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Abstract. In this paper we consider the Cauchy problem for the systems of three Klein-
Gordon equations with a week bond with the masses and damping term. We study
qualitative characteristics of the family of potential wells, the existence and nonexistence
of global solutions, the instability of standing waves, and the behavior of the energy
norms of solutions at large time.
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1. Introduction

The Klein—Gordon equation is distinguished among other nonlinear hyper-
bolic equations b its theoretical and practical significance. The nonlinear Klein—
Gordon equation appears in the study of some problems of mathematical physics.
For example, this equation arises in general relativity, nonlinear optics (e.g., in
the study of instability phenomena such as self-focusing), plasma physics, fluid
mechanics, radiation theory or in the theory of spin waves [1, 2, 3].

The Cauchy problem for nonlinear Klein-Gordon equation

uy — Au+mu+u = f(u), t>0, z€R", (1)

U(O,ZL‘) :uo(x),ut((),:v) :’U1(l’),x € R", (2)
has been studied by many authors (see e.g. [4]).

*Corresponding author.
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Existence and nonexistence of global solutions are the main points of study
for the problem (1), (2) in the case m =0, f(u) ~ |ul’ (see e.g. [5, 6]).

In [7, 8], the problem (1), (2) has been investigated in the case m = 0,  f(u) ~
|ul?, where 1 < p <p. =1+ %, and the existence of sufficiently small initial data
(up,u1) was proved for which the corresponding Cauchy problem has no global
solution. In [7, 8] the Klein-Gordon equation has been investigated in the case
m =0, f(u)~ |ul’ when p >p. =1+ 2, and the existence of a global solution
for the problem (1), (2) has been proved for sufficiently small (ug,u1).

In the case m > 0, i.e for the Klein-Gordon equation with mass, the above
effects do not occur. In this case, the main objects of study are the corresponding
potential well and stability or instability of standing wave. There is a series of
works devoted to that problem [9, 10, 11, 12].

In [12], the Cauchy problem (1), (2) has been studied in the case f(u) =
\u|p_1 u, where p > 1, if n =2 and 1 < p < Z—‘fg if n > 3. By investigating
the family of potential wells, the set of initial data for which the corresponding
Cauchy problem has no global solution has been found . The exponential de-
cay of energetic norms corresponding to global solutions was also established in
[12]. More information on the Cauchy problem for the system of Klein-Gordon
equations can be found in [13, 14, 15, 16].

In this paper, we consider the Cauchy problem for the systems of three Klein-
Gordon equations with a weak bond with the masses and damping term.

Consider the Cauchy problem

Ui — Aug + myug + yiuie 1

ug — Aug + moug + Youg = |ug [ug luz P2 ug (3)
|ul|p1+1 ’u2|172+1 ‘u3|p3*1

— ’ul‘m—l ’u2’p2+1 ‘u3’p3+1 u

p1+1 p2—1
| |

uzer — Aug + maug + y3uz; = u3
in the domain [0, 00) x R™with the initial conditions
u;(0,2) = uo(x), wi(0,z) =un(z), xz€R"i=123, (4)
where w1, us, us are real functions depending on t € Ry, z € R";
71227 pj>0aj:1a2a37 (5)
and additionally
p1+p2+p3 < lif n=3. (6)

We study the family of potential wells and the existence and nonexistence of
global solutions.
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In the case m; >0, j = 1,2, 3, the system (3) determines a model of interac-
tion between three fields with masses mq, mo and mg with interaction constants
A1, A2 and A3. As in [13], in this paper we examine a quality characteristics of
a family of potential wells, the existence and nonexistence of global solutions,
the unstable standing waves, the behavior of the energy norms of solution for a
large values of time. For the systems of two Klein-Gordon equations the similar
problems have been studied in [15].

In the sequel, by |.|, we denote the usual Ly(R")-norm. For simplicity,
we write |.|, instead of |.|. The scalar product in Ly(R") will be denoted
by (.,.). The norm in the Sobolev space H!' = WJ}(R"), will be denoted by

1
/
lul| = H‘VU’Q + ]u\QH 2, where V is the gradient. The constants C' and ¢ used

throughout this paper are positive generic constants throughout this paper and
can may be different in different occasions.
For simplicity, hereafter we will assume my = mo = m3 = 1.

2. Structure of potential well and the existence of a vacuum zone

Consider the system of equations

—Ady + d1 = |1 [P [palP> T |2 64,

Ao+ d2 = |1 [P gaf 2 43P o, (7)
—Ads+ 3 = |¢1 [T o P2 s s
Suppose @1752,@3) is a solution of system (1). Then

(u1(t, ), ua(t,z),u3(t,z)) = (@1, P9, ¢3), is the solution of system (3) with
initial conditions

Ul(oyx) :a($)a UZ(Oax) :@(‘/I")v U3(0,SC) :%(‘T)
Then (51,52,63) is called a standing solution of the problem (3), (4).

We define the following functionals

3

J (¢1, 2, $3) Z

=1

3

I ) ) = E j
(91,62 6) a1 +p2+p3+3 5]

where

= G(¢1,01,01) = /Rn ’¢1($)|p1+1 |¢2(x)‘p2+1 |¢3($)|p3+1 de.
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Lemma 1. Let (¢1, ¢, ¢3) € H' x H' x H'\ {(0,0,0)}. Then
(i) im J (A1, A2, Ap3) =0, lLm J (Ap1, A2, Ap3) = —0o0;
A—=0 A—+00
(ii) there is a single point X\* = X* (¢1, P2, ¢3) in the interval 0 < A < +o00, where

d
—J (A1, Apa, A — = 0;
d\ ( ¢17 ¢27 ¢3) ‘)\—)\ )

(iii) J (Ap1, Ap2, Ap3) is not decreasing on 0 < X\ < \*, not increasing on \* <
A < 400 and it reaches its maximum at the point A = \*;

(iv) I (Ap1, A2, Ap3) > 0 for 0 < A < X*; I (A1, A2, Ap3) < 0 for \* < A < 400
and

I()\*¢1a )\*¢27)\*¢3) -
We define the set
N = {(¢1,02,03) : (¢1,02,03) € H' x H' x H'\ {(0,0,0)}, I (¢1, d2,¢3) =0} .

Suppose (¢1, p2, ¢3) € N. Then

3
Soraa) = (1= ot ) 3 B e > o0

i.e J is bounded from below on the set N. Consider the variation problem

d g lnf J 7 7 '
(¢1,¢2,03)EN (¢1, P2, $3)

Lemma 2. There is (51,52,53) € Nsuch that

(i) J (41, b, 03) = (¢1’¢21}52)6NJ(¢17¢27¢2) =d > 0;

(it) (1, g, @) is the standing solution of the problem (3), (4).

For 6 > 0 we define also

3

pj + 1 2 / p1+1 p2+1 p3+1
1 , 02, =4 - : dz,
5 (f1, P2, ¢3) ;:1 PRSTIST— 95l o |¢1] P22 [ @3]

and

i

2
5 p1+po+p3+1
r(0) =7 (%p1,p2,p3) = (Cp1+p2+p3+3>

|ulp) +potpyts

where C' = Cp1+p2+P3+3 = sup flul]

[l 0
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Lemma 3. If (u1,us,u3) € H' x H' x H'\ {(0,0,0)} and Z?Zl %x
||u]||2 <r (5)7 then I& (U1,U2,U3) > 0.

Lemma 4. If (ui,uz,u3) € H' x H' x H' and Is(ui,ug,u3z) < 0, then
3 +1 2

> i1 plﬂiw lujl|* > 7 (0).

Lemma 5. If (uj,ug,u3) € H' x H' x H'\ {(0,0,0)} and Is(u1,u2,us) = 0,

then
3

pj+1 2
> ’ lusl|” = 7 (9).
Sptptpsts

Lemma 6. Suppose that conditions (5), (6) are fulfilled. Then

d(6) > a(6) r(3), (8)

where
p1+p2+p3+3—20

d (5) — 5p1+p22+p3+1
p1+p2+ps+1

d, 9)

_ b +p2+p3+3

a(9) 5 0. (10)
It’s obvious that
Jim d (3) =0, (11)
d(?l +p2;-P3+3> _o, (12)
d(1) =d, (13)
d (6) > 0,6 € (0,1), (14)

(15)

d () <0, € <1,p1+p2+p3+3).

2

Let the conditions (5) and (6) be satisfied. Then for arbitrary (w19, u20, us0) €
I‘I1 X Hl X Hl, (un,ulg,ulg) S L2 (Rn) X L2 (Rn) X LQ (Rn), there exists
T" > 0 such that problem (3), (4) has a unique solution (u; (+),us(:),us(:)) €
C ((0,7'); HY x H' x HY) 0 C((0,T"); Ly (R) x Ly (R™) x Ly (R™)). If Tynay =

supT’, 1i.e. Tinae is the length of the maximal existence inter-
val of the solution (ui(-),u2(-),u3(-)) € C([0,Tmax); H x H' x H') N
C ([0, Trnaz); Lo (R™) X Lo (R™) x Ly (R")), then either Tjae = 00, or

limsup 325, [[Jui (¢, )] + | (¢, )] = +o0.

t_>,Tmax -
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We denote by FE (t) the following energy function:

2 s 1) o s 2, )1] -

_/ Jur (t2) P fuz (@) [P fug (8, 2) P da,
Rn

and we define the following sets

Ws = {(Ul,’LLQ,’LLg) c H'x H' x H' : Is(uy,ug,us3) >0,
J(u1,u2,u3) < d(0) } U{(0,0,0)},
V5 = {(ul,ug,ug) € Hl X Hl X I‘I1 : Ig(ul,uQ,u;»,) < 0, J(ul,ug,ug) < d(é)},

where 0 < § < 9. From (11)-(15) it follows that for every e € (0,d) the equation
d (§) = e has two roots d1, d2, so that §; < 1 < da.

Theorem 1. Suppose that (uyg,uso,uz0) € H' x H' x H', (uy1,uio, u13) €
Ly (R™) x Lo (R™) X Lo (R"™), and conditions (5),(6) hold. If 0 < e < d and
01 < 2 are the roots of the equation d(d) = e, then the following assertions are
valid:

(a) if I (u10,u20,u30) >0 or ||uio| = |Jul|| = ||uso|| = 0, then, for all solutions
(up (t,-),uz (t,-),us (t,-)) of problem (3), (4) with initial energy 0 < E (0) < e,
(up (t,-),u2(t,),us(t,-)) € Ws, where 1 < 6 < da;

(b) if I(ulo,UQ(],U30) < 0, then, for all solutions (uy (t,-),u2(t,-),us(t,-)) of
problem (3), (4) with initial energy 0 < E(0) < e, (u1(t,-),u2(t,-),us(t,-)) €
Vs, where §1 < § < 0.

Proof. a) Let (u10,u20,u30) € H' x H' x H', (u11,u12,u13) € Lo (R") X
L2 (Rn) X L2 (Rn) and
0<E(0)<e. (16)

Let
I (u10, u20,u30) > 0 or [luiol| = [luzol| = [luzoll = 0. (17)

It follows from (3), (4) that the following energy equality holds

Z” /W )2 ds = E(0). (18)

By virtue of (16) and (18), J (ug (t,-),u2(t,-),us(t,)) <e. On the other hand,
for 61 < § < 02 we have e < d(9). Therefore

J(ur (t,-) ug () uz (£,-) < d(9). (19)
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Suppose that the assertion a) does not hold. Then in view of (17) and (19) there
exists ¢ € (0,00) such that

Is (u1 (t,-),UQ (t, -),u;g (t,')) > 0,t e (O,ﬂ, (20)

L; (u1 (f, ) , U2 (f, ) , U3 (Z?, )) =0. (21)

Thus, (uy (¢,-),us2 (¢,-),us(t,-)) € Ng, therefore, by the definition of d(d) we
have

d(é) <J (ul (ZT, ) U2 (t_v ) , U3 (LT? )) )
which contradicts (9).

Now we prove the assertion b). Let (ujg,u20,u30) € H' x H' x H!,
(ull, ui2, ulg) S L2 (Rn) X L2 (Rn) X L2 (Rn), O< FE (O) <e and [ (ulo, Uu20, U30) <
0. Similar to the case a), we obtain the existence of ¢ € [0, 7] such that for any
t € [0,7) the inequality

I (Ul (tv ) , U2 (t7 ) ; U3 (tv )) <0,

holds and I (us (¢,-),u2 (¢,-) ,us (t,-),) = 0.
Then we again have a contradiction:

d(6) < J(ui (&) us (F,-) ,us (F,-),) <e < d(3). =

By Theorem 1, we have the following theorem.

Theorem 2. Suppose that (uip,ug0,u30) € H' x H' x H', (u11,u12,u13) €
Ly (R™) x Ly (R™) x Lo (R™), and conditions (5),(6) hold. If 0 < E(0) < e and

01 and 3 are the roots of the equation d(0) = e, then the sets Ws,5, = U Wi
01 <0<d2
and Vs,5, = U Vs are invariant on the trajectories of the dynamical system
51<5<52
generated by problem (3), (4).

The next theorem is a consequence of Theorem 2 and shows that there is a
so-called vacuum zone between the two invariant sets.

Theorem 3. If the assumptions of Theorem 2 hold, then all solutions of problem

(3)7 (4) satisfy the relation (ul (t7 ) , U2 (t7 ) y U3 (ta )) ¢ N51,52 = U Ns.
§1<0<d2

Now, consider the case E(0)<O0.
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Theorem 4. Suppose that (uig,ug0,u30) € H' x H' x H', (u11,u12,u13) €
Ly (R™) x La (R™) x Ly (R™), and conditions (5),(6) hold. If E(0) =0, [Juio| #
0, |luaoll # 0 and |Jusp|| # 0, then the solution of problem (3), (4) satisfies the
inequality

3
2
Z t, )" = ro, (22)
p1+tpo+p3+3
TPy tpatl
where ro = (p1+p223-2p3+3)m P2 ¥p2 T

Proof. Let (uy (¢,-),uz2 (t,-),us (¢,-)) be the solution of problem (3), (4) with
initial energy F (0) = 0, where |luio|| # 0, |lugo|| # 0, |Juso|| # O.

Let Tmax be the maximal interval of existence of the solution
(uy (t,+),uz (t,+) ,us (t,-)). In view of the definition of E (t), we have

-3

It follows that

£ T (un (t-) a2 () g (8 )) = 0,8 € [0, Tinag)-

(23)

J (ug (t,-),ug (t,-),us(t,-) <0< d(d), t €0, Thax), (24)

and

(t, ) §/ Jur (t,2) P fuz (¢, 2) [P fus (8 2) P da.
Rn

3
p_]+1

On the other hand, according to the Holder’s inequality

G= [ ur(t2)[" fua (@) s (8, 0)P T dae <
Rn
P11+1
p1+tpo+p31+3
< (/ |y (tyx)’p1+p2+p3+3 dx) %

p12+1
) p1+po+p31+3

X

% (/ lug (t, m)‘p1+p2+p3+3 dr
n

p3+1
p1F+po+p3+3

% </ |us (t’$)|p1+p2+p3+3 da:> ) (25)
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Then, using the embedding theorem [21], we get

pj+1 2
> H ol ) <
j=1
2 p1+po+p3+3 3 1 %W’
2 .
< QPrprtpst3 ( ) Z pit |luj (t, P2
p1+p2+p3+3 = 2
(26)

<

Since (ulo, 20, U30) € Hl X I‘I1 X Hl, (UH, U129, u13) S L2 (Rn) X L2 (Rn) X LQ (R )
and ||ugo|| # 0, there exists a half-interval [0,¢;), where ||ui(¢,.)|| # 0, |Jua(t,.)|| #
0, |lus(t,.)|| # 0. Then from (14) we obtain

3 1 + " 43 P1+P2+P2+?
Pi 2 D1 D2 D2 P1+p2+p2+
R e

=7rg,t € [O,tl) . (27)

It follows that |Juq(¢,.)|| # 0, |Jua(t,.)|| # 0, ||us(t,.)|| # O, therefore (26) is also
valid on the half-open interval §; < § < d2, and so on. Thus, (22) is true on
0<t<Thae-

Theorem 5. Suppose that (u1g,u00,u3) € H' x H' x H'{0,0,0},
(u11,u12,u13) € Lo (R™) x Lo (R™) x Lo (R™), and conditions (5),(6) hold. If
E0) <0 or E(0) = 0 and (ui0,u20,us0) # (0,0,0), then (u1 (¢,-),us2(t,-),
us (t,-)) € Vs fort € [0, Tinaz), where 0 < 6 < pl“’%w’.

Proof. If E (0) < 0, then from (14) we obtain
J (uy (t,-),uz (t,-),ug (t,-) < E(0)<0<d(d). (28)

On the other hand
J (’LLl (t7 ) , U2 <t7 ) y U3 (t7 )) =

p1+p2+p3+3—2(5zpj—|-1
p1+p2+p3+3

| + 15(u1( )a uQ(t7 ')7u3(ta ))7

therefore
Is(uy(t,.),u2(t,.),us(t,.)) <0, t €0, Taz), (29)

if

p1+p2+p3+3

0<9
<o < 5
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If £(0) = 0, then in view of Theorem 4, from (27), (28) we find that the inequality
(29) is true in this case also if 0 < § < 21FP24Pst3
Thus
(ui(t,.), ua(t,.),us(t,.)) € Vs,

WhereO<5<W. <

Theorems 3-5 imply the following result.

Theorem 6. If E(0) < 0, then Wy and Vi are invariant with respect to the
dynamical system generated by problem (3), (4).

3. Existence and asymptotes of global solutions

Theorem 6 implies the following theorem on global solvability

Theorem 7. Suppose that (uio,u20,u30) € H' x H' x H', (u11,u12,u13) €
Ly (R™) x La (R™) x Lo (R"), (u1(t,-),uz(t,-)) € Ws, and conditions (5),(6)
hold. If (u1(to,.),ua(to,.), us(to,.)) € W1 at some moment of time ty € [0, Trax),
then Thar = +00 and (u(t,.), us(t,.),us(t,.)) satisfies a priori estimate

. 2d(p1 + p2 + p3 + 3)
2 2 +
p;j+1 [ u; (€, )7+ |uy(t, . <

, t €10, Thmax) -

3

’ (30)

Proof. By Theorem 5, (ui(t,.),ua(t,.),us(t,.)) € Wi, t € [0, Tipax), therefore
I (ui(t,.),ua(t,.),us(t,.)) >0, 0 <t < Tnax- Then from (23) it follows that for
0 <t < Tjqe the a priori estimate (30) is true, therefore T4, = 400, i.e. the
problem (3), (4) has a global solution. <«

Theorem 7 implies the following

Theorem 8. Suppose that (uio,u20,u30) € H' x H' x H', (u11,u12,u13) €
Ly (R™) x Lo (R™) x La(R"), and conditions (5), (6) hold. If 0 <
E(O) < d and 152 (ulo,UQo,U30) > 0 or Hul()H = HUQ()H =
llusol| = 0, where 61 < Jd2 are the roots of the equation d(§) =
E(0), then problem (3), (4) has a unique solution (uq (-),us(-),us () €
C ([0,00); H' x H' x HY) N C' ([0,00) ; Ly (R™) x Ly (R™) x Ly (R™)) and

(u1 (t,'),UQ (t,-),u;),(t,-)) € Ws,01 < < 89,0 <t < 4o00.

Proof. It_ is easy to see that I (ujg,u20,u30) > 0. Indeed, otherwise there
would exist § € [1,d2) such that I3 (ui0,u20,u30) = 0. Then J (uio, u20, u30) <
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d (9), which contradicts the inequality J (u19, u20,usp) < F (0) < d (), for §; <
d < do.

If (ulo,UQ(),’u,go) € H?> x H? x H2, (un,ulg,ulg) € H' x H' x Hl, then for
the solution of problem (3), (4) we have the following identity:

3
I (ug,uz,u3) = (pr+p2+ps+3) Y (py +1) |y (1)) -
7=1
3
dz 1) £ (t 0 s (£, )2 31
df p]+ (7)7“](7)>+5’u](7)’ ) ()

and the following estimation is valid

3

L) > (=00 P (@)

—/ P1+p2+p3+3

where 6; is the lowest root of equation d (§) = E (0). «

The following theorem on asymptotic behavior of energetic function for ¢ —
+00o can be proved using (31) and (32).

Theorem 9. Suppose that (uio,u20,u30) € H' x H' x H', (u11,u12,u13) €
Lo (Rn) X Lo (Rn) X Lo (Rn), 0 < E(O) < d, I(ulo,’LLzo,U30) > 0 or ||U10|| =
|lugo|l = |luso|| = 0, and conditions (5),(6) hold. Then there exist K > 0 and a
k>0 such that E (t) < Ke™* fort > 0.

4. Absence of global solutions and instability of standing waves

In this section, we investigate the nonexistence of global solution.

Theorem 10. Suppose that 61 = do = d3 > 0, (u10, u20, usp) € H*x H* x H® and
(u11, w12, u13) € H71 x H371 x H*71 where s > 5. Suppose also that conditions
(5),(6) and one of the following conditions hold:

a) E(0) <0;

b) 0 < E(0) < d, I (uig,u20,u30) <0 and 0 < v < A1 (p1 + p2 + p3), where
A\ = X and cg is the norm of the embedding operator Wi (R™) C La(R™). Then

€o

o < 00 and | Tim 370 |luj (¢, )|[* = +oo.

Proof. a) If E(0) < 0, then using the proof given in [16], we obtain the
assertion of the theorem.
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b) Let 0 < E(O) < d, I(ulo,UQo,U3o) <0and 0 < ’72 <M (p1 + p2 +p3 + 1),
where A\ = % Denoting

3
=> (p; + Dt ), t €0, Timax)
7j=1

we obtain

3
F(t) =2 (p; + 1) (u(t,.),0(t, ) , t € [0, Tinax) . < (33)
j=1

Assume that the assertion of Theorem 10 is not true, i.e Tinax = +00. Since
(ulo,UQ(),U30) € H° x H% x H® and (un,ulg,ulg) S Hs 1 x H51 x Hsil, where
s > 5, we have

(ul (ta l‘) y U2 (ta SL’) , U3 (ta :E)) €
€ C([0,00),H® x H* x H*) N C" ([0,00), H* ' x H™!' x H*1),
and obviously F(t) € C'[0,00).
Taking into account (3), by a simple calculation we obtain

d

iy *Q’WZ ).yt ) +
3

+2¢7 Y (0 + 1) [t )1 = g (6 )17 = (w8, ), (8 )]+
7j=1

+2(p1+p2+ps+ 3)6“/ g (8, 2) P g (8, 2) P2 g (8, 2) P2 dae =
Rn

3
ZPﬂrl ) s (t, )* + 2(8 —wtzpﬁl) s (£, )|1* =

7j=1
_267 Ié(ul(tv ')a ul(ta ')7 ul(ta )) (34)
Since E(0) < d, there exist 01, d2 such that §; < 1 < d2 and

In (33), we take § = d2. According to Theorem 5

Is, (u1(t,.), ui(t,.),ui(t,.)) <0, (35)
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therefore, from (34), (35) we get

3

S ED] =202 = 1) Yy (0 +1) [yt )]
j=1

On the other hand, applying Lemma 4, we have the following estimate:

3
u; (t, )| > r(o
S s I eI > )

From (36) and (37) it follows that

d
dt

where ¢(d2) = 2(02 — 1)r(02) (p1 + p2 + p2 + 3).
From (38) we find that for sufficiently large to

— [ F(1)] > ec(d),

E(t) > =22 >+,

where A (62) > 0. Thus
lim F(t) = +o0.

t—-+o00

On the other hand

(37)

(38)

(39)

Zpﬂrl ) [ (8, )7 = [l (8, )11%) —2’YZPJ+1 ) (it ), (4, ) +

7j=1

+2(p1 + p2 + p3 + 3) /Rn [ (t, ) [P g (8, ) P2 [y (8, ) [P dae =

3
=(p1+p2+ps+5)> (pj+1) as(t, ) +

Jj=1

3
+(p1+p2+p3+1) Z (pj + 1) lluy (¢, )1 =
7=1

3 3 t
=2y (pj + 1) (u;(t, .),uj(t,.)>+(p1+p2+p3+3)2/0 i (s, )| ds—
7=1

Jj=1

3
—2(p1 +p2 +p3 +3)E( 4+€ZPJ+1 ) [ (¢, ) + 0 (D),
7=1

(40)
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where 5
()= (p1+p2+ps+1—e)) (pj+1) |(t, >+
7=1
3

M (P4 s+ 1)) (0 +1) Juy(t, ) -
i=1

3

=27 (0 + 1) (uy(t,.), (¢, ) —2(p +p +p + 3)E(0). (41)
j=1

Using Holder’s and Young’s inequalities, we have

3 3
29> (pi+ 1) (u(t, ), it )| < (o1 +patps+1—2)> (pj+1) |i(t, ) +
>=1 7j=1

3
+ +1) |u;(t, )2 42
p1+p2+p3+1 522 Py ) lu;(t, )| (42)

From (40)- (42) it follows that for sufficiently large ¢ > ¢ the estimate
> (4+e)) (o +1) it )1 (43)
7=1
is true. It follows from (33) and (41) that
) 3 3
F(t)F(t)—(1+4) > (4+e) Y (o + 1) it ) Y (o + 1) Juy(t, ) —
Jj=1 7j=1

2

3
€ .
- (1 + 1) Zl(pj + 1) (uj(t,.), a;(t, )| , t>t.
j:
Using Holder’s inequality, we obtain
F@)F@#) —(1+ Z)F%) >0, t> 1. (44)

From (39) and (44) we obtain the following inequalities

17

<F—(1+i)(t)) <0, t>t,
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whence it follows that
c (14 ) F(t)
F_(1+4)t>:(45<0 >t 15
( ( ) F2+§(t) ’ =" ( )
In view of (39) and (45), there exists a t* € (0,¢1) such that tlingl F~1(t)=0,ie.
% *
lim F(t) = 4o0.
t—t*
This contradiction shows that Ty .x < +00 .
Remark 1. Under the assumptions of Theorem 10

3

i S [l (8P + g (&)1 =

J=1

Theorem 11. Suppose that conditions (5),(6) hold and

2>p1+p2+p3+3

3
+
E(0) > 0,1 (u10,u20, u30) <0, Z & P14 D2

=1

E(0).

Then the solution of the Cauchy problem (8), (9) blow up in finite time (see
[17]).
Remark 2. Under the conditions (5), (6), from Theorems 10 and 11 it follows
that the standing waves generated by problems (3), (4) are unstable.

5. Proofs of Lemmas

Proof of Lemma 1. Properties (i) follow directly from

3 p a1
T (AB1, ABp, ADy) = A2 2

J=1

(|V<1’1‘|2 + |‘1>j|2> -

_)\p1+p2+p3+2/ |<I>1 (x)|p1+1 . ’(132 (m) ’p2+1 |c1)3 (x)|p3+1 dar.

n

(ii) Elementary computation shows that

3
d
T (A1, AR, ADg) = A; (pj + 1) |®,]* -
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— (p1 + p2 + p3 + 3) A1 TPRFPIEZ / |1 ()P @y ()2 | @5 ()2 da.
(46)
Hence, it is evident that at the point
1
S0 (o + 1) 1195

A=
(P14 2+ 93 +3) [ [ @1 ()7 @2 (2) 27 |2 (2) P dee

the following equality holds

d
—J (AP, APy, \D v = 0.
d)\J( 1, A@2, A®3) [x=ps =0

(iii) From (46) it is clear that

d
a.]()\q)l,)\q)%)\q)g) > 0 for the 0 < X\ < A%,

and
d
aj()@l,)\@g,)@g) < 0 for the \* < A < 400,

i.e. the assertion (iii) is true.
(iv) From definitions of functionals J and I, it also follows from (46) that
A d

T (A1, APy, A\D3) = T (A1, ADoy, AD3) .
( 1 2 3) p1+p2+p3+3d)\ ( 1 2 3)

We define the set

N = {(¢1,¢2,93) : (¢1,02,03) € H' x H' x H'\ {(0,0,0)}, I (¢1,¢2,¢3) =0} .
Suppose (¢17 ¢27 ¢3) € N7 Then

3
J(p1, b2, 03) = (1 — J |1# >0, 47
(01,6200 = p1+p2+p3+s>; Lol (@7

i.e. J is bounded from below on the set N. Thus J is bounded from below on
the set N. Let us consider the variation problem

d= inf J o, <
(¢p1,02,03)EN (¢1, b2, ¢3)

Proof of Lemma 2. From (47) it follows that if (u1,u2,us) € N, then

3

p1+p2+p3+1 pj+1

J (u1,u2,u3) = e 71
prtprtps+3 2
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Let (uim, u2m, usm) be a minimizing sequence, i.e.

Lim J (Wi, Uam, Ugm) = inf J (u1,ug,us) = d.
m—00 (u1,u2,u3z)EN

Let’s denote u;y = Auj, j = 1,2,3 and denote by v, = (u;fm)um the Schwarz
symmetrization [18, 19, 20] of the function yjm = pmujm with respect to the
variable x, where p,, is chosen so that (vim, vom, v3m) € N

We denote by vjm = (u},,)u,, the Schwartz symmetrization [18, 19, 20] of the

function yjm = pmujm , where pi,, is chosen so that (vim,, vom,v3m) € N.
By virtue of (47)

3

(48)

J (V1m, Vom, v =(1-
(Wi, v2m, Vam) = { p1+p2+p3+3 Z

On the other hand

/Rn‘vvjm‘de:/Rn‘v( jm Hm‘ de =

= [ 1V P e < [ 9o (19)

From (48),(49) it follows that

J (V1m, Vom, V3m) < J((ulm)umv (u2m)#m7 (U3m)um)- (50)

On the other hand, by the choice of u,, we have
J ((ulm)um7 (U2m)uma (u3m)um) <J (Ulma U2m, u3m) . (51)
Consequently, Lim J (Vim, V2m, V3m) = d.
m—0o0

It follows that
[Vojmll <. (52)

Then we conclude that there exists (Vico¥200V300) € H' x H' x H' such that,
possibly taking m — +o0o, along a subsequence,
Vjm — Vjoo weakly in H' j =1,2,3. (53)
Then, by virtue of the compactness of the embedding H} ;. - C Ly, 1pytps+3(R™)
(see [21]), where p; + p2 + p3 + 3 < %, we obtain
Ujm — Vjoo 1N Lp, ypotps+3(R") as m — +oo, j =1,2,3. (54)

Let us prove that (v1c0, V200, V300) # (0,0,0).
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Assume the opposite, i.e. suppose that
('Uloo, V200005 USOO) = (07 07 0)

Then, by (25), (54) and (55), we obtain

/ |v1m () ]plﬂ |vom (gn)\p2+1 |U3m (QU)VD?’Jrl dr — 0 as m — +oo.
n

On the other hand, I (v, Vim, v1m) = 0, so from (54) it follows that

Vjm — 0in H" as m — 400, j =1,2,3.
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(55)

(56)

Then, using again the condition (vim,Vim,v1m) € N, Holder’s inequality and

embedding theorem H' C Ly, 4p,+ps+3(R™) (see [22]), we obtain

3
E p.] + 1 2 / p1+1 p2+1 p3+1
Yj = v - v v dx <
—oh + p2 +p3+3H jm| Rn| 1m| |vam| |U3m| <
et p2tl p31+1
= |’v1mHLP1+P2+P3+3(R") HU2mHLp1+p2+p3+3(R”) ‘|v3m”Lp1+p2+p3+3(Rﬂ) .

By the Gagliardo—Nirenberg type multiplicative inequality, we have

i+1 . 0 . —9
”Ujm||IZ/]p1+P2+P3+3(Rn) < |ijm|(p]+1) |Ujm|(p]—|r1)(1 ) (see [21]),

where 1 1
0=n(=— ,j=1,2,3.
(2 p1+p2+p3+3)]

From (52) and (57) we have

pi < ¢|Vujm| P =1,2,3.

H vjm ’ LP1 +po+p3+3 (Rn)

Consequently

3 5 (p1+p2-+p3+1)

p;+1 2 _ 3 : 2
> vmll* < & [ D lvgml
i=1

Spitptpsts

It follows that ;
S ojmll? = 1 > 0.

J=1

(57)
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Therefore our assumption isn’t correct. Thus d > 0. «
Proof of Lemma 3. Using the inequality (25), embedding H' C
Ly, +potps+3 (R") (see [22]) and Young’s inequality, we get

[l @ (@) s () d <
R™

pitpotp3Fl g
3 2
41
< OP1tp2tp3+3 Z pj + H%HQ
B S pitp2tps+3
3 i+1 2
If ijl plﬂiéw |u;||* < 7 (8), then we get
pj+1

2
K%

3
/ ot (@) g ()72 fu (2) P+ < 6
Rn

P +p2+p3+3

From the definition of Ig (u1, uz,us), we have I5 (u1, uz,ug) > 0. <«
Proof of Lemma 4. If (uj,ug,u3) € H' x H' x HY, |lug|| # 0, |luz|| # 0,
|lus|| # 0 and Iy (u1,us2,us) < 0, then we have the following inequality

3
pj+1 2
0yl <
—oh +p2+p3+

p1+pa+p3+1
3 3 Tl

< grtrrieets [ 37 +Pj11 +3\|Uj\|2 ’
P1TPp2TP3

j=1
whence the required inequality follows. «

Proof of Lemma 5. If |luil| # 0, [lug|| # O, [lus][ # 0, then from
Is (u1,u2,u3) = 0 we get

3

pjt+1 2/ p1+1 p2+1 p3+1
19 U uy (T Nug (z us (x dz <
Zp1+p2 s 2” il Rn\l()’ Jug ()27 Jus ()] <

j=1

p1+p2+p3+1+1
3 2
< grrterrsts [ §° +pj i 1 — &
P1Tp2 TP3

j=1
Thus

3 2
Py +1 H 2 1) p1+p2+p3+1
Z ugl|* > 7 (6) = Var TE——] . <
=1 p1+p2+p3+3 Cp1+p2+ps3
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Proof of Lemma 6. In view of Lemma 5, for each (uq,us,us) € N we have

3

pj+1 2
S BTyl 2 ).
S pr P23t

Therefore

3
3 i+ 1
P1+p2+p3+ _5>Z pj+

2 p1+p2+p3+3

T (u1, s uz) = ( g2 > a (8)r (5)

j=1

where 0 < § < PUP2ERsHS g (5) = PitPatpstd 5 T¢ follows that d (6) >
a(9)r(9). Suppose that (ui,u2,u3) € N is the minimizing element, i.e. d =
J (a1, ug, us)

For any ¢ > 0 we choose A = A (J) such that

3
pj+1 = 2_/ — p1tl |y P2+l )y p3tl
5;p1+p2+p3+3|ymﬂ\| . A | Ao P> | Nag|P2 T dz. (58)
Hence
2 PrFra Rl
833 4 (pj+ 1) ||u
A(0) =

(p1+p2 +p2 +3) [pu [ [P - o P ag |t da

S S
— JP1tp2tp3+l

In view of (58), (A (9) w1, A (0) a2, A (J) u3) € Ng, therefore, by definition of d (4),
we have the following inequality

d(8) < J(A(9)ur, A(6)ug, A(0)us) =

3
R D I ; Lijg |2 - 6" rmmem / G [P [P [ P d
Rn

j=1
(59)
On the other hand
(ﬂl,ﬁg,ﬂg) € N. (60)
Therefore
3
‘* p1+1l |~ p2+1 |- p3+1d _ pj+1 = 1|12 61
- ay [P g |as| x_zpl—f-pg—i—pg—l-?) la;[|*. (61)

J=1
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It follows from (59) and (61) that

3
4(8) < g7 (1- 2 B glP. (62)
B prtpatpst+3) = 2 ’

Since (@1, ug, u3) is the minimizing element, we have

d=J (uy,u,u3) =

3
pr+p2t+p2t1 ij-f-l a2
p1+p2+p3+ 34 2 T

=1
i.e.
f:pj;1|aj|2zpl+1?2+p3+3d. (63)
= p1+p2+p3+1
It follows from (62) and (63) that
() < LIP3 7 2 gty (64)

p1+p2+p3+1

Let (v1,02,03) € Ns be the minimizing element of the functional J (uy,u2,us),
ie.
J(l_}l;l_&a@i’)): _ 711’11711 J(U17U27U3):d(5)‘
(01,02,-,03) €N

The parameter 1 = 1 (0) is chosen so that

(w1, poa, pvs) € N, I (o1, pva, pvs) = 0. (65)
Then
I
w(9) Z?=1(pj +1) ||5j||2 p1+patr3+l
o= = _ / ; _
(pl + p2 +p3 + 3) fRn |U1‘p1+1 |U2|p2+1 |v3|p3+1 da

1 P1+p21+z73+1
=5 .

13
_ _ B 1\ pitpat+p3+1 pi+1._ o
ngowhmmﬂw>=<) SR
j=1

By the definition of d, we have

0 2

p1+p2+p3+3

1\ pitpat+p3+1 _ B
B <5) / o1 [P o P2t g P e =
Rn
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1\ 7752757 py 4+ po+ps + 1 o pj + 1
:(> Z] o112

66
d p1+p2+p3+3 (66)

On the other hand, from (65) and (66) we get

3
J (01,02,03) = (1 —
( )= p1+p2+p3+3 z:: H JH
Hence we have

3

Zp]+l

Jj=1

__ M +p2+p3+3
P14+ p2+p3+3—20

J (1_}17 1_}2) 1_}3) =

I U +p2+p3+3
p1+p2+p3+3—26

From (66) and (67) it follows that

d(s). (67)

1
1 +potp3+1 1
d< (=) p1+p2+P3+_ d(5)
1) pL+p2+p3s+3—20

i.e.
p1+p2+p3+3— 255‘p1+p21+p3+1
p1+p2+p3+1

Comparing (64) and (68), we obtain

d(8) > d. (68)

p1+p2+p3s+3— 255p1+p21+p3+T

d.
p1+p2+p3+1

d(8) =
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