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On Approximation of Hexagonal Fourier Series

A. Guven

Abstract. Let the function f belong to the Hölder class Hα
(
Ω
)
, 0 < α ≤ 1, where Ω

is the spectral set of the hexagonal lattice in the Euclidean plane. Also, let p = (pn) and
q = (qn) be two sequences of non-negative real numbers such that pn < qn and qn →∞
as n→∞. The order of approximation of f by deferred Cesàro means Dn (p, q; f) of its
hexagonal Fourier series is estimated in the uniform and Hölder norms.
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1. Introduction

In the study of trigonometric approximation of 2π−periodic functions on the
real line, the partial sums and various means (Cesàro means, Abel-Poisson means,
de la Vallèe-Poussin means, etc.) of Fourier series are most useful tools. Es-
pecially, there are many results on the order of approximation of continuous
2π−periodic functions in the uniform norm by partial sums of trigonometric (or
equivalently exponential) Fourier series and means of these sums. These results
can be found in the monographs [3, 11, 13] and in the survey [7]. Also, there
are several theorems about approximation of continuous 2π−periodic functions
by partial sums, Cesàro means and their generalizations in the Hölder norm (see,
for example, [9] and [2]).

The order of approximation of functions defined on cubes of the d-dimensional
Euclidean space Rd was studied by several authors. The common point of these
studies is the assumption that the functions are 2π−periodic with respect to
each of their variables (see, for example [11, Sections 5.3 and 6.3] and [13, Vol.
II, Chapter XVII]). But, in the case of non-tensor product domains of Rd, other
types of periodicity are needed to study approximation problems. The most
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notable periodicity is the periodicity defined by lattices. The discrete Fourier
analysis on lattices was developed in [8].

A lattice is the discrete subgroup AZd =
{
Ak : k ∈ Zd

}
of the Euclidean space

Rd, where A is a non-singular d× d matrix−the generator matrix of the lattice.
The lattice A−trZd, where A−tr is the transpose of the inverse matrix A−1, is
called the dual lattice of AZd. A bounded open set Ω ⊂ Rd is said to tile Rd with
the lattice AZd if ∑

α∈AZd
χΩ (x+ α) = 1,

for almost all x ∈ Rd. In this case the set Ω is called a spectral set for the lattice
AZd, written as Ω + AZd = Rd. The spectral set Ω is not unique. It is specified
that it contains 0 as an interior point and tiles Rd with the lattice AZd without
overlapping and without gap, i.e.∑

k∈Zd
χΩ (x+Ak) = 1,

for all x ∈ Rd, and Ω + Ak and Ω + Aj are disjoint if k 6= j. For example, we

can take Ω =
[
−1

2 ,
1
2

)d
for the standard lattice Zd (the lattice generated by the

identity matrix).

Let Ω be the spectral set of the lattice AZd. L2 (Ω) becomes a Hilbert space
with respect to the inner product

〈f, g〉Ω :=
1

|Ω|

∫
Ω

f (x) g (x)dx,

where |Ω| is the d−dimensional Lebesgue measure of Ω. A theorem of Fuglede
states that the set

{
e2πi〈α,x〉 : α ∈ A−trZd

}
is an orthonormal basis of the Hilbert

space L2 (Ω), where 〈α, x〉 is the usual Euclidean inner product of α and x ([4]) .
This theorem suggests that, by using the exponentials e2πi〈α,x〉 (α ∈ A−trZd) one
can study Fourier series and approximation on the spectral set of the lattice AZd.

A function f is said to be periodic with respect to the lattice AZd if

f (x+Ak) = f (x)

for all k ∈ Zd.
If we consider the standard lattice Zd and its spectral set

[
−1

2 ,
1
2

)d
, it is clear

that Fourier series with respect to this lattice coincide with usual multiple Fourier
series of functions of d variables.
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2. Hexagonal Fourier Series

In the Euclidean plane R2, besides the standard lattice Z2 and the rectangular
domain

[
−1

2 ,
1
2

)2
, the simplest lattice is the hexagonal lattice and the simplest

spectral set is the regular hexagon. Also, it is well known that the hexagonal
lattice offers the densest packing of R2 with unit balls. Thus, the hexagonal
lattice and hexagonal Fourier series have great importance in Fourier analysis.

The generator matrix and the spectral set of the hexagonal lattice HZ2 are
given by

H =

[ √
3 0
−1 2

]
and

ΩH =

{
(x1, x2) ∈ R2 : −1 ≤ x2,

√
3

2
x1 ±

1

2
x2 < 1

}
.

It is more convenient to use the homogeneous coordinates (t1, t2, t3) that satisfy
t1 + t2 + t3 = 0. If we define

t1 := −x2

2
+

√
3x1

2
, t2 := x2, t3 := −x2

2
−
√

3x1

2
, (1)

the hexagon ΩH becomes

Ω =
{

(t1, t2, t3) ∈ R3 : −1 ≤ t1, t2,−t3 < 1, t1 + t2 + t3 = 0
}
,

which is the intersection of the plane t1 + t2 + t3 = 0 with the cube [−1, 1]3 .

We use bold letters t for homogeneous coordinates and we denote by R3
H the

plane t1 + t2 + t3 = 0, that is

R3
H =

{
t = (t1, t2, t3) ∈ R3 : t1 + t2 + t3 = 0

}
.

Also we use the notation Z3
H for the set of points in R3

H with integer components,
that is Z3

H = Z3 ∩ R3
H .

In the homogeneous coordinates, the inner product on L2 (Ω) becomes

〈f, g〉H =
1

|Ω|

∫
Ω

f (t) g (t)dt,

where |Ω| denotes the area of Ω, and the orthonormal basis of L2 (Ω) becomes{
φj (t) = e

2πi
3
〈j,t〉 : j ∈ Z3

H , t ∈ R3
H

}
.
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Also, a function f is periodic with respect to the hexagonal lattice (orH−periodic)
if and only if f (t) = f (t + s) whenever s ≡ 0 (mod3) , where t ≡ s (mod3) de-
fined as

t1 − s1 ≡ t2 − s2 ≡ t3 − s3 (mod3) .

It is clear that the functions φj (t) are H−periodic, and if the function f is
H−periodic, then ∫

Ω

f (t + s) dt =

∫
Ω

f (t) dt.
(
s ∈ R3

H

)
For every natural number n, we define a subset of Z3

H by

Hn :=
{
j = (j1, j2, j3) ∈ Z3

H : −n ≤ j1, j2, j3 ≤ n
}
.

Note that, Hn consists of all points with integer components inside the hexagon
nΩ. Members of the set

Hn := span {φj : j ∈ Hn} , (n ∈ N)

are called hexagonal trigonometric polynomials. It is clear that the dimension of
Hn is #Hn = 3n2 + 3n+ 1.

The hexagonal Fourier series of an H−periodic function f ∈ L1 (Ω) is

f (t) ∼
∑
j∈Z3

H

f̂jφj (t) , (2)

where

f̂j =
1

|Ω|

∫
Ω

f (t) e−
2πi
3
〈j,t〉dt,

(
j ∈ Z3

H

)
.

The nth partial sum of the series (2) is defined by

Sn (f) (t) :=
∑
j∈Hn

f̂jφj (t) . (n ∈ N)

It is clear that

Sn (f) (t) =
1

|Ω|

∫
Ω

f (t− s)Dn (s) ds, (3)

where Dn is the Dirichlet kernel, defined by

Dn (t) :=
∑
j∈Hn

φj (t) .
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It is known that the Dirichlet kernel can be expressed as

Dn (t) = Θn (t)−Θn−1 (t) , (n ∈ N) , (4)

where

Θn (t) :=
sin (n+1)(t1−t2)π

3 sin (n+1)(t2−t3)π
3 sin (n+1)(t3−t1)π

3

sin (t1−t2)π
3 sin (t2−t3)π

3 sin (t3−t1)π
3

(5)

for t = (t1, t2, t3) ∈ R3
H ([10, 8]).

We refer to [8] and [12] for more detailed information about Fourier analysis
on lattices and hexagonal Fourier series.

We denote by CH
(
Ω
)

the Banach space of H−periodic continuous functions
on R3

H , equipped with the uniform norm

‖f‖CH(Ω) = sup
t∈Ω

|f (t)| ,

and by Hα
(
Ω
)

(0 < α ≤ 1) the Hölder class, that is the class of functions f ∈
CH

(
Ω
)

for which

sup
t 6=s

|f (t)− f (s)|
‖t− s‖α

<∞

holds, where

‖t‖ := max {|t1| , |t2| , |t3|} ,
(
t = (t1, t2, t3) ∈ R3

H

)
.

Hα
(
Ω
)

(0 < α ≤ 1) becomes a Banach space with respect to the norm

‖f‖Hα(Ω) := ‖f‖CH(Ω) + sup
t 6=s

|f (t)− f (s)|
‖t− s‖α

.

Y. Xu [12] proved that the Abel-Poisson means and the sequence of Cesàro
(C, 1) means of the Fourier series of a function f ∈ CH

(
Ω
)

converge to this func-
tion uniformly on Ω. Later, the order of approximation by Abel-Poisson and (C, 1)
means of Fourier series of functions belonging to the class Hα

(
Ω
)
, (0 < α ≤ 1)

was investigated in uniform norm ( [6]) and in the Hölder norm ([5]).

In this work, we will estimate the order of approximation by deferred Cesàro
means of Fourier series of functions belonging to the Hölder class Hα

(
Ω
)

in
uniform and Hölder norms, and generalize some results of [6] and [5].
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3. Main results

Let p = (pn) and q = (qn) be two sequences of non-negative integers such
that

pn < qn and lim
n→∞

qn =∞. (6)

The deferred Cesàro means of the series (2) are defined by

Dn (p, q; f) (t) :=
1

qn − pn

qn∑
k=pn+1

Sk (f) (t) .

It is known that the Dn (p, q) summability method is regular under conditions
(6) and generalizes the Cesàro (C, 1) method if and only if pn � qn − pn ([1]) .

By considering (3) and (4) we obtain

Dn (p, q; f) (t) =
1

|Ω|

∫
Ω

f (t− s)

 1

qn − pn

qn∑
k=pn+1

Dk (s)

 ds

=
1

qn − pn
1

|Ω|

∫
Ω

f (t− s)

 qn∑
k=pn+1

Θk (s)−Θk−1 (s)

 ds

=
1

qn − pn
1

|Ω|

∫
Ω

f (t− s) (Θqn (s)−Θpn (s)) ds.

Hence we have
f (t)−Dn (p, q; f) (t) =

=
1

(qn − pn)

1

|Ω|

∫
Ω

(f (t)− f (t− s)) (Θqn (s)−Θpn (s)) ds, (7)

for each f ∈ L1 (Ω) and t ∈ R3
H .

If we take qn = n and pn = 0 for n = 1, 2, ..., Dn (p, q; f) becomes the (C, 1)

means S
(1)
n (f) .

Hereafter, we shall write A� B for the quantities A and B, if there exists a
constant K > 0 such that A ≤ KB holds.

The rate of approximation by (C, 1) means of hexagonal Fourier series was
estimated as follows:

Theorem A ([6]) . Let f ∈ Hα
(
Ω
)
, 0 < α ≤ 1. Then

∥∥∥f − S(1)
n (f)

∥∥∥
CH(Ω)

�

{
1
nα , α < 1,

(logn)2

n , α = 1,
(8)
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holds.

In this work we generalize Theorem A. Our main theorem is the following.

Theorem 1. For each f ∈ Hα
(
Ω
)
, 0 < α ≤ 1, the estimate

‖f −Dn (p, q; f)‖CH(Ω) �
(

qn
qn − pn

)2
{

1
(qn−pn)α

, α < 1,
(log(2(qn−pn)))2

qn−pn , α = 1,
(9)

holds.

Proof. Since f ∈ Hα
(
Ω
)
, by (7) we have

|f (t)−Dn (p, q; f) (t)| � 1

(qn − pn)

1

|Ω|

∫
Ω

‖s‖α |Θqn (s)−Θpn (s)| ds.

Since the integrated function is symmetric with respect to its variables, it is
sufficient to estimate the integral

In :=

∫
∆

‖t‖α |Θqn (t)−Θpn (t)| dt,

where

∆ : =
{
t = (t1, t2, t3) ∈ R3

H : 0 ≤ t1, t2,−t3 ≤ 1
}

= {(t1, t2) : t1 ≥ 0, t2 ≥ 0, t1 + t2 ≤ 1} ,

which is one of the six equilateral triangles in Ω. By (5) and some simple trigono-
metric identities

Θqn (t)−Θpn (t) =

= 2 cos

((
qn + pn

2
+ 1

)
(t3 − t1)π

3

)
sin

((
qn − pn

2

)
(t3 − t1)π

3

)
×

×
sin
(

(qn + 1) (t1−t2)π
3

)
sin
(

(qn + 1) (t2−t3)π
3

)
sin (t1−t2)π

3 sin (t2−t3)π
3 sin (t3−t1)π

3

+

+2 cos

((
qn + pn

2
+ 1

)
(t2 − t3)π

3

)
sin

((
qn − pn

2

)
(t2 − t3)π

3

)
×

×
sin
(

(qn + 1) (t1−t2)π
3

)
sin
(

(pn + 1) (t3−t1)π
3

)
sin (t1−t2)π

3 sin (t2−t3)π
3 sin (t3−t1)π

3

+
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+2 cos

((
qn + pn

2
+ 1

)
(t1 − t2)π

3

)
sin

((
qn − pn

2

)
(t1 − t2)π

3

)
×

×
sin
(

(pn + 1) (t2−t3)π
3

)
sin
(

(pn + 1) (t3−t1)π
3

)
sin (t1−t2)π

3 sin (t2−t3)π
3 sin (t3−t1)π

3

.

If we use the change of variables

s1 :=
t1 − t3

3
, s2 :=

t2 − t3
3

, (10)

we obtain

In ≤ 3

∫
∆̃

(s1 + s2)α (|L1 (s1, s2)|+ |L2 (s1, s2)|+ |L3 (s1, s2)|) ds1ds2,

where
∆̃ := {(s1, s2) : 0 ≤ s1 ≤ 2s2, 0 ≤ s2 ≤ 2s1, s1 + s2 ≤ 1} ,

and

L1 (s1, s2) : =
sin
(( qn−pn

2

)
(s1π)

)
sin ((qn + 1) (s1 − s2)π) sin ((qn + 1) s2π)

sin ((s1 − s2)π) sin (s2π) sin (s1π)

L2 (s1, s2) : =
sin
(( qn−pn

2

)
(s2π)

)
sin ((qn + 1) (s1 − s2)π) sin ((pn + 1) (s1π))

sin ((s1 − s2)π) sin (s2π) sin (s1π)

L3 (s1, s2) : =
sin
(( qn−pn

2

)
(s1 − s2)π

)
sin ((pn + 1) (s2π)) sin ((pn + 1) (s1π))

sin ((s1 − s2)π) sin (s2π) sin (s1π)
.

Since the integrated function is symmetric with respect to s1 and s2, we have

In ≤ 6

∫
∆∗

(s1 + s2)α (|L1 (s1, s2)|+ |L2 (s1, s2)|+ |L3 (s1, s2)|) ds1ds2,

where
∆∗ :=

{
(s1, s2) ∈ ∆̃ : s1 ≤ s2

}
,

i. e. the half of ∆̃. The change of variables

s1 :=
u1 − u2

2
, s2 :=

u1 + u2

2
(11)

transforms the triangle ∆∗ onto triangle

Γ :=
{

(u1, u2) : 0 ≤ u2 ≤
u1

3
, 0 ≤ u1 ≤ 1

}
,
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and hence

In ≤ 3

∫
Γ

uα1 (|L∗1 (u1, u2)|+ |L∗2 (u1, u2)|+ |L∗3 (u1, u2)|) du1du2,

where

L∗1 (u1, u2) : =
sin
(( qn−pn

2

) (u1−u2)π
2

)
sin ((qn + 1)u2π) sin

(
(qn + 1) (u1+u2)π

2

)
sin (u2π) sin

(
(u1+u2)π

2

)
sin
(

(u1−u2)π
2

)
L∗2 (u1, u2) : =

sin
(( qn−pn

2

) (u1+u2)π
2

)
sin ((qn + 1)u2π) sin

(
(pn + 1) (u1−u2)π

2

)
sin (u2π) sin

(
(u1+u2)π

2

)
sin
(

(u1−u2)π
2

)
L∗3 (u1, u2) : =

sin
(( qn−pn

2

)
u2π

)
sin
(

(pn + 1) (u1+u2)π
2

)
sin
(

(pn + 1) (u1−u2)π
2

)
sin (u2π) sin

(
(u1+u2)π

2

)
sin
(

(u1−u2)π
2

) .

If we divide the triangle Γ into three parts as

Γ1 : =

{
(u1, u2) ∈ Γ : u1 ≤

1

2 (qn − pn)

}
,

Γ2 : =

{
(u1, u2) ∈ Γ : u1 ≥

1

2 (qn − pn)
, u2 ≤

1

6 (qn − pn)

}
,

Γ3 : =

{
(u1, u2) ∈ Γ : u1 ≥

1

2 (qn − pn)
, u2 ≥

1

6 (qn − pn)

}
,

we get

In � I(1)
n + I(2)

n + I(3)
n ,

where

I(j)
n =

∫
Γj

uα1 (|L∗1 (u1, u2)|+ |L∗2 (u1, u2)|+ |L∗3 (u1, u2)|) du1du2, (j = 1, 2, 3) .

We shall need the inequalities∣∣∣∣sinntsin t

∣∣∣∣ ≤ n, (n ∈ N) , (12)

and

sin t ≥ 2

π
t
(

0 ≤ t ≤ π

2

)
(13)
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to estimate integrals I
(1)
n , I

(2)
n and I

(3)
n .

For (u1, u2) ∈ Γ,

sin

(
u1 + u2

2
π

)
≥
√

3

2
sin

u1π

2
,

and by (13) we obtain

1

sin
(
u1+u2

2 π
) ≤ 2√

3

1

u1
(u1 6= 0) . (14)

By the inequality (12) we get

|L∗1 (u1, u2)| � (qn − pn) (qn + 1)2 ,

|L∗2 (u1, u2)| � (qn − pn) (qn + 1) (pn + 1) ,

and
|L∗3 (u1, u2)| � (qn − pn) (pn + 1)2

for (u1, u2) ∈ Γ1. Hence∫
Γ1

uα1
∣∣L∗j (u1, u2)

∣∣ du1du2 (qn − pn) (qn + 1)2
∫
Γ1

uα1du1du2 =

= (qn − pn) (qn + 1)2

1
6(qn−pn)∫

0

1
2(qn−pn)∫

3u2

uα1du1du2 ≤
(qn + 1)2

(qn − pn)1+α ,

for j = 1, 2, 3, which implies

I(1)
n � q2

n

(qn − pn)1+α . (15)

Since u1 − u2 ≥ 2u1
3 , by (13) one can easily see that

1

sin
(

(u1−u2)π
2

) ≤ 3

2u1
, (u1, u2) ∈ Γ2 ∪ Γ3. (16)

Thus, by (12) , (14) and (16) we obtain

|L∗1 (u1, u2)| � (qn + 1)
1

u2
1

,

|L∗2 (u1, u2)| � (qn + 1)
1

u2
1

,



62 A. Guven

and

|L∗3 (u1, u2)| � (qn − pn)
1

u2
1

for (u1, u2) ∈ Γ2. For j = 1, 2,

∫
Γ2

uα1
∣∣L∗j (u1, u2)

∣∣ du1du2 � (qn + 1)

1
6(qn−pn)∫

0

1∫
1

2(qn−pn)

uα−2
1 du1du2

=
qn + 1

6 (qn − pn)

{
1

1−α

(
1

(2(qn−pn))α−1 − 1
)
, α < 1,

log (2 (qn − pn)) , α = 1.

Hence ∫
Γ2

uα1
∣∣L∗j (u1, u2)

∣∣ du1du2 �

{
qn

(qn−pn)α
, α < 1,

qn log 2(qn−pn)
qn−pn , α = 1,

for j = 1, 2. Similarly

∫
Γ2

uα1 |L∗3 (u1, u2)| du1du2 � (qn − pn)

1
6(qn−pn)∫

0

1∫
1

2(qn−pn)

uα−2
1 du1du2

�

{
1

(qn−pn)α−1 , α < 1,

log (2 (qn − pn)) , α = 1.

Thus we get

I(2)
n �

{
qn

(qn−pn)α
, α < 1,

qn log(2(qn−pn))
qn−pn , α = 1.

(17)

By (13) , (14) and (16) we obtain

∣∣L∗j (u1, u2)
∣∣� 1

u2
1u2

(j = 1, 2, 3)

for (u1, u2) ∈ Γ3. Thus

∫
Γ3

uα1
∣∣L∗j (u1, u2)

∣∣ du1du2 �

1
3∫
1

6(qn−pn)

1∫
3u2

uα−2
1

1

u2
du1du2
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�

{
1

(qn−pn)α−1 , α < 1,

(log (2 (qn − pn)))2 , α = 1.

This last estimate, (15) and (17) yield

In �


q2n

(qn−pn)α+1 , α < 1,

q2n
(qn−pn)2

(log (2 (qn − pn)))2 , α = 1,

and the proof is completed. J

The following approximation theorem in Hölder norm was obtained in ([5]) :
Theorem B. Let 0 ≤ β < α ≤ 1. Then for each f ∈ Hα

(
Ω
)

the estimate

∥∥∥f − S(1)
n (f)

∥∥∥
Hβ(Ω)

�

{
1

nα−β
, α < 1,

(logn)2

n1−β , α = 1.
(18)

holds.
We generalize Theorem B as follows:
Theorem 2. Let 0 ≤ β < α ≤ 1 and f ∈ Hα

(
Ω
)
. Then

‖f −Dn (p, q; f)‖Hβ(Ω) �
(

qn
qn − pn

)2


1
(qn−pn)α−β

, α < 1,

(log(2(qn−pn)))2

(qn−pn)1−β
, α = 1.

(19)

Proof. Set en (t) := f (t)−Dn (p, q; f) (t) . Hence

‖f −Dn (p, q; f)‖Hβ(Ω) = ‖en‖CH(Ω) + sup
t 6=s

|en (t)− en (s)|
‖t− s‖β

.

By (7) we have

en (t)− en (s) =
1

(qn − pn)

1

|Ω|

∫
Ω

ϕt,s (u) (Θqn (u)−Θpn (u)) du,

where
ϕt,s (u) := f (t)− f (t− u)− f (s) + f (s− u) .

Thus

|en (t)− en (s)| � 1

qn − pn
Jn,

where

Jn :=

∫
Ω

|ϕt,s (u)| |(Θqn (u)−Θpn (u))| du.



64 A. Guven

Since f ∈ Hα
(
Ω
)
, we have

|ϕt,s (u)| � ‖u‖α ,

and by Theorem 1,

J
1− β

α
n =

∫
Ω

|ϕt,s (u)| |(Θqn (u)−Θpn (u))| du

1− β
α

�

∫
Ω

‖u‖α |(Θqn (u)−Θpn (u))| du

1− β
α

�


(

q2n
(qn−pn)α+1

)1− β
α
, α < 1,[

q2n
(qn−pn)2

(log (2 (qn − pn)))2
]1−β

, α = 1.

We also have
|ϕt,s (u)| � ‖t− s‖α ,

and hence

J
β
α
n �

∫
Ω

‖t− s‖α |(Θqn (u)−Θpn (u))| du


β
α

= ‖t− s‖β
∫

Ω

|(Θqn (u)−Θpn (u))| du


β
α

.

As in proof of Theorem 1, it is sufficient to estimate the integral∫
∆

|(Θqn (t)−Θpn (t))| dt.

By the transforms (10) and (11) ,∫
∆

|(Θqn (t)−Θpn (t))| dt�

�
∫
Γ

(|L∗1 (u1, u2)|+ |L∗2 (u1, u2)|+ |L∗3 (u1, u2)|) du1du2.
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For j = 1, 2, 3,

∫
Γ1

∣∣L∗j (u1, u2)
∣∣ du1du2 � (qn − pn) (qn + 1)2

1
6(qn−pn)∫

0

1
2(qn−pn)∫

3u2

du1du2

� q2
n

qn − pn
.

For j = 1, 2,

∫
Γ2

∣∣L∗j (u1, u2)
∣∣ du1du2 � (qn + 1)

1
6(qn−pn)∫

0

1∫
1

2(qn−pn)

1

u2
1

du1du2 � qn,

and

∫
Γ2

|L∗3 (u1, u2)| du1du2 � (qn − pn)

1
6(qn−pn)∫

0

1∫
1

2(qn−pn)

1

u2
1

du1du2 � qn − pn.

Also, ∫
Γ3

∣∣L∗j (u1, u2)
∣∣ du1du2 �

1
3∫
1

6(qn−pn)

1∫
3u2

1

u2
1u2

du1du2 � qn − pn

for j = 1, 2, 3. By combining these inequalities we obtain∫
∆

|(Θqn (t)−Θpn (t))| dt� q2
n

qn − pn
.

Hence

J
β
α
n � ‖t− s‖β

(
q2
n

qn − pn

) β
α

.

Let α < 1.

Jn = J
β
α
n J

1− β
α

n � ‖t− s‖β
(

q2
n

qn − pn

) β
α
(

q2
n

(qn − pn)α+1

)1− β
α

= ‖t− s‖β q2
n

(qn − pn)α−β+1
.
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This implies

|en (t)− en (s)| �
(

qn
qn − pn

)2 1

(qn − pn)α−β
‖t− s‖β ,

and hence
|en (t)− en (s)|
‖t− s‖β

�
(

qn
qn − pn

)2 1

(qn − pn)α−β

for every t, s ∈ R3
H with t 6= s. This and Theorem 1 give

‖f −Dn (p, q; f)‖Hβ(Ω) �
(

qn
qn − pn

)2 1

(qn − pn)α−β
.

Now let α = 1. In this case,

Jn = J
β
α
n J

1− β
α

n � ‖t− s‖β
(

q2
n

qn − pn

)β [
q2
n

(qn − pn)2 (log (2 (qn − pn)))2

]1−β

= ‖t− s‖β q2
n

(qn − pn)2−β (log (2 (qn − pn)))2(1−β) ,

which implies

|en (t)− en (s)|
‖t− s‖β

�
(

qn
qn − pn

)2 (log (2 (qn − pn)))2(1−β)

(qn − pn)1−β , t 6= s.

By this inequality and by Theorem 1 we obtain

‖f −Dn (p, q; f)‖Hβ(Ω) �
(

qn
qn − pn

)2 (log (2 (qn − pn)))2(1−β)

(qn − pn)1−β ,

which finishes the proof. J

Remark. If we take pn = n − 1 and qn = n + k − 1, where k ∈ N satisfies
n� k, then the summability method Dn (p, q) generalizes the (C, 1) method and
Dn (p, q; f) becomes

Dn (p, q; f) = S
(1)
n,k (f) :=

(
1 +

n

k

)
S

(1)
n+k−1 (f)− n

k
S

(1)
n−1 (f) ,

which is called the delayed arithmetic mean ([13, Vol. I, p.80]). These means give
the same approximation order as Cesàro (C, 1) means.
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