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Abstract. Parseval equality is proved for Sturm-Liouville equation with block-triangular,
increasing at infinity operator potential.
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1. Introduction

In the study of the connection between spectral and oscillation properties of
non-self-adjoint differential operators with block-triangular operator coefficients
(see [1] – [2]) the question arises of the structure of the spectrum of such op-
erators. For scalar non- self- adjoint differential operators these questions have
been studied by M.A. Naimark [3], [4], V.E. Lyantse [5], V.A. Marchenko [6],
[7], F.S. Rofe-Beketov [8], J.T. Schwartz [9]. In the context of inverse scattering
problem, for a differential operator with a triangular matrix potential decreasing
at infinity and having a bounded first moment it was proved in [10, 11] that the
discrete spectrum of the operator consists of a finite number of negative eigen-
values and essential spectrum covers the positive half. For the operator with
block-triangular matrix potential that increases at infinity these questions have
been considered in [12] based on the construction of the Green’s function, the
resolvent and the proof of Parseval equality. Later, in [13]-[15] these results were
generalized to the equations with block-triangular operator coefficients increasing
at infinity. In those works, using an operator solution decreasing at infinity, a
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Green’s function and a resolvent have been constructed, and a series expansion
for a Green’s function has been obtained.

In this paper, we prove the Parseval equality for an equation with block-
triangular operator coefficients. It is a logical continuation of the papers [13]-[15]
and to some extent completes the research on this topic.

2. Preliminaries

Let Hk, k = 1, 2, ..., r be finite-dimensional or infinite-dimensional separa-
ble Hilbert spaces with inner product ( · , · ) and norm | · |, dimHk ≤ ∞. De-
note H = H1 ⊕H2 ⊕ ...⊕Hr. Element h ∈ H will be written in the form
h = col (h1, h2, ..., hr), where hk ∈ Hk, k = 1, r, Ik, I are identity operators
in Hk and H, respectively.

We denote by L2 (H, (0,∞)) the Hilbert space of vector-valued functions y (x)

with values in H, inner product 〈y, z〉 =
∞∫
0

(y (x) , z (x)) dx and the corresponding

norm ‖ · ‖.
Now let us consider the equation with block-triangular operator potential in

B (H)

l [y] = −y′′ + V (x) y = λy, 0 6 x <∞ , (1)

where

V (x) = v (x) · I + U (x) , U (x) =


U11 (x) U12 (x) ... U1r (x)

0 U22 (x) ... U2r (x)
... ... ... ...
0 0 ... Urr (x)

 , (2)

v (x) is a real scalar function with a monotone absolutely continuous derivative,
and 0 < v (x) → ∞ monotonically as x → ∞. Also, U (x) is a relatively small
perturbation, e.g. |U (x)| · v−1 (x) → 0 as x → ∞ or |U | v−1 ∈ L∞ (R+). The
diagonal blocks Ukk (x) , k = 1, r are assumed to be bounded self-adjoint op-
erators in Hk, Ukl : Hl → Hk.

In case where
v (x) > Cx2α, C > 0, α > 1, (3)

we suppose that the coefficients of the equation (1) satisfy the relations

∞∫
0

|U (t)| · v−
1
2 (t) dt <∞,
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∞∫
0

v′
2

(t) · v−
5
2 (t) dt <∞,

∞∫
0

v′′ (t) · v−
3
2 (t) dt <∞. (4)

In case where v (x) = x2α, 0 < α 6 1, we suppose that the coefficients of the
equation (1) satisfy the relation

∞∫
a

|U (t)| · t−αdt <∞, a > 0. (5)

In [16], for equation with block-triangular, increasing at infinity operator
potential, a fundamental system of solutions is constructed, one of which, Φ (x, λ),
is decreasing at infinity, while the other, Ψ (x, λ), is increasing.

Let the following boundary condition be given at x = 0 :

cosA · y′ (0)− sinA · y (0) = 0, (6)

where A is a block-triangular operator of the same structure as the potential
V (x) (2) of the differential equation (1), and Akk, k = 1, r are the bounded
self-adjoint operators in Hk, which satisfy the conditions

−π
2
Ik << Akk 6

π

2
Ik. (7)

Together with the problem (1), (6), we consider the separated system

lk [yk] = −yk ′′ + (w (x) Ik + Ukk (x)) yk = λyk, k = 1, r (8)

with the boundary conditions

cosAkk · yk ′ (0)− sinAkk · yk (0) = 0 . (9)

Let L′ denote the minimal differential operator generated by differential expres-
sion l [y] (1) and the boundary condition (6), and let Lk

′, k = 1, r denote the
minimal differential operator on L2 (Hk, (0,∞)) generated by differential expres-
sion lk [yk] (8) and the boundary conditions (9). Taking into account the condi-
tions on coefficients, as well as sufficient smallness of perturbations Ukk (x), and
conditions (7), we conclude that, for every symmetric operator Lk

′, k = 1, r,
there is a case of limit point at infinity. Hence their self-adjoint extensions Lk are
the closures of operators Lk

′, respectively. The operators Lk are semi-bounded
below, and their spectra are discrete.

Let L denote the extension of the operator L′,with a requirement that
L2 (H, (0,∞)) is the domain of operator L.
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Along with the equation (1), we consider the equation

l1 [y] = −y′′ + V ∗ (x) y = λy (10)

(V ∗ (x) is adjoint to the operator V (x)). If the space H is finite-dimensional,
then the equation (10) can be rewritten as

l̃ [ỹ] = −ỹ′′ + ỹV (x) = λỹ,

where ỹ = (ỹ1 ỹ2...ỹr) and the equation is called the left.
For operator-functions Y (x, λ) , Z (x, λ) ∈ B (H) let

W {Z∗, Y } = Z ∗ ′
(
x, λ̄

)
Y (x, λ)− Z ∗

(
x, λ̄

)
Y ′ (x, λ) .

If Y (x, λ) is an operator solution of the equation (1), and Z (x, λ) is an operator
solution of equation (10), then the Wronskian does not depend on x.

Now we denote by Y (x, λ) and Y1 (x, λ) the solutions of the equations (1) and
(10), respectively, satisfying the initial conditions

Y (0, λ) = cosA, Y ′ (0, λ) = sinA,

Y1 (0, λ) = (cosA)∗, Y1
′ (0, λ) = (sinA)∗, λ ∈ C.

As the operator function Y ∗1
(
x, λ̄

)
satisfies the equation

−Y ′′1∗
(
x, λ̄

)
+ Y ∗1

(
x, λ̄

)
· V (x) = λY ∗1

(
x, λ̄

)
,

the operator function Ỹ (x, λ) = : Y ∗1
(
x, λ̄

)
is a solution of the equation

−Ỹ ′′ (x, λ) + Ỹ (x, λ) · V (x) = λỸ (x, λ) (11)

and satisfies the initial conditions Ỹ (0, λ) = cosA, Ỹ ′ (0, λ) = sinA, λ ∈ C.
Operator solutions of equation (10) decreasing and increasing at infinity will

be denoted by Φ1 (x, λ), Ψ1 (x, λ), respectively, and the corresponding solutions
of the equation (11) will be denoted by Φ̃ (x, λ) and Ψ̃ (x, λ), respectively. For
the system of operator solutions Y (x, λ) , Φ̃ (x, λ) ∈ B (H) of the equations
(1) and (11), respectively, the corresponding Wronskian has the following form:

W
{

Φ̃, Y
}

= Φ̃′ (x, λ)Y (x, λ)− Φ̃ (x, λ)Y ′ (x, λ).

Denote

G (x, t, λ) =


Y (x, λ)

(
W
{

Φ̃, Y
})−1

Φ̃ (t, λ) 0 6 x 6 t,

−Φ (x, λ)
(
W
{
Ỹ ,Φ

})−1
Ỹ (t, λ) x > t .
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It is proved in [13] that the operator function G (x, t, λ) is the Green’s func-
tion of the differential operator L, i.e. it possesses all the classical properties of the
Green’s function. In particular, for a fixed t, the function G (x, t, λ) of the vari-
able x is an operator solution of equation (1) on each of the intervals [0, t) , (t,∞),
and satisfies the boundary condition (6), and for a fixed x, the function G (x, t, λ)
satisfies equation (11) in the variable t on each of the intervals [0, x) , (x,∞), and
it satisfies the boundary condition (cosA)∗ · y′ (0) − (sinA)∗ · y (0) = 0. We
consider the operator Rλ defined in L2 (H, (0,∞)) by the relation

(Rλf) (x) =

∞∫
0

G (x, t, λ)f (t) dt =

= −
x∫

0

Φ (x, λ)
(
W
{
Ỹ ,Φ

})−1
Ỹ (t, λ) f (t) dt+ (12)

+

∞∫
x

Y (x, λ)
(
W
{

Φ̃, Y
})−1

Φ̃ (t, λ) f (t) dt.

The operator Rλ is the resolvent of the operator L (see [14]).
Similar to [17] and [10], we define the normalizing polynomials by the formulas

Nj (t) =

= e−λjt Re sλj

{
eλ t
(
W
{
Ỹ ,Φ

})−1
W
{
Ỹ ,Ψ

}}
or

Nj (t) =

=

rj−1∑
k=0

rj−(k+1)∑
l=0

Re sλj

{(
W
{
Ỹ ,Φ

})−1
(λ− λj)l+k

}
1

l!

dl

dλl
W
{
Ỹ ,Ψ

}∣∣∣∣
λ=λj

 tk

k!
.

Note that

dk

dtk
(Nj (t))

∣∣∣∣
t=0

=

=

rj−(k+1)∑
l=0

Re sλj

{(
W
{
Ỹ ,Φ

})−1
(λ− λj)l+k

}
1

l!

dl

dλl
W
{
Ỹ ,Ψ

}∣∣∣∣
λ=λj .

(13)
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Lemma 1. (see [15]). If the operators A (λ) and C (λ) are the entire functions
and the operator B (λ) has a pole of order r at the point λ 0, then the residue of
the operator A (λ)B (λ)C (λ) at λ 0 can be calculated as follows:

Re sλ 0 {A (λ)B (λ)C (λ)} =

r−1∑
k=0

1

k!

dk

dλk
A (λ)

∣∣∣∣∣
λ=λ0

×

×
r−(k+1)∑
l=0

Re sλj

{
B (λ) (λ− λj)k+l

} 1

l!

dl

dλl
C (λ)

∣∣∣∣
λ=λ 0

.

Equality (13), by virtue of Lemma 1, can be rewritten as

dk

dtk
(Nj (t))

∣∣∣∣
t=0

= Re sλj

{(
W
{
Ỹ ,Φ

})−1
(λ− λj)kW

{
Ỹ ,Ψ

}}
.

It is proved in [15] proved that the Green function G (x, t, z) has the form

G (x, t, z) =
∞∑
j=1

rj−1∑
k=0

1

k!

dk

dλk

(
1

λ− z
Φ (x, λ)

)∣∣∣∣∣∣
λ=λj

×

×
rj−(k+1)∑

l=0

1

l!

dk+l

dtk+l
Nj (t)

∣∣∣∣
t=0

dl

dλl

(
Φ̃ (t, λ)

)∣∣∣∣
λ=λj

. (14)

3. Parseval equality

Let S (x) , T (x) be arbitrary operator functions of L2 (H, (0,∞)). Denote

E (S, λ) =

∞∫
0

S (t) Φ (t, λ) dt, (15)

Ẽ (S, λ) =

∞∫
0

Φ̃ (t, λ)S (t) dt.

Theorem 1. Suppose that the coefficients of the problem (1), (6) satisfy the
conditions (3), (4) for α > 1 or the condition (5) for 0 < α 6 1. Then, for ar-
bitrary operator functions S (x) , T (x) ∈ L2 (H, (0,∞)), the following expansion
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with respect to the solutions Φ (x, λ) and Φ̃ (x, λ) of the equations (1) and (11),
respectively, hold:

S (x) =

∞∑
j=1

rj−1∑
k=0

1

k!

dk

dλk
(E (S, λ))

∣∣∣∣
λ=λj

×

×
rj−(k+1)∑

l=0

1

l!

dk+l

dtk+l
Nj (t)

∣∣∣∣
t=0

dl

dλl

(
Φ̃ (x, λ)

)∣∣∣∣
λ=λj

, (16)

S (x) =
∞∑
j=1

rj−1∑
k=0

1

k!

dk

dλk
(Φ (x, λ))

∣∣∣∣
λ=λj

×

×
rj−(k+1)∑

l=0

1

l!

dk+l

dtk+l
Nj (t)

∣∣∣∣
t=0

dl

dλl

(
Ẽ (S, λ)

)∣∣∣∣
λ=λj

, (17)

and the Parseval equality

∞∫
0

S (x)T (x) dx =
∞∑
j=1

rj−1∑
k=0

1

k!

dk

dλk
E (S, λ)|λ=λj×

×
rj−(k+1)∑

l=0

1

l!

dk+l

dtk+l Nj (t)

∣∣∣∣
t=0

dl

dλl
Ẽ (T, λ)

∣∣∣∣
λ=λj

, (18)

is true.

Proof. Since
(
l̃ − zI

) [
Φ̃ (x, λ)

]
= (λ− z) Φ̃ (x, λ), we conclude that Φ̃ (x, λ) =

1
λ−z

(
l̃ − zI

) [
Φ̃ (x, λ)

]
for λ 6= z. It follows that

Ẽ (Rz [T ] , λ) =

∞∫
0

Φ̃ (x, λ)Rz [T ] (x) dx =

=
1

λ− z

∞∫
0

(
l̃ − zI

) [
Φ̃ (x, λ)

]
Rz [T ] (x) dx.
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For a finite function T (x) ∈ L2 (H, (0,∞)), by integrating by parts twice, we get

Ẽ (Rz [T ] , λ) =
1

λ− z

∞∫
0

Φ̃ (x, λ) (l − zI)Rz [T ] (x) dx =

=
1

λ− z

∞∫
0

Φ̃ (x, λ)T (x) dx =
1

λ− z
Ẽ (T, λ) . (19)

By (12), (14) and (15), for an arbitrary operator T (x) ∈ L2 (H, (0,∞)) we have

(Rz [T ]) (x) =
∞∑
j=1

rj−1∑
k=0

1

k!

dk

dλk

(
1

λ− z
Φ (x, λ)

)∣∣∣∣
λ=λj

×

×
rj−(k+1)∑

l=0

1

l!

dk+l

dtk+l Nj (t)

∣∣∣∣
t=0

dl

dλl
Ẽ (T, λ)

∣∣∣∣
λ=λj

.

Denoting inner sum over l by ak (λj), we rewrite the formula in the form

(Rz [T ]) (x) =
∞∑
j=1

rj−1∑
k=0

k∑
s=0

1

s!

1

(λj − z)k−s+1

ds

dλs
(Φ (x, λ))

∣∣∣∣
λ=λj

ak (λj) .

We change the summation limits by k and s:

(Rz [T ]) (x) =
∞∑
j=1

rj−1∑
s=0

1

s!

ds

dλs
(Φ (x, λ))

∣∣∣∣
λ=λj

rj−1∑
k=s

1

(λj − z)k−s+1
ak (λj).

In what follows, values of the function Φ (x, λ) and its derivatives in λ will be
considered at the point λ = λj , and the values of the function Nj (t) and its
derivatives will be considered at t = 0. Therefore, in order to simplify the nota-
tion, we will omit specifying the point where the function is considered. Denoting
k − s = u, we obtain

(Rz [T ]) (x) =
∞∑
j=1

rj−1∑
s=0

1

s!

ds

dλs
(Φ (x, λ))

rj−(s+1)∑
u=0

1

(λj − z)u+1×
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×
rj−(s+u+1)∑

l=0

1

l!

ds+u+l

dts+u+l Nj (t)
dl

dλl
Ẽ (T, λ) .

We change the summation limits by u and l:

(Rz [T ]) (x) =

∞∑
j=1

rj−1∑
k=0

1

k!

dk

dλk
(Φ (x, λ))×

×
rj−(k+1)∑

l=0

1

l!

rj−(k+l+1)∑
u=0

1

(λj − z)u+1

dk+u+l

dtk+u+l Nj (t)

 dl

dλl
Ẽ (T, λ).

Making the change of u+ l = p, we obtain

(Rz [T ]) (x) =
∞∑
j=1

rj−1∑
k=0

1

k!

dk

dλk
(Φ (x, λ))×

×
rj−(k+1)∑

l=0

1

l!

rj−(k+1)∑
p=l

1

(λj − z)p−l+1

dk+p

dtk+p
Nj (t)

 dl

dλl
Ẽ (T, λ).

We change the summation limits by l and p:

(Rz [T ]) (x) =

∞∑
j=1

rj−1∑
k=0

1

k!

dk

dλk
(Φ (x, λ))×

×
rj−(k+1)∑
p=0

dk+p

dtk+p
Nj (t)

(
p∑
l=0

1

l!

1

(λj − z)p−l+1

dl

dλl
Ẽ (T, λ)

)
.

Here

(Rz [T ]) (x) =
∞∑
j=1

rj−1∑
k=0

1

k!

dk

dλk
(Φ (x, λ))×
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×
rj−(k+1)∑
p=0

1

p!

dk+p

dtk+p
Nj (t)

dp

dλp

(
1

λ− z
Ẽ (T, λ)

)
.

In view of the formula (19), we have

(Rz [T ]) (x) =
∞∑
j=1

rj−1∑
k=0

1

k!

dk

dλk
(Φ (x, λ))

∣∣∣∣
λ=λj

×

×
rj−(k+1)∑

l=0

1

l!

dk+l

dtk+l
Nj (t)

∣∣∣∣
t=0

dl

dλl

(
Ẽ (Rz [T ] , λ)

)∣∣∣∣
λ=λj

.

It follows that

∞∫
0

S (x) (Rz [T ]) (x) dx =
∞∑
j=1

rj−1∑
k=0

1

k!

dk

dλk
(E (S, λ))

∣∣∣∣
λ=λj

×

×
rj−(k+1)∑

l=0

1

l!

dk+l

dtk+l
Nj (t)

∣∣∣∣
t=0

dl

dλl

(
Ẽ (Rz [T ] , λ)

)∣∣∣∣
λ=λj

.

Thus, for any finite function T (x) ∈ L2 (H, (0,∞)), we have

∞∫
0

S (x) (Rz [T ]) (x) dx =

∞∫
0

 ∞∑
j=1

rj−1∑
k=0

1

k!

dk

dλk
(E (S, λ))

∣∣∣∣
λ=λj

×

×
rj−(k+1)∑

l=0

1

l!

dk+l

dtk+l
Nj (t)

∣∣∣∣
t=0

dl

dλl

(
Φ̃ (x, λ)

)∣∣∣∣
λ=λj

 (Rz [T ]) (x) dx

Since the range of resolvent is dense in L2 (H, (0,∞)), we obtain the formula
(16). The formula (17) is proved similarly. By multiplying both sides of (16) by
T (x) and then integrating, we obtain the Parseval equality (18). J
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4. Conclusion

This work actually completes a series of investigations for non-self-adjoint
differential operator with block-triangular operator potential increasing at infin-
ity. We construct a fundamental system of solutions, one of which is decreasing
at infinity, and the other is increasing. Green’s function and resolution of the
operator are constructed. Structure of the spectrum is established. The series
expansion of the Green’s function is obtained. Parseval equality is proved for a
differential operator with block-triangular operator potential.
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