫∫
Q2,ρ
T

|x|α−2vdxdt ≥ β2

∫∫
Q2,ρ
T

|x|α−2+2−n−αdxdt ≥

≥ β2
2

ρ∫
2

dr

r
= β2

2 ln
ρ

2
, (11)

∫∫
Q1,∞
T

|x|α(A∇v,∇ϕ)dxdt =

∫∫
Q1,2
T

|x|α(A∇v,∇ϕ)dxdt+

+

∫∫
Qρ,2ρT

|x|α(A∇v,∇ϕ)dxdt ≤ C +

∫∫
Qρ,2ρT

|x|α(A∇v,∇v)
1
2 (A∇ϕ,∇ϕ)

1
2dxdt ≤

≤ C +

∫∫
Qρ,2ρT

|x|α|∇v|2dxdt


1
2  ∫

βρ,2ρ

|x|α|∇ϕ|2dx


1
2

≤

≤ C + Cρ
n−2+α

2

∫∫
Qρ,2ρT

|x|α|∇v|2dxdt


1
2

. (12)

Using Harnack inequality and Lemma 3, we estimate the latter integral as
follows ∫∫

Qρ,2ρT

|x|α|∇v|2dxdt


1
2

≤ C

 ∫∫
Q
ρ/2,5ρ/2
T

|x|α−2v2dxdt


1
2

≤

≤ Cρ
n−2+α

2 min
Q
ρ/2,5ρ/2
T

v. (13)
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Then, by virtue of (11), (12) and (13), from (10) we obtain

β2
2 ln

ρ

2
≤ C + Cρn−2+α min

Q
ρ/2,5ρ/2
T

v.

Hence

min
Q
ρ/2,5ρ/2
T

v ≥ 1

C
ρ2−n−α(β2 ln

ρ

2
− C).

As a result

v(x, t) ≥ C|x|2−n−α ln
|x|
C
. (14)

Now let’s show that the equation (9) has in fact positive solutions. For this
aim, consider the following auxiliary problem:

LVR + β2|x|α−2VR = 0, (15)

VR||x|=1 = 1, VR||x|=R = 0. (16)

Obviously, the problem (15), (16) has a solution VR. Let’s show that VR ≥ 0 and
VR ≤ 1. We first prove that VR ≤ 1. Assume the contrary, i.e. assume there
exists Q

′ ∈ Q1,∞
T such that VR > 1 in Q

′
.

Let ψ(x, t) = VR − 1 for (x, t) ∈ Q′ and ψ(x, t) = 0 for (x, t) /∈ Q′ . It is clear

that ψ(x, t) ∈
◦
W

1, 1
2

2

(
Q1,R
T

)
. Then, if we take VR ψ(x, t) as a test function in the

definition of solution, we get

2π
+∞∑

k=−∞

∫
1<|x|<R

VRk(x)ψ−k(x)dx+

∫∫
Q′

|x|α
n∑

i,j=1

aij(x, t)
∂VR
∂xj

∂(VR − 1)

∂xi
dxdt−

−β2

∫∫
Q′

|x|α−2VR(VR − 1)dxdt = 0.

Using the averaging ψh̄(x, t) = h−1
t∫

t−h
ψ(x, τ)dτ and then passing to the limit as

h → 0, we obtain as in the proof of Lemma 1 that the first term in the latter
equality is equal to zero.

As α 6= 2 − n, using the Poincare inequality and taking into account the
condition (2) we obtain

ν1

∫∫
Q′

|x|α|∇VR|2dxdt+ β2

∫∫
Q′

|x|α−2VR =
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= β2

∫∫
Q′

|x|α−2V 2
Rdxdt ≤ β2C

∫
Q′

|x|α|∇VR|2dxdt.

Hence,

(ν1 − β2C)

∫∫
Q′

|x|α|∇VR|2dxdt+ β2

∫∫
Q′

|x|α−2VRdxdt ≤ 0.

As β2 can be chosen sufficiently small, all the terms on the left-hand side of this
inequality are positive. Then we obtain a contradiction. Therefore, VR ≤ 1 in
Q1,R
T . Similarly we can show that VR ≥ 0.

As VR ≥ 0 and VR ≤ 1 for every R and VR is a solution of the problem
(15), (16), the function VR(x, t) converges uniformly, in every compact subset, to
some function V (x, t), which is the sought non-negative solution of the equa-
tion (9). Consider the function WR(x, t) = u(x, t) − CVR(x, t), where C =
1
2 min|x|=1 u(x, t). Then

LWR + β2|x|α−2WR ≤ 0,

WR > 0 for |x| = 1, WR ≥ 0 for |x| = R, WR(x, t+ T ) = WR(x, t).

From here, similar to the case WR ≤ 1, it is easy to derive that WR(x, t) ≥ 0 in
Q1,R
T .

As a result, we have u(x, t) ≥ CVR(x, t) for every R. Then, passing to the
limit as R→∞ and taking into account (14), we obtain

u(x, t) ≥ C|x|2−n−α ln
|x|
C
.

Using this inequality, as in case I, we arrive at the conclusion that the equation
(1) has no positive solution for α 6= 2−n, σ+ 2−α+ (2−n−α)(q− 1) = 0, too.

III. Now let α = 2− n.
Denote W (x, t) = a0(x, t)|u|q−1. By Lemma 2, for α = 2−n we have u(x, t) ≥

C. Then
W (x, t) ≥ C|x|σ = C|x|α−2|x|σ+2−α = C|x|−n|x|σ+n.

Consequently, for σ ≥ −n we have

lim
|x|→∞

|x|n ln |x|W (x, t) ≥ lim
|x|→∞

ln |x||x|σ+n =∞.

Hence, by Lemma 5, the equation (1) has no positive solution.
So Theorem 1 is completely proved. J
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Theorem 2. Let n ≥ 3, q > 1, α < 2−n, a0(x, t) ≥ C|x|σ, σ ∈ R, C = const >
0. Then, for every σ ∈ (−∞,+∞), q > 1 the equation (1) has no positive solution
in QR,∞T .

Proof. Again, for simplicity we assume R = 1. Let u(x, t) > 0 be a solution
of the equation (1). Take u−θϕs as a test function in the definition of solution,
where 0 < θ < 1, s = 2 q−θq−1 , ϕ(x) = ξ(x)ψ(x),

ξ(x) =

{
sin( |x|−1

ρ−1
π
2 ), 1 ≤ |x| ≤ ρ,

1, |x| ≥ ρ,

ψ(x) =


1, 1 ≤ |x| ≤ ρ,

(2− |x|ρ ), ρ ≤ |x| ≤ ρ,
0, |x| ≥ ρ.

Then we obtain ∫∫
Q1,∞
T

|x|σ |u|q−θ ϕsdxdt ≤

≤ 2π
+∞∑

k=−∞
(ik)

∫
B
′
1

uk (x)ϕ−k (x) dx+ (−θ)
∫∫
Q1,∞
T

|x|α (A∇u,∇u)u−θ−1ϕsdxdt+

+s

∫∫
Q1,∞
T

|x|α (A∇u,∇ϕ)u−θϕs−1dxdt.

Obviously, the first term on the right-hand side is equal to zero. Then, using
the inequalities

(A∇u,∇ϕ) ≤ (A∇u,∇u)
1
2 (A∇ϕ,∇ϕ)

1
2 ,

ab ≤ ε

2
a2 +

1

2ε
b2,

we obtain∫∫
Q1,∞
T

|x|σ |u|q−θ ϕsdxdt ≤ (−θ)
∫∫
Q1,∞
T

|x|α (A∇u,∇u)u−θ−1ϕsdxdt+

+
|θ|
2

∫∫
Q1,∞
T

|x|α (A∇u,∇u)u−θ−1ϕsdxdt+
s2

2|θ|

∫∫
Q1,∞
T

|x|α (A∇ϕ,∇ϕ)u−θ+1ϕs−2dxdt ≤
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≤ s2

2|θ|

∫∫
Q1,∞
T

|x|α |∇ϕ|2 u−θ+1ϕs−2dxdt ≤

∫∫
Q1,∞
T

|x|σ |u|q−θ ϕsdxdt


1
p

×

×

∫∫
Q1,∞
T

|x|αp
′
|∇ϕ|2p

′
ϕs−2p

′

|x|σ(p′−1)
dxdt


1

p
′

,

where p = q−θ
1−θ , p

′
= q−θ

q−1 .
Hence ∫∫

Q1,∞
T

|x|σ |u|q−θ ϕsdxdt ≤
∫∫
Q1,∞
T

|x|αp
′
|∇ϕ|2p

′
ϕs−2p

′

|x|σ(p′−1)
dxdt =

= C

∫
B1,ρ

|x|αp
′
|∇ξ|2p

′
ψ2p

′

|x|σ(p′−1)
dx+ C

∫
Bρ,2ρ

|x|αp
′
|∇ψ|2p

′
ξ2p
′

|x|σ(p′−1)
dx ≤

≤ C
ρ∫

1

∣∣∣∣∂ξ∂r
∣∣∣∣2p
′

rαp
′
+n−1−σ(p

′−1)dr + C

2ρ∫
ρ

∣∣∣∣∂ψ∂r
∣∣∣∣2p
′

rαp
′
+n−1−σ(p

′−1)dr =

= C
1

(ρ− 1)2p′
ραp

′
+n−σ(p

′−1) + C
1

ρ2p′
ραp

′
+n−σ(p

′−1) ≤

≤ Cραp
′−2p

′
+n−σ(p

′−1) = Cρ(α−2−σ)(p
′−1)+α−2+n =

= Cρ
−σ+2−α+(2−n−α)(p−1)

p−1 = Cρ
− (α−2−σ)(1−β)+(2−n−α)(q−1)

q−1 . (17)

If now α < 2 − n, then we choose θ ∈ (0, 1) in such a way that (α − 2 − σ)(1 −
θ) + (2 − n − α)(q − 1) > 0 . Then, passing to the limit as ρ → +∞, from (17)
we obtain ∫∫

Q1,∞
T

|x|σ |u|q−θ ϕsdxdt ≤ 0.

It follows that u ≡ 0.
Theorem is proved. J

Now let’s show that the estimate we obtained for the non-existence of positive
solution is exact. To do so, we have to show that for σ+2−α+(2−n−α)(q−1) < 0
there exists an equation which has a global positive solution.
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Consider the equation

∂u

∂t
= div(|x|α∇u) + |x|σ|u|q−1u. (18)

We seek the solution of this equation in the form u(x, t) = A|x|−µ. Substi-
tuting it into the equation, we obtain

−µ(α− µ− 2)|x|α−µ−2 − nµ|x|α−µ−2 +Aq−1|x|σ−qµ = 0.

Take α− µ− 2 = σ − qµ.

Hence, µ = σ+2−α
q−1 .

Let’s find out when A > 0 holds. We have

Aq−1 = µ(α− µ− 2) + nµ = µ(α− 2 + n− µ) =

=
σ + 2− α
q − 1

(
α− 2 + n− σ + 2− α

q − 1

)
=

= −σ + 2− α
q − 1

σ + 2− α+ (2− n− α)(q − 1)

q − 1
.

So, if σ + 2− α+ (2− n− α)(q − 1) < 0, then Aq−1 > 0 and A > 0.

Therefore, for σ + 2 − α + (2 − n − α)(q − 1) < 0 the equation (18) has a
positive solution

u(x, t) =

[
−σ + 1− α

q − 1

σ + 1− α+ (2− n2)(q − 1)

q − 1

] 1
q−1

|x|
σ+2−α
q−1 .
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