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Determining the Coefficients in the Right Side of the

System of Elliptic Equations

A.Ya. Akhundov∗, B.R. Selimkhanov

Abstract. The goal of this paper is to study the well-posedness of an inverse problem of determin-
ing the unknown coefficients on the right side of the system of elliptic equations of reaction-diffusion
type. The inverse problem is considered in a bounded domain in the case of the Dirichlet bound-
ary condition with additional integral information. The sought-for coefficients don’t depend on
the space variable. The uniqueness theorem for the solution of the considered inverse problem is
proved, and the “conditional” stability estimate is obtained.
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1. Introduction

Let be D ⊂ Rn be a convex, bounded domain with rather smooth boundary ∂D, D′ ⊂
Rn−1 be a projection of D on a hyperplane y = xn = 0, x = (x1, ..., xn−1) and (x, y) be ar-
bitrary points in the domains D′ and D, respectively, D = D′×(γ1 (x) , γ2 (x)) , γ1 (x) and
γ2 (x) be the given rather smooth functions. The functional spaces C l (·) , C l+α (·) , l =
0, 1, 2, 0 < α < 1 and the norms on these spaces were determined, for example, in [1,
p. 29]. u = (u1, ..., um) , ‖u‖l =

∑m
k=1 ‖uk‖Cl =

∑m
k=1

∑l
i=0 sup

D

∣

∣Di
xuk
∣

∣, ukxj
= ∂uk

∂xj
,

∆uk =
∑u

i=1
∂2uk

∂xi
, Di

xuk (x) are all possible derivatives of the function uk (x) with respect
to xj .

2. Problem statement and main result

We consider an inverse problem of determining a pair of functions
{

fk (x) , uk (x, y) , k = 1,m
}
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from the conditions

∆uk = fk (x) gk (u) , (x, y) ∈ D, (1)

uk (x, y) = ϕk (x, y) , (x, y) ∈ ∂D, (2)

∫ γ2(x)

γ1(x)
uk (x, y) dy = hk (x) , x ∈ D̄′ (3)

by the known functions gk (p) , ϕk (x, y) , hk (x).
Similar inverse problems are ill-posed in Hadamard sense, and for scalar equations they

have been studied in [2, 3, 4, 5].
For the data of the problem (1)-(3) we make the following assumptions:

10. The functions gk (p) = gk (p1, ..., pm) are defined and continuous for any p ∈ Rm; there
exists a constant c0 > 0 such that for all p, q ∈ Rm

|gk (p)− gk (q)| ≤ c0

m
∑

k=1

|pk − qk| ;

20. ϕk (x, y) ∈ C2+α (∂D) ;
30. hk (x) ∈ C2+α

(

D̄′
)

;
40. γ1 (x) , γ2 (x) ∈ C1+α

(

D̄′
)

.

Definition 1. The pair of functions
{

fk (x) , uk (x, y) , k = 1,m
}

is said to be the solution

of the problem (1)-(3) if

1) fk (x) ∈ C
(

D̄′
)

,

2) uk (x, y) ∈ C2 (D)
⋂

C
(

D̄
)

,

3) the relations (1)-(3) are satisfied for these functions in the usual sense.

The uniqueness theorem and the “conditional” stability estimate for the solution of
inverse problems are most important issues when treating their well-posedness.

Let
{

f i
k (x) , u

i
k (x, y) , k = 1,m

}

be a solution of the problem (1)-(3) corresponding to
the data gik

(

ui
)

, ϕi
k (x, y), h

i
k (x), i = 1, 2.

Definition 2. We say that the solution of the problem (1)-(3) is stable if for any ε > 0
there exists δ (ε) > 0 such that for

∥

∥g1 − g2
∥

∥

0
≤ δ,

∥

∥ϕ1 − ϕ2
∥

∥

2
≤ δ,

∥

∥h1 − h2
∥

∥

2
≤ δ

the inequality
∥

∥u1 − u2
∥

∥

0
+
∥

∥f1 − f2
∥

∥

0
≤ ε is true.

Theorem 1. Let
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1. the functions gik (u) , ϕi
k (x, y), h

i
k (x), k = 1,m, i = 1, 2 satisfy the conditions 10−30,

respectively;

2. there exist the solution
{

f i
k (x) , u

i
k (x, y) , k = 1,m, i = 1, 2

}

of the problem (1)-(3)
in the sense of Definition 1 which belongs to

Kα =
{

(f, u)
∣

∣f (x) ∈ Cα
(

D̄′
)

, u (x, y) ∈ C2+α
(

D̄
)

, |f (x)| ≤ c1, x ∈ D̄′,
∣

∣Dl
x,yu (x, y)

∣

∣ ≤
c2, l = 0, 1, 2, (x, y) ∈ D̄, c1, c2 are some constant numbers};

Then the solution of the problem (1)-(3) for (x, y) ∈ D̄ is unique and the ”conditional”

stability estimate is valid:

∥

∥f1 − f2
∥

∥

0
+
∥

∥u1 − u2
∥

∥

0
≤ c3

[
∥

∥g1 − g2
∥

∥

0
+
∥

∥ϕ1 − ϕ2
∥

∥

2
+
∥

∥h1 − h2
∥

∥

2

]

, (4)

where c3 > 0 is independent of the data of the problem (1)-(3) and the set Kα.

Proof.

Integrating the equation (1) with respect to y over the interval (γ1 (x) , γ2 (x)) and
taking into account the conditions 10 − 30, we get:

fk (x) = [∆hk (x) + uky (x, γ2 (x))− uky (x, γ1 (x))]

(

∫ γ2(x)

γ1(x)
gk (u) dx

)−1

. (5)

Writing out the system (1), (2), (5) for the functions g1k
(

u1
)

, ϕ1
k (x, y) , h1k (x) and

g2k
(

u2
)

, ϕ2
k (x, y) , h2k (x), respectively, and then subtracting the corresponding relations,

we get that the functions zk (x, y) = u1k (x, y)−u2k (x, y), λk (x) = f1
k (x)−f2

k (x), δ1k (u) =
g1k (u)− g2k (u), δ2k (x, y) = ϕ1

k (x, y)−ϕ2
k (x, y), δ3k (x) = h1k (x)− h2k (x) satisfy the condi-

tions of the following system:

∆zk (x, y) = λk (x) g
1
k

(

u1
)

+ Fk

(

x, u1, u2
)

, (x, y) ∈ D, (6)

zk (x, y) = δ2k (x, y) , (x, y) ∈ ∂D, (7)

λk (x) = [zkx (x, γ2 (x))− zkx (x, γ1 (x))]

(

∫ γ2(x)

γ1(x)
g1k
(

u1
)

dy

)−1

+Hk (x) , x ∈ D̄′, (8)

where

Fk

(

x, u1, u2
)

= f2
k (x)

[

δ1k
(

u1
)

+ g2k
(

u1
)

− g2k
(

u2
)]

,
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Hk (x) = ∆δ3k (x)

(

∫ γ2(x)

γ1(x)
g1k
(

u′
)

dy

)−1

+

+

{

[

u2ky (x, γ2 (x))− u2ky (x, γ1 (x)) + ∆h2k (x)
]

∫ γ2(x)

γ1(x)

[

g1k
(

u2
)

− g1k
(

u1
)

− δ3k
(

u2
)]

dy

}

×

×

{

∫ γ2(x)

γ1(x)
g1k
(

u1
)

dy

∫ γ2(x)

γ1(x)
g
(

u2
)

dy

}−1

.

Let the functions Φi
k (x, y) ∈ C2+α

(

D̄
)

, k = 1,m, i = 1, 2 be such that Φi
k (x, y) ≡

ϕi
k (x, y), (x, y) ∈ ∂D, ‖Φ‖2 ≤ ‖ϕ‖2. Denote δ4k (x, y) = Φ1

k (x, y)− Φ2
k (x, y), k = 1,m.

It is easy to show that the function wk (x, y) = zk (x, y)−δ4k (x, y) satisfies the following
system:

∆wk (x, y) = λk (x) g
1
k

(

u1
)

+ Fk

(

x, u1, u2
)

−∆δ4k (x, y) , (x, y) ∈ D, (9)

wk (x, y) = 0, (x, y) ∈ ∂D. (10)

Under the assumptions of the theorem, the right side of the equation (9) is a Holderian
function. In other words, the data of the problem (9), (10) of determining wk (x, y) satisfy
the conditions of a theorem stated in [1, p. 157]. So, there exists a classical solution of
the problem (9), (10), and it can be represented in the following form [1, p. 151]:

wk (x, y) =

∫

D

G (x, y; ξ, η)
[

λ (ξ) g1k
(

u1
)

+ Fk

(

ξ, u1, u2
)

−∆δ4k (ξ, η) dξdη
]

dξdη,

where G (x, y; ξ, η) is the Green function (9), (10). Hence for zk (x, y) we get:

zk (x, y) = δ4k (x, y) +

∫

D

G (x, y; ξ, η)
[

λk (ξ) g
1
k

(

u1
)

+ Fk

(

y, u1, u2
)

−∆δ4k (ξ, η)
]

dξdη.

(11)
Estimate the function zk (x, y), k = 1,m. From (11) we get:

|zk (x, y)| ≤ |δ4k (x, y)|+

∫

D

|G (x, y; ξ, η)| ×

×
[

|λk (ξ)|
∣

∣g1k
(

u1
)
∣

∣+
∣

∣Fk

(

ξ, u1, u2
)
∣

∣+ |∆δ4k (ξ, η)|
]

dξdη, (12)
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By definition, the first summand on the right side of (12) is estimated as follows:

|δ4k (x, y)| =
∣

∣Φ1
k (x, y)−Φ2

k (x, y)
∣

∣ ≤
∥

∥Φ1 − Φ2
∥

∥

0
, (x, y) ∈ D̄. (13)

The integrand expression in (12) is estimated with the consideration of theorem conditions
as follows:

|λk (x)|
∣

∣g1k
(

u1
)
∣

∣+
∣

∣Fk

(

x, u1, u2
)
∣

∣+ |∆δ4k (x, y)| ≤ |λk (x)|
∣

∣g1k
(

u1
)
∣

∣+
∣

∣f2
k (x)

∣

∣

∣

∣δ1k
(

u1
)
∣

∣+

+
∣

∣f2
k (x)

∣

∣

∣

∣g2k
(

u1
)

− g2k
(

u2
)∣

∣ ≤ c4 |λk (x)|+ c5 |zk (x, y)|+ c6
∥

∥g1 − g2
∥

∥

0
, (x, y) ∈ D̄, (14)

where c4, c5, c6 > 0 depend on the data of the problem (1)-(3) and the set Kα.

Taking into account the inequalities (13), (14) and the estimate for the Green function
[1, p. 153]

∣

∣

∣
Dl

xG (x, ξ)
∣

∣

∣
≤ c7 |x− ξ|−n+2−l , l = 0, 1, 2 (15)

in (12), we get

|zk (x, y)| ≤ c8 [‖δ1‖0 + ‖δ4‖2] + c9mesD · θ, (x, y) ∈ D̄ , (16)

where c8, c9 > 0 depend on the data of the problem (1)-(3) and the setKα, θ =
∥

∥u1 − u2
∥

∥

0
+

∥

∥f1 − f2
∥

∥

0
.

By virtue of theorem conditions, differentiating (11) with respect to y we get:

zky (x, y) = δ4ky (x, y) +

∫

D

Gy (x, y; ξ, η)×

×
[

λk (ξ) g
1
k

(

u1
)

+ Fk

(

ξ, u1, u2
)

−∆δ4k (ξ, η)
]

dξdη.

Taking into account the derivatives of the Green functions (15), inequalities (3), (4),
and proceeding in the same way as in deriving the inequality (16), we get:

|zk (x, y)| ≤ c10 [‖δ1‖0 + ‖δ4‖2] + c11mesD · θ, (x, y) ∈ D̄ , (17)

where c10, c11 > 0 depend on the data of the problem (1)-(3) and the set Kα.
Now estimate λk (x). From (8) we have:

|λk (x)| ≤ [|zky (x, γ2 (x))|+ |zky (x, γ1 (x))|]

∣

∣

∣

∣

∣

∫ γ2(x)

γ1(x)
g1k
(

u1
)

dy

∣

∣

∣

∣

∣

−1

+
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+ |∆δ3k (x)|

∣

∣

∣

∣

∣

∫ γ2(x)

γ1(x)
g1k
(

u1
)

dy

∣

∣

∣

∣

∣

−1

+

+
{[
∣

∣u2ky (x, γ2 (x))
∣

∣+
∣

∣u2ky (x, γ1 (x))
∣

∣+
∣

∣∆h2k (x)
∣

∣

]

∫ γ2(x)

γ1(x)

[
∣

∣g1k
(

u2
)

− g1k
(

u1
)
∣

∣+
∣

∣δ3k
(

u2
)
∣

∣

]

dy

}

×

×

{

∫ γ2(x)

γ1(x)
g1k
(

u1
)

dy ·

∫ γ2(x)

γ1(x)
g2k
(

u2
)

dy

}−1

.

Taking into account the inequality (17), using theorem conditions and proceeding in
the same way as in deriving the inequality (16), we get:

|λk (x)| ≤ c12 [‖δ1‖0 + ‖δ3‖2] + c13mesD · θ, (x, y) ∈ D̄
1

, (18)

where c12, c13 > 0 depend on the data of the problem (1)-(3) and the set Kα.

Inequalities (16) and (18) are satisfied for any (x, y) ∈ D̄. So they should be satisfied
for maximum values of the left-hand sides as well:

‖z‖0 ≤ c8 [‖δ1‖0 + ‖δ4‖2] + c9mesD · θ,

‖λ‖0 ≤ c12 [‖δ1‖0 + ‖δ4‖2 + ‖δ3‖2] + c13mesD · θ

Inequalities (17), (18) are satisfied for every (x, y) ∈ D̄. Therefore, they should be
satisfied also for maximum values of the left-hand sides. Thus, we get

θ ≤ c14 [‖δ1‖0 + ‖δ3‖2 + ‖δ4‖2] + c15mesD · θ, (x, y) ∈ D̄ . (19)

If c15mesD < 1, then from inequality (19) we get the estimate (4). If otherwise, we
proceed as follows: divide the domain D into the subspaces Di

(

i = 1, n
)

with smooth

boundaries in such a way that D̄i ⊂ D̄,
⋃N

i=1 D̄i = D̄ and c15 max
1≤i≤N

{mesDi} < 1. Define

the finite functions with supports Di as follows:

θi (x, y) =

{

1
N
, (x, y) ∈ Di

0, (x, y) ∈ Rn\D̄i, i = 1, N,
(20)

Using (20), we represent the functions uk (x, y) and λk (x) in the following form:

∑N
q=1 ukq (x, y) = uk (x, y) , ukq (x, y) = uk (x, y) θq (x, y) ,

∑N
q=1 λkq (x) = λk (x) , λk (x) = λkq (x)

1
N
.
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Further, multiplying the system (6), (7), (8) by θi (x, y) , i = 1, N , and proceeding in
the same way as in deriving the inequality (19), we get:

‖zq‖0 + ‖λq‖0 ≤ c14 [‖δ1‖0 + ‖δ3‖2 + ‖δ4‖2] + c15mesD · θ, q = 1, N, (x, y) ∈ D̄.

Combining the last inequalities, we get the estimate (4). The uniqueness of the solution
of (1)-(3) follows from (4) with

g1k (u) = g2k (u) , ϕ1
k (x, y) = ϕ2

k (x, y) , h1k (x) = h2k (x) .

◭
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