On Approximation of Hexagonal Fourier Series

A. Guven

Abstract. Let the function f belong to the Hölder class $H^{\alpha}(\overline{\Omega})$, $0 < \alpha \leq 1$, where Ω is the spectral set of the hexagonal lattice in the Euclidean plane. Also, let $p = (p_n)$ and $q = (q_n)$ be two sequences of non-negative real numbers such that $p_n < q_n$ and $q_n \to \infty$ as $n \to \infty$. The order of approximation of f by deferred Cesàro means $D_n(p,q;f)$ of its hexagonal Fourier series is estimated in the uniform and Hölder norms.

Key Words and Phrases: deferred Cesàro mean, hexagonal Fourier series, Hölder class.

2010 Mathematics Subject Classifications: 41A25, 41A63, 42A10

1. Introduction

In the study of trigonometric approximation of 2π -periodic functions on the real line, the partial sums and various means (Cesàro means, Abel-Poisson means, de la Vallèe-Poussin means, etc.) of Fourier series are most useful tools. Especially, there are many results on the order of approximation of continuous 2π -periodic functions in the uniform norm by partial sums of trigonometric (or equivalently exponential) Fourier series and means of these sums. These results can be found in the monographs [3, 11, 13] and in the survey [7]. Also, there are several theorems about approximation of continuous 2π -periodic functions by partial sums, Cesàro means and their generalizations in the Hölder norm (see, for example, [9] and [2]).

The order of approximation of functions defined on cubes of the *d*-dimensional Euclidean space \mathbb{R}^d was studied by several authors. The common point of these studies is the assumption that the functions are 2π -periodic with respect to each of their variables (see, for example [11, Sections 5.3 and 6.3] and [13, Vol. II, Chapter XVII]). But, in the case of non-tensor product domains of \mathbb{R}^d , other types of periodicity are needed to study approximation problems. The most

http://www.azjm.org

© 2010 AZJM All rights reserved.

notable periodicity is the periodicity defined by lattices. The discrete Fourier analysis on lattices was developed in [8].

A lattice is the discrete subgroup $A\mathbb{Z}^d = \{Ak : k \in \mathbb{Z}^d\}$ of the Euclidean space \mathbb{R}^d , where A is a non-singular $d \times d$ matrix—the generator matrix of the lattice. The lattice $A^{-tr}\mathbb{Z}^d$, where A^{-tr} is the transpose of the inverse matrix A^{-1} , is called the dual lattice of $A\mathbb{Z}^d$. A bounded open set $\Omega \subset \mathbb{R}^d$ is said to tile \mathbb{R}^d with the lattice $A\mathbb{Z}^d$ if

$$\sum_{\alpha \in A\mathbb{Z}^d} \chi_{\Omega} \left(x + \alpha \right) = 1,$$

for almost all $x \in \mathbb{R}^d$. In this case the set Ω is called a spectral set for the lattice $A\mathbb{Z}^d$, written as $\Omega + A\mathbb{Z}^d = \mathbb{R}^d$. The spectral set Ω is not unique. It is specified that it contains 0 as an interior point and tiles \mathbb{R}^d with the lattice $A\mathbb{Z}^d$ without overlapping and without gap, i.e.

$$\sum_{k \in \mathbb{Z}^d} \chi_{\Omega} \left(x + Ak \right) = 1,$$

for all $x \in \mathbb{R}^d$, and $\Omega + Ak$ and $\Omega + Aj$ are disjoint if $k \neq j$. For example, we can take $\Omega = \left[-\frac{1}{2}, \frac{1}{2}\right)^d$ for the standard lattice \mathbb{Z}^d (the lattice generated by the identity matrix).

Let Ω be the spectral set of the lattice $A\mathbb{Z}^{d}$. $L^{2}(\Omega)$ becomes a Hilbert space with respect to the inner product

$$\langle f,g \rangle_{\Omega} := \frac{1}{|\Omega|} \int_{\Omega} f(x) \, \overline{g(x)} dx$$

where $|\Omega|$ is the *d*-dimensional Lebesgue measure of Ω . A theorem of Fuglede states that the set $\{e^{2\pi i \langle \alpha, x \rangle} : \alpha \in A^{-tr} \mathbb{Z}^d\}$ is an orthonormal basis of the Hilbert space $L^2(\Omega)$, where $\langle \alpha, x \rangle$ is the usual Euclidean inner product of α and x ([4]). This theorem suggests that, by using the exponentials $e^{2\pi i \langle \alpha, x \rangle}$ ($\alpha \in A^{-tr} \mathbb{Z}^d$) one can study Fourier series and approximation on the spectral set of the lattice $A\mathbb{Z}^d$.

A function f is said to be periodic with respect to the lattice $A\mathbb{Z}^d$ if

$$f\left(x + Ak\right) = f\left(x\right)$$

for all $k \in \mathbb{Z}^d$.

If we consider the standard lattice \mathbb{Z}^d and its spectral set $\left[-\frac{1}{2}, \frac{1}{2}\right)^d$, it is clear that Fourier series with respect to this lattice coincide with usual multiple Fourier series of functions of d variables.

2. Hexagonal Fourier Series

In the Euclidean plane \mathbb{R}^2 , besides the standard lattice \mathbb{Z}^2 and the rectangular domain $\left[-\frac{1}{2}, \frac{1}{2}\right)^2$, the simplest lattice is the hexagonal lattice and the simplest spectral set is the regular hexagon. Also, it is well known that the hexagonal lattice offers the densest packing of \mathbb{R}^2 with unit balls. Thus, the hexagonal lattice and hexagonal Fourier series have great importance in Fourier analysis.

The generator matrix and the spectral set of the hexagonal lattice $H\mathbb{Z}^2$ are given by

$$H = \left[\begin{array}{cc} \sqrt{3} & 0\\ -1 & 2 \end{array} \right]$$

and

$$\Omega_H = \left\{ (x_1, x_2) \in \mathbb{R}^2 : -1 \le x_2, \frac{\sqrt{3}}{2} x_1 \pm \frac{1}{2} x_2 < 1 \right\}.$$

It is more convenient to use the homogeneous coordinates (t_1, t_2, t_3) that satisfy $t_1 + t_2 + t_3 = 0$. If we define

$$t_1 := -\frac{x_2}{2} + \frac{\sqrt{3}x_1}{2}, \ t_2 := x_2, \ t_3 := -\frac{x_2}{2} - \frac{\sqrt{3}x_1}{2}, \tag{1}$$

the hexagon Ω_H becomes

$$\Omega = \left\{ (t_1, t_2, t_3) \in \mathbb{R}^3 : -1 \le t_1, t_2, -t_3 < 1, \ t_1 + t_2 + t_3 = 0 \right\},\$$

which is the intersection of the plane $t_1 + t_2 + t_3 = 0$ with the cube $[-1, 1]^3$.

We use bold letters **t** for homogeneous coordinates and we denote by \mathbb{R}^3_H the plane $t_1 + t_2 + t_3 = 0$, that is

$$\mathbb{R}^3_H = \left\{ \mathbf{t} = (t_1, t_2, t_3) \in \mathbb{R}^3 : t_1 + t_2 + t_3 = 0 \right\}.$$

Also we use the notation \mathbb{Z}_{H}^{3} for the set of points in \mathbb{R}_{H}^{3} with integer components, that is $\mathbb{Z}_{H}^{3} = \mathbb{Z}^{3} \cap \mathbb{R}_{H}^{3}$.

In the homogeneous coordinates, the inner product on $L^{2}(\Omega)$ becomes

$$\left\langle f,g\right\rangle _{H}=\frac{1}{\left|\Omega\right|}{\displaystyle\int\limits_{\Omega}}f\left(\mathbf{t}\right)\overline{g\left(\mathbf{t}\right)}d\mathbf{t},$$

where $|\Omega|$ denotes the area of Ω , and the orthonormal basis of $L^{2}(\Omega)$ becomes

$$\left\{\phi_{\mathbf{j}}\left(\mathbf{t}\right) = e^{\frac{2\pi i}{3}\langle \mathbf{j}, \mathbf{t} \rangle} : \mathbf{j} \in \mathbb{Z}_{H}^{3}, \ \mathbf{t} \in \mathbb{R}_{H}^{3}\right\}.$$

Also, a function f is periodic with respect to the hexagonal lattice (or H-periodic) if and only if $f(\mathbf{t}) = f(\mathbf{t} + \mathbf{s})$ whenever $\mathbf{s} \equiv \mathbf{0} \pmod{3}$, where $\mathbf{t} \equiv \mathbf{s} \pmod{3}$ defined as

$$t_1 - s_1 \equiv t_2 - s_2 \equiv t_3 - s_3 \pmod{3}$$

It is clear that the functions $\phi_{\mathbf{j}}(\mathbf{t})$ are *H*-periodic, and if the function *f* is *H*-periodic, then

$$\int_{\Omega} f(\mathbf{t} + \mathbf{s}) \, d\mathbf{t} = \int_{\Omega} f(\mathbf{t}) \, d\mathbf{t}. \ \left(\mathbf{s} \in \mathbb{R}^3_H\right)$$

For every natural number n, we define a subset of \mathbb{Z}^3_H by

$$\mathbb{H}_n := \left\{ \mathbf{j} = (j_1, j_2, j_3) \in \mathbb{Z}_H^3 : -n \le j_1, j_2, j_3 \le n \right\}.$$

Note that, \mathbb{H}_n consists of all points with integer components inside the hexagon $n\overline{\Omega}$. Members of the set

$$\mathcal{H}_n := \operatorname{span} \left\{ \phi_{\mathbf{j}} : \mathbf{j} \in \mathbb{H}_n \right\}, \ (n \in \mathbb{N})$$

are called hexagonal trigonometric polynomials. It is clear that the dimension of \mathcal{H}_n is $\#\mathbb{H}_n = 3n^2 + 3n + 1$.

The hexagonal Fourier series of an H-periodic function $f \in L^{1}(\Omega)$ is

$$f\left(\mathbf{t}\right) \sim \sum_{\mathbf{j} \in \mathbb{Z}_{H}^{3}} \widehat{f}_{\mathbf{j}} \phi_{\mathbf{j}}\left(\mathbf{t}\right), \qquad (2)$$

where

$$\widehat{f}_{\mathbf{j}} = rac{1}{|\Omega|} \int_{\Omega} f(\mathbf{t}) \, e^{-rac{2\pi i}{3} \langle \mathbf{j}, \mathbf{t}
angle} d\mathbf{t}, \ \left(\mathbf{j} \in \mathbb{Z}_{H}^{3}
ight).$$

The *n*th partial sum of the series (2) is defined by

$$S_{n}(f)(\mathbf{t}) := \sum_{\mathbf{j} \in \mathbb{H}_{n}} \widehat{f}_{\mathbf{j}} \phi_{\mathbf{j}}(\mathbf{t}) . \ (n \in \mathbb{N})$$

It is clear that

$$S_{n}(f)(\mathbf{t}) = \frac{1}{|\Omega|} \int_{\Omega} f(\mathbf{t} - \mathbf{s}) D_{n}(\mathbf{s}) d\mathbf{s}, \qquad (3)$$

where D_n is the Dirichlet kernel, defined by

$$D_{n}(\mathbf{t}) := \sum_{\mathbf{j}\in\mathbb{H}_{n}} \phi_{\mathbf{j}}(\mathbf{t}).$$

It is known that the Dirichlet kernel can be expressed as

$$D_{n}(\mathbf{t}) = \Theta_{n}(\mathbf{t}) - \Theta_{n-1}(\mathbf{t}), \quad (n \in \mathbb{N}), \qquad (4)$$

where

$$\Theta_n(\mathbf{t}) := \frac{\sin\frac{(n+1)(t_1-t_2)\pi}{3}\sin\frac{(n+1)(t_2-t_3)\pi}{3}\sin\frac{(n+1)(t_3-t_1)\pi}{3}}{\sin\frac{(t_1-t_2)\pi}{3}\sin\frac{(t_2-t_3)\pi}{3}\sin\frac{(t_3-t_1)\pi}{3}}$$
(5)

for $\mathbf{t} = (t_1, t_2, t_3) \in \mathbb{R}^3_H$ ([10, 8]).

We refer to [8] and [12] for more detailed information about Fourier analysis on lattices and hexagonal Fourier series.

We denote by $C_H(\overline{\Omega})$ the Banach space of H-periodic continuous functions on \mathbb{R}^3_H , equipped with the uniform norm

$$\left\|f\right\|_{C_{H}\left(\overline{\Omega}
ight)}=\sup_{\mathbf{t}\in\overline{\Omega}}\left|f\left(\mathbf{t}
ight)
ight|,$$

and by $H^{\alpha}(\overline{\Omega})$ $(0 < \alpha \leq 1)$ the Hölder class, that is the class of functions $f \in C_H(\overline{\Omega})$ for which

$$\sup_{\mathbf{t}\neq\mathbf{s}}\frac{\left|f\left(\mathbf{t}\right)-f\left(\mathbf{s}\right)\right|}{\left\|\mathbf{t}-\mathbf{s}\right\|^{\alpha}}<\infty$$

holds, where

$$\|\mathbf{t}\| := \max\{|t_1|, |t_2|, |t_3|\}, \ (\mathbf{t} = (t_1, t_2, t_3) \in \mathbb{R}^3_H).$$

 $H^{\alpha}(\overline{\Omega})$ (0 < $\alpha \leq 1$) becomes a Banach space with respect to the norm

$$\|f\|_{H^{\alpha}(\overline{\Omega})} := \|f\|_{C_{H}(\overline{\Omega})} + \sup_{\mathbf{t}\neq\mathbf{s}} \frac{|f(\mathbf{t}) - f(\mathbf{s})|}{\|\mathbf{t} - \mathbf{s}\|^{\alpha}}.$$

Y. Xu [12] proved that the Abel-Poisson means and the sequence of Cesàro (C, 1) means of the Fourier series of a function $f \in C_H(\overline{\Omega})$ converge to this function uniformly on $\overline{\Omega}$. Later, the order of approximation by Abel-Poisson and (C, 1) means of Fourier series of functions belonging to the class $H^{\alpha}(\overline{\Omega})$, $(0 < \alpha \leq 1)$ was investigated in uniform norm ([6]) and in the Hölder norm ([5]).

In this work, we will estimate the order of approximation by deferred Cesàro means of Fourier series of functions belonging to the Hölder class $H^{\alpha}(\overline{\Omega})$ in uniform and Hölder norms, and generalize some results of [6] and [5].

3. Main results

Let $p = (p_n)$ and $q = (q_n)$ be two sequences of non-negative integers such that

$$p_n < q_n \text{ and } \lim_{n \to \infty} q_n = \infty.$$
 (6)

The deferred Cesàro means of the series (2) are defined by

$$D_{n}(p,q;f)(\mathbf{t}) := \frac{1}{q_{n}-p_{n}} \sum_{k=p_{n}+1}^{q_{n}} S_{k}(f)(\mathbf{t}).$$

It is known that the $D_n(p,q)$ summability method is regular under conditions (6) and generalizes the Cesàro (C, 1) method if and only if $p_n \ll q_n - p_n$ ([1]).

By considering (3) and (4) we obtain

$$D_{n}(p,q;f)(\mathbf{t}) = \frac{1}{|\Omega|} \int_{\Omega} f(\mathbf{t} - \mathbf{s}) \left(\frac{1}{q_{n} - p_{n}} \sum_{k=p_{n}+1}^{q_{n}} D_{k}(\mathbf{s}) \right) d\mathbf{s}$$

$$= \frac{1}{q_{n} - p_{n}} \frac{1}{|\Omega|} \int_{\Omega} f(\mathbf{t} - \mathbf{s}) \left(\sum_{k=p_{n}+1}^{q_{n}} \Theta_{k}(\mathbf{s}) - \Theta_{k-1}(\mathbf{s}) \right) d\mathbf{s}$$

$$= \frac{1}{q_{n} - p_{n}} \frac{1}{|\Omega|} \int_{\Omega} f(\mathbf{t} - \mathbf{s}) \left(\Theta_{q_{n}}(\mathbf{s}) - \Theta_{p_{n}}(\mathbf{s}) \right) d\mathbf{s}.$$

Hence we have

$$f(\mathbf{t}) - D_n(p,q;f)(\mathbf{t}) =$$

$$= \frac{1}{(q_n - p_n)} \frac{1}{|\Omega|} \int_{\Omega} (f(\mathbf{t}) - f(\mathbf{t} - \mathbf{s})) \left(\Theta_{q_n}(\mathbf{s}) - \Theta_{p_n}(\mathbf{s})\right) d\mathbf{s}, \tag{7}$$

for each $f \in L^{1}(\Omega)$ and $\mathbf{t} \in \mathbb{R}^{3}_{H}$. If we take $q_{n} = n$ and $p_{n} = 0$ for $n = 1, 2, ..., D_{n}(p, q; f)$ becomes the (C, 1) means $S_{n}^{(1)}(f)$.

Hereafter, we shall write $A \ll B$ for the quantities A and B, if there exists a constant K > 0 such that $A \leq KB$ holds.

The rate of approximation by (C, 1) means of hexagonal Fourier series was estimated as follows:

Theorem A ([6]). Let $f \in H^{\alpha}(\overline{\Omega})$, $0 < \alpha \leq 1$. Then

$$\left\| f - S_n^{(1)}(f) \right\|_{C_H(\overline{\Omega})} \ll \begin{cases} \frac{1}{n^{\alpha}}, & \alpha < 1, \\ \frac{(\log n)^2}{n}, & \alpha = 1, \end{cases}$$
(8)

holds.

In this work we generalize Theorem A. Our main theorem is the following. **Theorem 1.** For each $f \in H^{\alpha}(\overline{\Omega})$, $0 < \alpha \leq 1$, the estimate

$$\left\|f - D_n\left(p, q; f\right)\right\|_{C_H\left(\overline{\Omega}\right)} \ll \left(\frac{q_n}{q_n - p_n}\right)^2 \begin{cases} \frac{1}{(q_n - p_n)^{\alpha}}, & \alpha < 1, \\ \frac{(\log(2(q_n - p_n)))^2}{q_n - p_n}, & \alpha = 1, \end{cases}$$
(9)

holds.

Proof. Since $f \in H^{\alpha}(\overline{\Omega})$, by (7) we have

$$\left|f\left(\mathbf{t}\right) - D_{n}\left(p,q;f\right)\left(\mathbf{t}\right)\right| \ll \frac{1}{\left(q_{n} - p_{n}\right)} \frac{1}{\left|\Omega\right|} \int_{\Omega} \left\|\mathbf{s}\right\|^{\alpha} \left|\Theta_{q_{n}}\left(\mathbf{s}\right) - \Theta_{p_{n}}\left(\mathbf{s}\right)\right| d\mathbf{s}.$$

Since the integrated function is symmetric with respect to its variables, it is sufficient to estimate the integral

$$I_{n} := \int_{\Delta} \|\mathbf{t}\|^{\alpha} |\Theta_{q_{n}}(\mathbf{t}) - \Theta_{p_{n}}(\mathbf{t})| d\mathbf{t},$$

where

$$\Delta := \left\{ \mathbf{t} = (t_1, t_2, t_3) \in \mathbb{R}^3_H : 0 \le t_1, t_2, -t_3 \le 1 \right\} \\ = \left\{ (t_1, t_2) : t_1 \ge 0, \ t_2 \ge 0, \ t_1 + t_2 \le 1 \right\},$$

which is one of the six equilateral triangles in $\overline{\Omega}$. By (5) and some simple trigonometric identities

$$\Theta_{q_n}(\mathbf{t}) - \Theta_{p_n}(\mathbf{t}) =$$

$$= 2\cos\left(\left(\frac{q_n + p_n}{2} + 1\right) \frac{(t_3 - t_1)\pi}{3}\right) \sin\left(\left(\frac{q_n - p_n}{2}\right) \frac{(t_3 - t_1)\pi}{3}\right) \times \frac{\sin\left((q_n + 1) \frac{(t_1 - t_2)\pi}{3}\right) \sin\left((q_n + 1) \frac{(t_2 - t_3)\pi}{3}\right)}{\sin\left(\frac{(t_1 - t_2)\pi}{3} \sin\left(\frac{(t_2 - t_3)\pi}{3} \sin\left(\frac{(t_3 - t_1)\pi}{3}\right)\right)} + \frac{2\cos\left(\left(\frac{q_n + p_n}{2} + 1\right) \frac{(t_2 - t_3)\pi}{3}\right) \sin\left(\left(\frac{q_n - p_n}{2}\right) \frac{(t_2 - t_3)\pi}{3}\right) \times \frac{\sin\left((q_n + 1) \frac{(t_1 - t_2)\pi}{3}\right) \sin\left((p_n + 1) \frac{(t_3 - t_1)\pi}{3}\right)}{\sin\left(\frac{(t_1 - t_2)\pi}{3} \sin\left(\frac{(t_2 - t_3)\pi}{3} \sin\left(\frac{(t_3 - t_1)\pi}{3}\right)\right)} + \frac{\sin\left(\frac{(t_1 - t_2)\pi}{3} \sin\left(\frac{(t_2 - t_3)\pi}{3} \sin\left(\frac{(t_3 - t_1)\pi}{3}\right)\right)}{\sin\left(\frac{(t_1 - t_2)\pi}{3} \sin\left(\frac{(t_2 - t_3)\pi}{3} \sin\left(\frac{(t_3 - t_1)\pi}{3}\right)\right)} + \frac{\sin\left(\frac{(t_1 - t_2)\pi}{3} \sin\left(\frac{(t_2 - t_3)\pi}{3} \sin\left(\frac{(t_3 - t_1)\pi}{3}\right)\right)}{\sin\left(\frac{(t_1 - t_2)\pi}{3} \sin\left(\frac{(t_2 - t_3)\pi}{3} \sin\left(\frac{(t_3 - t_1)\pi}{3}\right)\right)} + \frac{\sin\left(\frac{(t_1 - t_2)\pi}{3} \sin\left(\frac{(t_2 - t_3)\pi}{3} \sin\left(\frac{(t_3 - t_1)\pi}{3}\right)\right)}\right)}{\sin\left(\frac{(t_1 - t_2)\pi}{3} \sin\left(\frac{(t_2 - t_3)\pi}{3} \sin\left(\frac{(t_3 - t_1)\pi}{3}\right)\right)}\right)}$$

On Approximation of Hexagonal Fourier Series

$$+2\cos\left(\left(\frac{q_n+p_n}{2}+1\right)\frac{(t_1-t_2)\pi}{3}\right)\sin\left(\left(\frac{q_n-p_n}{2}\right)\frac{(t_1-t_2)\pi}{3}\right)\times \\ \times \frac{\sin\left((p_n+1)\frac{(t_2-t_3)\pi}{3}\right)\sin\left((p_n+1)\frac{(t_3-t_1)\pi}{3}\right)}{\sin\frac{(t_1-t_2)\pi}{3}\sin\frac{(t_2-t_3)\pi}{3}\sin\frac{(t_3-t_1)\pi}{3}}.$$

If we use the change of variables

$$s_1 := \frac{t_1 - t_3}{3}, \ s_2 := \frac{t_2 - t_3}{3},$$
 (10)

we obtain

$$I_{n} \leq 3 \int_{\widetilde{\Delta}} (s_{1} + s_{2})^{\alpha} \left(|L_{1}(s_{1}, s_{2})| + |L_{2}(s_{1}, s_{2})| + |L_{3}(s_{1}, s_{2})| \right) ds_{1} ds_{2},$$

where

$$\widetilde{\Delta} := \{ (s_1, s_2) : 0 \le s_1 \le 2s_2, 0 \le s_2 \le 2s_1, s_1 + s_2 \le 1 \},\$$

and

$$L_{1}(s_{1}, s_{2}) := \frac{\sin\left(\left(\frac{q_{n}-p_{n}}{2}\right)(s_{1}\pi)\right)\sin\left(\left(q_{n}+1\right)(s_{1}-s_{2})\pi\right)\sin\left(\left(q_{n}+1\right)s_{2}\pi\right)}{\sin\left(\left(s_{1}-s_{2}\right)\pi\right)\sin\left(s_{2}\pi\right)\sin\left(s_{1}\pi\right)}$$

$$L_{2}(s_{1}, s_{2}) := \frac{\sin\left(\left(\frac{q_{n}-p_{n}}{2}\right)(s_{2}\pi)\right)\sin\left(\left(q_{n}+1\right)(s_{1}-s_{2})\pi\right)\sin\left(\left(p_{n}+1\right)(s_{1}\pi)\right)}{\sin\left(\left(s_{1}-s_{2}\right)\pi\right)\sin\left(s_{2}\pi\right)\sin\left(s_{1}\pi\right)}$$

$$L_{3}(s_{1}, s_{2}) := \frac{\sin\left(\left(\frac{q_{n}-p_{n}}{2}\right)(s_{1}-s_{2})\pi\right)\sin\left(\left(p_{n}+1\right)(s_{2}\pi)\right)\sin\left(\left(p_{n}+1\right)(s_{1}\pi)\right)}{\sin\left(\left(s_{1}-s_{2}\right)\pi\right)\sin\left(s_{2}\pi\right)\sin\left(s_{1}\pi\right)}.$$

Since the integrated function is symmetric with respect to s_1 and s_2 , we have

$$I_{n} \leq 6 \int_{\Delta^{*}} (s_{1} + s_{2})^{\alpha} (|L_{1}(s_{1}, s_{2})| + |L_{2}(s_{1}, s_{2})| + |L_{3}(s_{1}, s_{2})|) ds_{1} ds_{2},$$

where

$$\Delta^* := \left\{ (s_1, s_2) \in \widetilde{\Delta} : s_1 \le s_2 \right\},\,$$

i. e. the half of $\widetilde{\Delta}.$ The change of variables

$$s_1 := \frac{u_1 - u_2}{2}, \ s_2 := \frac{u_1 + u_2}{2}$$
 (11)

transforms the triangle Δ^* onto triangle

$$\Gamma := \left\{ (u_1, u_2) : 0 \le u_2 \le \frac{u_1}{3}, 0 \le u_1 \le 1 \right\},\$$

and hence

$$I_{n} \leq 3 \int_{\Gamma} u_{1}^{\alpha} \left(|L_{1}^{*}(u_{1}, u_{2})| + |L_{2}^{*}(u_{1}, u_{2})| + |L_{3}^{*}(u_{1}, u_{2})| \right) du_{1} du_{2},$$

where

$$L_{1}^{*}(u_{1}, u_{2}) := \frac{\sin\left(\left(\frac{q_{n}-p_{n}}{2}\right)\frac{(u_{1}-u_{2})\pi}{2}\right)\sin\left((q_{n}+1)u_{2}\pi\right)\sin\left(\left(q_{n}+1\right)\frac{(u_{1}+u_{2})\pi}{2}\right)}{\sin\left(u_{2}\pi\right)\sin\left(\frac{(u_{1}+u_{2})\pi}{2}\right)\sin\left(\frac{(u_{1}-u_{2})\pi}{2}\right)}$$

$$L_{2}^{*}(u_{1}, u_{2}) := \frac{\sin\left(\left(\frac{q_{n}-p_{n}}{2}\right)\frac{(u_{1}+u_{2})\pi}{2}\right)\sin\left((q_{n}+1)u_{2}\pi\right)\sin\left(\left(p_{n}+1\right)\frac{(u_{1}-u_{2})\pi}{2}\right)}{\sin\left(u_{2}\pi\right)\sin\left(\frac{(u_{1}+u_{2})\pi}{2}\right)\sin\left(\frac{(u_{1}-u_{2})\pi}{2}\right)}$$

$$L_{3}^{*}(u_{1}, u_{2}) := \frac{\sin\left(\left(\frac{q_{n}-p_{n}}{2}\right)u_{2}\pi\right)\sin\left((p_{n}+1)\frac{(u_{1}+u_{2})\pi}{2}\right)\sin\left((p_{n}+1)\frac{(u_{1}-u_{2})\pi}{2}\right)}{\sin\left(u_{2}\pi\right)\sin\left(\frac{(u_{1}+u_{2})\pi}{2}\right)\sin\left(\frac{(u_{1}-u_{2})\pi}{2}\right)}.$$

If we divide the triangle Γ into three parts as

$$\Gamma_{1} := \left\{ (u_{1}, u_{2}) \in \Gamma : u_{1} \leq \frac{1}{2(q_{n} - p_{n})} \right\},$$

$$\Gamma_{2} := \left\{ (u_{1}, u_{2}) \in \Gamma : u_{1} \geq \frac{1}{2(q_{n} - p_{n})}, u_{2} \leq \frac{1}{6(q_{n} - p_{n})} \right\},$$

$$\Gamma_{3} := \left\{ (u_{1}, u_{2}) \in \Gamma : u_{1} \geq \frac{1}{2(q_{n} - p_{n})}, u_{2} \geq \frac{1}{6(q_{n} - p_{n})} \right\},$$

we get

$$I_n \ll I_n^{(1)} + I_n^{(2)} + I_n^{(3)},$$

where

$$I_{n}^{(j)} = \int_{\Gamma_{j}} u_{1}^{\alpha} \left(|L_{1}^{*}(u_{1}, u_{2})| + |L_{2}^{*}(u_{1}, u_{2})| + |L_{3}^{*}(u_{1}, u_{2})| \right) du_{1} du_{2}, \quad (j = 1, 2, 3).$$

We shall need the inequalities

$$\left|\frac{\sin nt}{\sin t}\right| \le n, \ (n \in \mathbb{N}), \tag{12}$$

and

$$\sin t \ge \frac{2}{\pi} t \ \left(0 \le t \le \frac{\pi}{2} \right) \tag{13}$$

to estimate integrals $I_n^{(1)}, I_n^{(2)}$ and $I_n^{(3)}$. For $(u_1, u_2) \in \Gamma$,

$$\sin\left(\frac{u_1+u_2}{2}\pi\right) \ge \frac{\sqrt{3}}{2}\sin\frac{u_1\pi}{2},$$

and by (13) we obtain

$$\frac{1}{\sin\left(\frac{u_1+u_2}{2}\pi\right)} \le \frac{2}{\sqrt{3}} \frac{1}{u_1} \ (u_1 \ne 0) \,. \tag{14}$$

By the inequality (12) we get

$$|L_1^*(u_1, u_2)| \ll (q_n - p_n) (q_n + 1)^2, |L_2^*(u_1, u_2)| \ll (q_n - p_n) (q_n + 1) (p_n + 1),$$

and

$$|L_3^*(u_1, u_2)| \ll (q_n - p_n) (p_n + 1)^2$$

for $(u_1, u_2) \in \Gamma_1$. Hence

$$\int_{\Gamma_1} u_1^{\alpha} \left| L_j^* \left(u_1, u_2 \right) \right| du_1 du_2 \left(q_n - p_n \right) \left(q_n + 1 \right)^2 \int_{\Gamma_1} u_1^{\alpha} du_1 du_2 =$$

$$= \left(q_n - p_n \right) \left(q_n + 1 \right)^2 \int_{0}^{\overline{6(q_n - p_n)}} \int_{3u_2}^{\overline{1(q_n - p_n)}} u_1^{\alpha} du_1 du_2 \le \frac{\left(q_n + 1 \right)^2}{\left(q_n - p_n \right)^{1+\alpha}},$$

for j = 1, 2, 3, which implies

$$I_n^{(1)} \ll \frac{q_n^2}{(q_n - p_n)^{1+\alpha}}.$$
 (15)

Since $u_1 - u_2 \ge \frac{2u_1}{3}$, by (13) one can easily see that

$$\frac{1}{\sin\left(\frac{(u_1-u_2)\pi}{2}\right)} \le \frac{3}{2u_1}, \ (u_1, u_2) \in \Gamma_2 \cup \Gamma_3.$$
(16)

Thus, by (12), (14) and (16) we obtain

$$|L_1^*(u_1, u_2)| \ll (q_n + 1) \frac{1}{u_1^2},$$

$$|L_2^*(u_1, u_2)| \ll (q_n + 1) \frac{1}{u_1^2},$$

and

62

$$|L_3^*(u_1, u_2)| \ll (q_n - p_n) \frac{1}{u_1^2}$$

for $(u_1, u_2) \in \Gamma_2$. For j = 1, 2,

$$\begin{split} \int_{\Gamma_2} u_1^{\alpha} \left| L_j^* \left(u_1, u_2 \right) \right| du_1 du_2 &\ll (q_n + 1) \int_{0}^{\frac{1}{6(q_n - p_n)}} \int_{\frac{1}{2(q_n - p_n)}}^{1} u_1^{\alpha - 2} du_1 du_2 \\ &= \frac{q_n + 1}{6(q_n - p_n)} \left\{ \begin{array}{c} \frac{1}{1 - \alpha} \left(\frac{1}{(2(q_n - p_n))^{\alpha - 1}} - 1 \right), & \alpha < 1, \\ \log\left(2(q_n - p_n) \right), & \alpha = 1. \end{array} \right. \end{split}$$

Hence

$$\int_{\Gamma_2} u_1^{\alpha} \left| L_j^*(u_1, u_2) \right| du_1 du_2 \ll \begin{cases} \frac{q_n}{(q_n - p_n)^{\alpha}}, & \alpha < 1, \\ \frac{q_n \log 2(q_n - p_n)}{q_n - p_n}, & \alpha = 1, \end{cases}$$

for j = 1, 2. Similarly

$$\int_{\Gamma_2} u_1^{\alpha} |L_3^*(u_1, u_2)| \, du_1 du_2 \ll (q_n - p_n) \int_{0}^{\frac{1}{6(q_n - p_n)}} \int_{1}^{1} u_1^{\alpha - 2} du_1 du_2 \\ \ll \begin{cases} \frac{1}{2(q_n - p_n)^{\alpha - 1}}, & \alpha < 1, \\ \log\left(2(q_n - p_n)\right), & \alpha = 1. \end{cases}$$

Thus we get

$$I_n^{(2)} \ll \begin{cases} \frac{q_n}{(q_n - p_n)^{\alpha}}, & \alpha < 1, \\ \frac{q_n \log(2(q_n - p_n))}{q_n - p_n}, & \alpha = 1. \end{cases}$$
(17)

By (13), (14) and (16) we obtain

$$\left|L_{j}^{*}(u_{1}, u_{2})\right| \ll \frac{1}{u_{1}^{2}u_{2}} \ (j = 1, 2, 3)$$

for $(u_1, u_2) \in \Gamma_3$. Thus

$$\int_{\Gamma_3} u_1^{\alpha} \left| L_j^* \left(u_1, u_2 \right) \right| du_1 du_2 \ll \int_{\frac{1}{6(q_n - p_n)}}^{\frac{1}{3}} \int_{3u_2}^{1} u_1^{\alpha - 2} \frac{1}{u_2} du_1 du_2$$

On Approximation of Hexagonal Fourier Series

$$\ll \begin{cases} \frac{1}{(q_n - p_n)^{\alpha - 1}}, & \alpha < 1, \\ \left(\log \left(2 \left(q_n - p_n \right) \right) \right)^2, & \alpha = 1. \end{cases}$$

This last estimate, (15) and (17) yield

$$I_n \ll \begin{cases} \frac{q_n^2}{(q_n - p_n)^{\alpha + 1}}, & \alpha < 1, \\ \frac{q_n^2}{(q_n - p_n)^2} \left(\log \left(2 \left(q_n - p_n \right) \right) \right)^2, & \alpha = 1, \end{cases}$$

and the proof is completed. \blacktriangleleft

The following approximation theorem in Hölder norm was obtained in ([5]) : **Theorem B.** Let $0 \leq \beta < \alpha \leq 1$. Then for each $f \in H^{\alpha}(\overline{\Omega})$ the estimate

$$\left\| f - S_n^{(1)}(f) \right\|_{H^{\beta}(\overline{\Omega})} \ll \begin{cases} \frac{1}{n^{\alpha-\beta}}, & \alpha < 1, \\ \frac{(\log n)^2}{n^{1-\beta}}, & \alpha = 1. \end{cases}$$
(18)

holds.

We generalize Theorem B as follows:

Theorem 2. Let $0 \leq \beta < \alpha \leq 1$ and $f \in H^{\alpha}(\overline{\Omega})$. Then

$$\|f - D_n(p,q;f)\|_{H^{\beta}(\overline{\Omega})} \ll \left(\frac{q_n}{q_n - p_n}\right)^2 \begin{cases} \frac{1}{(q_n - p_n)^{\alpha - \beta}}, & \alpha < 1, \\ \frac{(\log(2(q_n - p_n)))^2}{(q_n - p_n)^{1 - \beta}}, & \alpha = 1. \end{cases}$$
(19)

Proof. Set $e_n(\mathbf{t}) := f(\mathbf{t}) - D_n(p,q;f)(\mathbf{t})$. Hence

$$\|f - D_n(p,q;f)\|_{H^{\beta}(\overline{\Omega})} = \|e_n\|_{C_H(\overline{\Omega})} + \sup_{\mathbf{t}\neq\mathbf{s}} \frac{|e_n(\mathbf{t}) - e_n(\mathbf{s})|}{\|\mathbf{t} - \mathbf{s}\|^{\beta}}.$$

By (7) we have

$$e_{n}(\mathbf{t}) - e_{n}(\mathbf{s}) = \frac{1}{(q_{n} - p_{n})} \frac{1}{|\Omega|} \int_{\Omega} \varphi_{\mathbf{t},\mathbf{s}}(\mathbf{u}) \left(\Theta_{q_{n}}(\mathbf{u}) - \Theta_{p_{n}}(\mathbf{u})\right) d\mathbf{u},$$

where

$$\varphi_{\mathbf{t},\mathbf{s}}(\mathbf{u}) := f(\mathbf{t}) - f(\mathbf{t} - \mathbf{u}) - f(\mathbf{s}) + f(\mathbf{s} - \mathbf{u}).$$

Thus

$$|e_n(\mathbf{t}) - e_n(\mathbf{s})| \ll \frac{1}{q_n - p_n} J_n,$$

where

$$J_{n} := \int_{\Omega} |\varphi_{\mathbf{t},\mathbf{s}}(\mathbf{u})| \left| \left(\Theta_{q_{n}}(\mathbf{u}) - \Theta_{p_{n}}(\mathbf{u})\right) \right| d\mathbf{u}.$$

Since $f \in H^{\alpha}\left(\overline{\Omega}\right)$, we have

$$\left| arphi_{\mathbf{t},\mathbf{s}} \left(\mathbf{u}
ight)
ight| \ll \left\| \mathbf{u}
ight\|^{lpha},$$

and by Theorem 1,

$$\begin{split} J_n^{1-\frac{\beta}{\alpha}} &= \left(\int_{\Omega} |\varphi_{\mathbf{t},\mathbf{s}}\left(\mathbf{u}\right)| \left| \left(\Theta_{q_n}\left(\mathbf{u}\right) - \Theta_{p_n}\left(\mathbf{u}\right)\right) \right| d\mathbf{u} \right)^{1-\frac{\beta}{\alpha}} \\ &\ll \left(\int_{\Omega} \|\mathbf{u}\|^{\alpha} \left| \left(\Theta_{q_n}\left(\mathbf{u}\right) - \Theta_{p_n}\left(\mathbf{u}\right)\right) \right| d\mathbf{u} \right)^{1-\frac{\beta}{\alpha}} \\ &\ll \left\{ \left(\frac{q_n^2}{(q_n - p_n)^{\alpha+1}} \right)^{1-\frac{\beta}{\alpha}}, \quad \alpha < 1, \\ \left[\frac{q_n^2}{(q_n - p_n)^2} \left(\log\left(2\left(q_n - p_n\right)\right) \right)^2 \right]^{1-\beta}, \quad \alpha = 1. \end{split}$$

We also have

$$\left| \varphi_{\mathbf{t},\mathbf{s}} \left(\mathbf{u} \right) \right| \ll \left\| \mathbf{t} - \mathbf{s} \right\|^{\alpha},$$

and hence

$$\begin{split} J_{n}^{\frac{\beta}{\alpha}} &\ll \left(\int_{\Omega} \|\mathbf{t} - \mathbf{s}\|^{\alpha} \left| (\Theta_{q_{n}} \left(\mathbf{u} \right) - \Theta_{p_{n}} \left(\mathbf{u} \right)) \right| d\mathbf{u} \right)^{\frac{\beta}{\alpha}} \\ &= \|\mathbf{t} - \mathbf{s}\|^{\beta} \left(\int_{\Omega} \left| (\Theta_{q_{n}} \left(\mathbf{u} \right) - \Theta_{p_{n}} \left(\mathbf{u} \right)) \right| d\mathbf{u} \right)^{\frac{\beta}{\alpha}}. \end{split}$$

As in proof of Theorem 1, it is sufficient to estimate the integral

$$\int_{\Delta}\left|\left(\Theta_{q_{n}}\left(\mathbf{t}\right)-\Theta_{p_{n}}\left(\mathbf{t}\right)\right)\right|d\mathbf{t}.$$

By the transforms (10) and (11),

$$\begin{split} &\int_{\Delta} \left| \left(\Theta_{q_n} \left(\mathbf{t} \right) - \Theta_{p_n} \left(\mathbf{t} \right) \right) \right| d\mathbf{t} \ll \\ &\ll \int_{\Gamma} \left(\left| L_1^* \left(u_1, u_2 \right) \right| + \left| L_2^* \left(u_1, u_2 \right) \right| + \left| L_3^* \left(u_1, u_2 \right) \right| \right) du_1 du_2. \end{split}$$

For j = 1, 2, 3,

$$\int_{\Gamma_1} \left| L_j^* \left(u_1, u_2 \right) \right| du_1 du_2 \ll (q_n - p_n) \left(q_n + 1 \right)^2 \int_{0}^{\frac{1}{6(q_n - p_n)} \frac{1}{2(q_n - p_n)}} \int_{3u_2}^{\frac{1}{2(q_n - p_n)} \frac{1}{2(q_n - p_n)}} du_1 du_2 \ll \frac{q_n^2}{q_n - p_n}.$$

For j = 1, 2,

$$\int_{\Gamma_2} \left| L_j^*(u_1, u_2) \right| du_1 du_2 \ll (q_n + 1) \int_{0}^{\frac{1}{6(q_n - p_n)}} \int_{\frac{1}{2(q_n - p_n)}}^{1} \frac{1}{u_1^2} du_1 du_2 \ll q_n,$$

and

$$\int_{\Gamma_2} |L_3^*(u_1, u_2)| \, du_1 du_2 \ll (q_n - p_n) \int_{0}^{\frac{1}{6(q_n - p_n)}} \int_{0}^{1} \frac{1}{\frac{1}{2(q_n - p_n)}} \frac{1}{u_1^2} du_1 du_2 \ll q_n - p_n.$$

Also,

$$\int_{\Gamma_3} \left| L_j^* \left(u_1, u_2 \right) \right| du_1 du_2 \ll \int_{\frac{1}{6(q_n - p_n)}}^{\frac{1}{3}} \int_{3u_2}^{1} \frac{1}{u_1^2 u_2} du_1 du_2 \ll q_n - p_n$$

for j = 1, 2, 3. By combining these inequalities we obtain

$$\int_{\Delta} \left| \left(\Theta_{q_n} \left(\mathbf{t} \right) - \Theta_{p_n} \left(\mathbf{t} \right) \right) \right| d\mathbf{t} \ll \frac{q_n^2}{q_n - p_n}.$$

Hence

$$J_n^{\frac{\beta}{\alpha}} \ll \|\mathbf{t} - \mathbf{s}\|^{\beta} \left(\frac{q_n^2}{q_n - p_n}\right)^{\frac{\beta}{\alpha}}.$$

Let $\alpha < 1$.

$$J_n = J_n^{\frac{\beta}{\alpha}} J_n^{1-\frac{\beta}{\alpha}} \ll \|\mathbf{t} - \mathbf{s}\|^{\beta} \left(\frac{q_n^2}{q_n - p_n}\right)^{\frac{\beta}{\alpha}} \left(\frac{q_n^2}{(q_n - p_n)^{\alpha+1}}\right)^{1-\frac{\beta}{\alpha}}$$
$$= \|\mathbf{t} - \mathbf{s}\|^{\beta} \frac{q_n^2}{(q_n - p_n)^{\alpha-\beta+1}}.$$

This implies

$$|e_n(\mathbf{t}) - e_n(\mathbf{s})| \ll \left(\frac{q_n}{q_n - p_n}\right)^2 \frac{1}{(q_n - p_n)^{\alpha - \beta}} \|\mathbf{t} - \mathbf{s}\|^{\beta}$$

and hence

$$\frac{|e_n(\mathbf{t}) - e_n(\mathbf{s})|}{\|\mathbf{t} - \mathbf{s}\|^{\beta}} \ll \left(\frac{q_n}{q_n - p_n}\right)^2 \frac{1}{(q_n - p_n)^{\alpha - \beta}}$$

for every $\mathbf{t},\mathbf{s}\in\mathbb{R}^3_H$ with $\mathbf{t}\neq\mathbf{s}.$ This and Theorem 1 give

$$\|f - D_n(p,q;f)\|_{H^{\beta}(\overline{\Omega})} \ll \left(\frac{q_n}{q_n - p_n}\right)^2 \frac{1}{(q_n - p_n)^{\alpha - \beta}}.$$

Now let $\alpha = 1$. In this case,

$$J_{n} = J_{n}^{\frac{\beta}{\alpha}} J_{n}^{1-\frac{\beta}{\alpha}} \ll \|\mathbf{t} - \mathbf{s}\|^{\beta} \left(\frac{q_{n}^{2}}{q_{n} - p_{n}}\right)^{\beta} \left[\frac{q_{n}^{2}}{(q_{n} - p_{n})^{2}} \left(\log\left(2\left(q_{n} - p_{n}\right)\right)\right)^{2}\right]^{1-\beta}$$
$$= \|\mathbf{t} - \mathbf{s}\|^{\beta} \frac{q_{n}^{2}}{(q_{n} - p_{n})^{2-\beta}} \left(\log\left(2\left(q_{n} - p_{n}\right)\right)\right)^{2(1-\beta)},$$

which implies

$$\frac{|e_n(\mathbf{t}) - e_n(\mathbf{s})|}{\|\mathbf{t} - \mathbf{s}\|^{\beta}} \ll \left(\frac{q_n}{q_n - p_n}\right)^2 \frac{\left(\log\left(2\left(q_n - p_n\right)\right)\right)^{2(1-\beta)}}{\left(q_n - p_n\right)^{1-\beta}}, \ \mathbf{t} \neq \mathbf{s}.$$

By this inequality and by Theorem 1 we obtain

$$\|f - D_n(p,q;f)\|_{H^{\beta}(\overline{\Omega})} \ll \left(\frac{q_n}{q_n - p_n}\right)^2 \frac{\left(\log\left(2(q_n - p_n)\right)\right)^{2(1-\beta)}}{(q_n - p_n)^{1-\beta}},$$

which finishes the proof. \blacktriangleleft

Remark. If we take $p_n = n - 1$ and $q_n = n + k - 1$, where $k \in \mathbb{N}$ satisfies $n \ll k$, then the summability method $D_n(p,q)$ generalizes the (C,1) method and $D_n(p,q;f)$ becomes

$$D_{n}(p,q;f) = S_{n,k}^{(1)}(f) := \left(1 + \frac{n}{k}\right) S_{n+k-1}^{(1)}(f) - \frac{n}{k} S_{n-1}^{(1)}(f),$$

which is called the delayed arithmetic mean ([13, Vol. I, p.80]). These means give the same approximation order as Cesàro (C, 1) means.

Acknowledgment

This research was supported by Balikesir University. Grant Number: 2015/44.

References

- [1] R.P. Agnew, On deferred Cesàro means, Ann. of Math., **33**, 1932, 413-241.
- [2] J. Bustamante, M.A. Jimenez, Trends in Hölder approximation, In: Approximation, optimization and mathematical economics, M. Lassonde (ed), Springer, 2001.
- [3] R.A. DeVore, G.G. Lorentz, Constructive approximation, Springer-Verlag, 1993.
- [4] B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Functional Analysis, 16, 1974, 101-121.
- [5] A. Guven, Approximation by means of hexagonal Fourier series in Hölder norms, J. Classical Anal., 1, 2012, 43-52.
- [6] A. Guven, Approximation by (C, 1) and Abel-Poisson means of Fourier series on hexagonal domains, Math. Inequal. Appl., 16, 2013, 175-191.
- [7] A.S.B. Holland, A survey of degree of approximation of continuous functions, SIAM Rev., 23, 1981, 344-379.
- [8] H. Li, J. Sun and Y. Xu, Discrete Fourier analysis, cubature and interpolation on a hexagon and a triangle, SIAM J. Numer. Anal., 46, 2008, 1653-1681.
- S. Prössdorf, Zur konvergenz der Fourierreihen hölderstetiger funktionen, Math. Nachr., 69, 1975, 7-14.
- [10] J. Sun, Multivariate Fourier series over a class of non tensor-product partition domains, J. Comput. Math., 21, 2003, 53-62.
- [11] A.F. Timan, Theory of approximation of functions of a real variable, Pergamon Press, 1963.
- [12] Y. Xu, Fourier series and approximation on hexagonal and triangular domains, Constr. Approx., 31, 2010, 115-138.
- [13] A. Zygmund, Trigonometric series, Cambridge Univ. Press, 1959.

Ali Guven Department of Mathematics, Faculty of Arts and Sciences, Balikesir University, 10145, Balikesir, Turkey E-mail: guvennali@gmail.com

Received 07 August 2015 Accepted 19 May 2017