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On Some Properties of Convolution in Morrey Type

Spaces

F.A. Guliyeva, S.R. Sadigova∗

Abstract. Morrey space Mp,α and its subspace MCp,α where the continuous functions
are dense are considered. Basic properties of convolution are extended to these spaces.
It is proved that the convolution in MCp,α can be approximated by finite linear combi-
nations of shifts. Approximate identity in MCp,α is also considered.
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1. Introduction

The concept of Morrey space was introduced by C.Morrey in 1938 in the study
of the smooth properties of solutions of elliptic equations with VMO (Vanishing
Mean Oscillation) coefficients. Since then, various problems related to this space
have been intensively studied. Playing an important role in the qualitative theory
of elliptic differential equations (see, for example, [1, 2]), this space also provides
a large class of examples of mild solutions to the Navier-Stokes system [3]. In the
context of fluid dynamics, Morrey spaces have been used to model fluid flow when
vorticity is a singular measure supported on certain sets in Rn [4]. There appeared
lately a large number of research works which considered fundamental problems
of the theory of differential equations, potential theory, maximal and singular
operator theory, approximation theory, etc in these spaces (see, for example, [5]
and the references above). More details about Morrey spaces can be found in
[6, 7, 18, 19].

In view of the aforesaid, there has recently been a growing interest in the
study of various problems in Morrey-type spaces. For example, some problems of
harmonic analysis and approximation theory have been considered in [6, 7, 8, 9,
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10, 11, 12, 13]. In [13, 15], the basicity of the classical exponential system, as well
as its perturbations in subspaces of Morrey space of functions defined on [π, π] was
investigated with the method of boundary value problem for analytic functions on
complex domain. Note that some questions arising in boundary value problems
of analytic function theory have been considered and studied in [17, 18, 19]. In
[16], an analogue of the classical Young inequality for the convolution of periodic
functions belonging to global Morrey type spaces on Rn is obtained.

In the present paper Morrey space Mp,α and its subspace MCp,α where the
continuous functions are dense are considered. Basic properties of convolution
are extended to these spaces. It is proved that the convolution in MCp,α can
be approximated by finite linear combinations of shifts. Approximate identity
in MCp,α is also considered. The validity of the classical facts concerning the
approximate identities is proved in Morrey type spaces.

2. Needful information

We will need some facts about the theory of Morrey-type spaces. Let Γ be
some rectifiable Jordan curve on the complex plane C. By |M |Γ we denote the
linear Lebesgue measure of the set M ⊂ Γ.

By the Morrey-Lebesgue space Mp,α (Γ), 0 ≤ α ≤ 1, p ≥ 1, we mean a
normed space of all functionsf (ξ) measurable on Γ equipped with a finite norm
‖ · ‖Mp,α(Γ):

‖f‖Mp,α(Γ) = sup
B

(

∣

∣

∣
B
⋂

Γ
∣

∣

∣

α−1

Γ

∫

B
⋂

Γ
|f (ξ)|p |dξ|

)1/p

< +∞.

Mp,α (Γ) is a Banach space and Mp,1 (Γ) = Lp (Γ), M
p,0 (Γ) = L∞ (Γ). The em-

bedding Mp,α1 (Γ) ⊂ Mp,α2 (Γ) is valid for 0 ≤ α1 ≤ α2 ≤ 1. Thus, Mp,α (Γ) ⊂
L1 (Γ), ∀α ∈ [0, 1], ∀p ≥ 1. The case of Γ ≡ [−π, π] will be denoted by
Mp,α (−π, π) ≡ Mp,α.

Denote by M̃p,α the linear subspace of Mp,α consisting of functions whose
shifts are continuous in Mp,α, i.e. ‖f (· + δ)− f ( · )‖Mp,α → 0 as δ → 0. The
closure of M̃p,α in Mp,α will be denoted by MCp,α. It is easy to prove the
following

Theorem 1 ([13]). Infinitely differentiable functions on [0, 2π] are dense in the
space MCp,α.

Note that, in general, the set of all continuous functions is not dense in Mp,α.
Corresponding examples can be found in many works (see, e.g., [7]). We give the
example below.
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Example 1. Consider the function

f0 (x) = |x|−
α
p , x ∈ [−π, π] .

From the results of Samko N. [22] it immediately follows that f0 ∈ Lp,α. Let us
show that ∃ δ0 > 0

‖f0 − g‖p,α ≥ δ0 > 0,∀g ∈ C [−π, π] .

It is clear that

‖f0 − g‖pp,α ≥ sup
h∈(0,h1)

1

h1−α

∫ h

0
|f0 (t)− g (t)|p dt,

where h1 ∈ (0, π) is an arbitrary number. Assume

M = sup
|t|≤h1

|g (t)|p .

We have

∫ h

0
|f0 (t)− g (t)|p dt ≥ 2−p

∫ h

0
|f0|

p dt−

∫ h

0
|g (t)|p dt ≥

≥ 2−p

∫ h

0
t−αdt−Mh =

2−p

1− α
h1−α −Mh =

= h1−α

(

2−p

1− α
−Mhα

)

≥ h1−α

(

2−p

1− α
−Mhα1

)

.

Let us take sufficiently small h1 > 0 so that

2−p

1− α
−Mhα1 ≥

2−p

2 (1− α)
,

is true.
Thus, for an arbitrary function g ∈ C [−π, π] we have

‖f0 − g‖p,α ≥
2−p

2 (1− α)
> 0,

i.e.
inf

g∈C[−π,π]
‖f0 − g‖p,α > 0.

Thus, the following statement is true.
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Proposition 1. The space of continuous functions C [−π, π] is not dense in the
Morrey space Lp,α for ∀p ∈ [1, +∞), ∀α ∈ (0, 1).

The following Hölder’s inequality is also valid.

Lemma 1. Let f ∈ Lp,α (I) ∧ g ∈ Lq,α (I),1p + 1
q = 1, p ∈ [1, +∞). Then the

following Hölder’s inequality holds:

‖fg‖L1
≤ |I|1−α ‖fg‖1,α ≤ |I|1−α ‖f‖p,α ‖g‖q,α .

3. Main results

Consider the Morrey-Lebesgue space Mp,α, 1 < p < +∞, 0 < α < 1.
Let 1

p + 1
q = 1. Take f ∈ Mp,α;g ∈M q,α. Consider the convolution

(f ∗ g) (x) =

∫ π

−π
f (x− y) g (y) dy, x ∈ [−π, π] .

As Mp,α ⊂ L1, the existence of the convolution follows from the classical facts.
Applying Hölder’s inequality with respect to Morrey space, we obtain

|(f ∗ g) (x)| ≤ cα ‖f (x− ·)‖p,α ‖g‖q, α , (1)

where cα = (2π)1−α. We have

‖f (x− ·)‖p,α = sup
Iπ

(

1

|Iπ|
1−α

∫

Iπ

|f (x− y)|p dy

)1/p

,

where Iπ = I
⋂

[−π, π], I ⊂ R is an arbitrary interval. Put Iπ (x) = x− Iπ. It is
clear that |Iπ (x)| = |Iπ|, ∀x ∈ [−π, π]. Making a change of variables, we obtain

‖f (x− ·)‖p,α = sup
Iπ

(

−1

|−Iπ|
1−α

∫

−Iπ

|f (x+ y)|p dy

)1/p

=

= sup
Iπ

(

−1

|Iπ (x)|
1−α

∫

Iπ(x)
|f (t)|p dt

)1/p

≤ ‖f‖p,α .

Considering this relation in (1), we have

‖f ∗ g‖∞ ≤ cα ‖f‖p,α ‖g‖q,α .

Let Tδ be a shift operator, i.e. (Tδf) (x) = f (x+ δ). If f ∈ MCp,α, then it is
clear that

‖Tδf − f‖p,α → 0, δ → 0.
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We have

‖Tδ (f ∗ g)− f ∗ g‖∞ = ‖Tδf ∗ g − f ∗ g‖∞ =

= ‖(Tδf − f) ∗ g‖∞ ≤ ‖Tδf − f‖p,α ‖g‖q,α → 0, δ → 0.

Thus, the following theorem is true.

Theorem 2. Let 1 < p < +∞, 0 < α < 1 and 1
p+

1
q = 1. If f ∈ Mp,α ∧g ∈M q,α,

then the convolution f ∗ g is defined everywhere on [−π, π] and the following
inequality is true:

‖f ∗ g‖∞ ≤ cα ‖f‖p,α ‖g‖q,α .

Moreover, if f ∈ MCp,α or g ∈ MCq,α, then the convolution f ∗ g is continuous
on [−π, π].

Note that this theorem in more general form was proved in [16]. We gave an
independent and simple proof in order to keep the style of the work.

Let f : [−π, π] → R be a simple function, i.e. let
⋃r

k=1Ek = [−π, π] be some
partition of an interval [−π, π] and f (x) = ck , ∀x ∈ Ek , k = 1, r. We have

(f ∗ g) (x) =

∫ π

−π
f (x− y) g (y) dy =

∫ π

−π
f (y) g (x− y) dy =

=
r
∑

k=1

ck

∫

Ek

g (x− y) dy , ∀x ∈ [−π, π] .

Let us take an arbitrary interval I ⊂ [−π, π]. Consider

(
∫

I
|(f ∗ g) (x)|p dx

)
1

p

≤

r
∑

k=1

|ck|

(
∫

I

∣

∣

∣

∣

∫

Ek

g (x− y) dy

∣

∣

∣

∣

p

dx

)
1

p

≤

≤

r
∑

k=1

|ck| |Ek|
1

q

(
∫

I

∫

Ek

|g (x− y)|p dydx

)
1

p

.

On the other hand
∫

I

∫

Ek

|g (x− y)|p dydx =

∫

Ek

∫

I
|g (x− y)|p dxdy ,

and, as a result, we have

1

|I|1−α

∫

I

∫

Ek

|g (x− y)|p dydx =

∫

Ek

1

|I|1−α

∫

I
|g (x− y)|p dxdy =
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=

∫

Ek

1

|I|1−α

∫

Iy

|g (t)|p dtdy,

where Iy = I − y. It is obvious that |I| = |Iy|. Then the following inequality is
true:

1

|I|1−α

∫

Iy

|g (t)|p dt ≤ ‖g‖pp,α .

Taking into account this inequality, we obtain

(

1

|I|1−α

∫

I
|(f ∗ g) (x)|p dx

)
1

p

≤
r
∑

k=1

|ck| |Ek|
1

q

(

∫

Ek

1

|I|1−α

∫

Iy

|g|p dtdx

)
1

p

≤

≤

r
∑

k=1

|ck| |Ek|
1

q |Ek|
1

p ‖g‖p,α =

r
∑

k=1

|ck| |Ek| ‖g‖p,α = ‖f‖L1
‖g‖p,α .

Hence
‖f ∗ g‖p, α ≤ ‖f‖L1

‖g‖p, α , ∀f ∈ S [−π, π] , (2)

where S [−π, π] is the set of all simple functions on [−π, π].
Now, let f ∈ L1 (−π, π) be an arbitrary function. Take ∀ {fn}n∈N ⊂ S [−π, π] :

‖fn − f‖L1
→ 0 , n → ∞. Since S [−π, π] is dense in L1 (−π, π), the choice of

such a sequence is always possible. Then it follows directly from the inequality
(2) that the sequence {fn ∗ g}n∈N is fundamental in Mp,α. Assume

f ∗ g = lim
n→∞

fn ∗ g.

By virtue of inequality (2), the definition of f ∗ g does not depend on the choice
of the sequence ∀ {fn}n∈N . So, the following theorem is true.

Theorem 3. Let f ∈ L1 ∧ g ∈ Mp, α, 1 < p < +∞, 0 < α < 1. Then
f ∗ g ∈ Mp, α, and, moreover, the following inequality is true:

‖f ∗ g‖p, α ≤ ‖f‖L1
‖g‖p, α .

Remark 1. Denote by M the space of measures on T ≡ [−π, π] , i.e. M

contains a distribution F ∈ D satisfying the inequality

|F (u)| ≤ c ‖u‖∞ , ∀u ∈ C∞,

where ‖ · ‖∞ is a sup-norm, C∞ are infinitely differentiable functions with com-
pact support on (−π, π). Such measures are called Radon measures. It is known
that (Riesz-Markov- Kakutani theorem for the compact space T ) each functional
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(distribution) can be represented as an integral with respect to the unique regular
Borel measure m on T :

F (u) =

∫

T
u (x) dm (x) .

M is a Banach space with regard to the norm

‖µ‖1 = sup {|µ (u)| : u ∈ C [−π, π] , ‖u‖∞ < 1} .

For more details on these facts we refer the reader to [14].
The question of the validity of the following statement arises:
Statement 1. Let 1 ≤ p < +∞ ∧ 0 < α < 1. If µ ∈ M ∧ f ∈ Mp,α, then

µ ∗ f ∈ Mp,α, and the following inequality holds:

‖µ ∗ f‖p,α ≤ ‖µ‖1 ‖f‖p,α .

The following theorem is also true.

Theorem 4. Let f ∈ L1 and g ∈ E, where E denotes any one of the spaces
C [−π, π] or MCp,α , 1 ≤ p < +∞, 0 < α < 1. Then the convolution f ∗ g

in E can be approximated by finite linear combinations of shifts g, i.e. ∀ε > 0,
∃ {ak}

n
1 ⊂ [−π, π] ∧ {λk}

n
1 ⊂ R:

∥

∥

∥

∥

∥

f ∗ g −
n
∑

k=1

λkTakg

∥

∥

∥

∥

∥

E

< ε.

Proof. The case of E = C [−π, π] is known (see, e.g., [14]). Consider the case
of E = MCp,α. Following the classical scheme, as a subset S0 , such that the
finite linear combinations of elements from S0 are dense in L1, we take a set of
functions f , each of which coincides on [−π, π] with the characteristic function of
some interval M = [a, b], −π < a < b < π, and continues further on periodically.

Let ε > 0 be arbitrary. Let us divide M into a finite number of subintervals
Ik of length |Ik| < δ. Take ∀ak ∈ Ik. Let f (x) = χM (x) . We have

(f ∗ g) (x)−
∑

k

|Ik| g (x− ak) =

∫

⋃
k Ik

g (x− y) dy−

−
∑

k

∫

Ik

g (x− ak) dy =
∑

k

∫

Ik

[g (x− y)− g (x− ak)] dy =
∑

k

hk (x) ,

where

hk (x) =

∫

k
[g (x− y)− g (x− ak)] dy.
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Consequently

∥

∥

∥

∥

∥

(f ∗ g) (x)−
∑

k

|Ik| g (x− ak)

∥

∥

∥

∥

∥

p,α

≤
∑

k

‖hk‖p,α .

Let I ⊂ [−π, π] be an arbitrary interval. We have

‖hk‖
p
Lp(I)

=

∫

I
|hk|

p dx =

∫

I

∣

∣

∣

∣

∫

Ik

[g (x− y)− g (x− ak)] dy

∣

∣

∣

∣

p

dx ≤

≤

∫

I

(

|Ik|
p/q
∫

Ik

|g (x− y)− g (x− ak)|
p dy

)

dx =

= |Ik|
p/q
∫

Ik

(
∫

I
|g (x− y)− g (x− ak)|

p dx

)

dy.

As a result, we obtain

1

|I|1−α

∫

I
|hk|

p dx ≤ |Ik|
p/q
∫

Ik

(

1

|I|1−α

∫

I
|g (x− y)− g (x− ak)|

p dx

)

dy ≤

≤ |Ik|
p/q
∫

Ik

‖Tyg − Takg‖
p
p,α dy ⇒

⇒ ‖hk‖
p
p,α ≤ |Ik|

p/q
∫

Ik

‖Tyg − Takg‖
p
p,α dy. (3)

By Lemma 1, we have ∃δ > 0 :

‖Tyg − Takg‖p,α < ε, ∀y ∈ Ik.

From (3) it follows that

‖hk‖
p
p,α ≤ |Ik|

p/q |Ik| ε
p = |Ik|

p εp ⇒ ‖hk‖p,α ≤ |Ik| ε.

As a result, we have

∥

∥

∥

∥

∥

(f ∗ g) (x)−
∑

k

|Ik|Takg

∥

∥

∥

∥

∥

p,α

≤
∑

k

|Ik| ε = |M | ε ≤ 2πε.

Since
∑

k |Ik|Takg is a finite linear combination of shifts g, it is clear that f ∗ g ∈
Vg, where Vg is a closed linear subspace in E, generated by shifts Tag of the
function g.
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If f ∈ L1 is an arbitrary element, then for ∀ε > 0 there exists a partition
of [−π, π] into a finite number of intervals Mk, and a number λk such that the
inequality

∥

∥

∥

∥

∥

f (·)−
∑

k

λkχMk
(·)

∥

∥

∥

∥

∥

L1

< ε, (4)

holds. It follows directly from the previous result that f̃ ∗ g ∈ Vg, where f̃ (·) =
∑

k λkχMk
(·). Then from (4) we obtain that f ∗ g ∈ Vg. ◭

Let us consider the approximate identities for convolutions in the space Mp,α.

By the approximate identity (for convolution) we mean
{

K
(·)
n

}

n∈N
⊂ L1 (−π, π),

satisfying the following conditions:

α) sup
n

‖Kn‖L1
< +∞;

β) lim
n

1
2π

∫ π
−π Kn (x) dx = 1;

γ) lim
n→∞

∫

δ≤|x|≤π |Kn (x) dx| = 0 , ∀δ ∈ (0, π) .

The following theorem is true.

Theorem 5. Let {Kn}n∈N be an approximate identity. Then the following prop-
erties are true:

i) lim
n→∞

‖Kn ∗ f − f‖∞ = 0 , ∀f ∈ C [−π, π];

ii) lim
n→∞

∥

∥

dm

dxm (Kn ∗ f)− dm

dxm f
∥

∥

∞
= 0 , ∀f ∈ C [−π, π];

iii) lim
n→∞

‖Kn ∗ f − f‖p,α = 0 , ∀f ∈ MCp,α, 1 ≤ p < +∞ , 0 < α < 1.

Proof. The assertions i)-ii) are classic facts (see, e.g., [14]). Let us prove
assertion iii). Take ∀f ∈ MCp,α. Let ε > 0 be an arbitrary number. It is clear
that ∃g ∈ C [−π, π]:

‖f − g‖p,α < ε.

Then paying attention to Theorem 3, from the property α) of an approximate
identity we obtain

‖Kn ∗ f −Kn ∗ g‖p,α ≤ ‖Kn‖L1
‖f − g‖p,α ≤ Mε,

where M is a constant independent of n. Then from i) it follows that

∃n0 = n0 (ε) ∈ N : ‖Kn ∗ g‖∞ < ε , ∀n ≥ n0.

Hence, we have

‖Kn ∗ g − g‖p,α ≤ cε,∀n ≥ n0,
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where c > 0 is some constant. As a result, we have

‖Kn ∗ f − f‖p,α ≤ ‖Kn ∗ f −Kn ∗ g‖p,α + ‖Kn ∗ g − g‖p,α+

+ ‖g − f‖p,α ≤ (M + c+ 1) ε,∀n ≥ n0.
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