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On Approximate Solution of Impedance Boundary Value
Problem for Helmholtz Equation
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Abstract. A sequence that converges to the exact solution of the impedance boundary value
problem for the Helmholtz equation is built in this work and the error estimate is obtained.
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1. Introduction

Let D ⊂ R3 be a bounded domain with a twice continuously differentiable boundary
S. Consider the impedance boundary value problem for the Helmholtz equation: find a
function u which is twice continuously differentiable in R3\D̄ and continuous on S, has
a normal derivative in the sense of uniform convergence, satisfies the Helmholtz equation
∆u+ k2u = 0 in R3\D̄, satisfies the Sommerfeld radiation condition(

x

|x|
, gradu (x)

)
− i k u (x) = o

(
1

|x|

)
, |x| → ∞,

uniformly in all directions x/ |x|, and satisfies the boundary condition

∂u (x)

∂~n (x)
+ λ (x) u (x) = g (x) on S, (1)

where ∆ is a Laplace operator, k is a wave number with Imk ≥ 0, ~n (x) is a unit outer
normal at the point x ∈ S, and λ and g are the given continuous functions on S with
Im

(
k̄ λ (x)

)
≥ 0, x ∈ S. In particular, if λ (x) = 0, ∀x ∈ S, then we have an external

Neumann boundary value problem, and if λ (x) = const, ∀x ∈ S, then we have a mixed
problem for the Helmholtz equation.
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It is known that one of the methods for solving impedance boundary value problem
for Helmholtz equation is reducing it to the boundary integral equation (BIE). A number
of works (see [1, 2, 3, 4, 5, 6, 7]) have been dedicated to the approximate solution of BIE
of external Dirichlet and Neumann boundary value problems, and to the one of mixed
problem for the Helmholtz equation. But so far there has been no research of approximate
solution for the impedance boundary value problem for the Helmholtz equation. The
presented work is just dedicated to this matter.

2. Justification of collocation method for BIE of impedance boundary
value problem for Helmholtz equation

Let Φk (x, y) = ei k |x−y|/ (4π |x− y|) , x, y ∈ R3, x 6= y. It is proved in [8] that the
simple layer potential

u (x) =

∫
S

Φk (x, y) ϕ (y) dSy, x ∈ R3\D̄,

is a solution of the boundary value problem for the Helmholtz equation with the impedance
condition (1) if the density ϕ ∈ C (S) is a solution of BIE

ϕ+B ϕ = −2g, (2)

where C (S) is a space of continuous functions on S with the norm ‖ϕ‖∞ = max
x∈S
|ϕ (x) |

and B = −K̃ − λF is a linear compact operator in C (S) with

(K̃ϕ) (x) = 2

∫
S

∂Φk (x, y)

∂~n (x)
ϕ (y) dSy, (F ϕ) (x) = 2

∫
S

Φk (x, y) ϕ (y) dSy, x ∈ S.

Divide S into elementary domains S =
⋃N
l=1 S

N
l :

(1) for every l = 1 , N the domain SNl is closed and the set of its internal points
0

SNl with respect to S is non-empty, with mes
0

SNl = mesSNl and
0

SNl
⋂ 0

SNj = ∅ for
j ∈ {1, 2, ...N} , j 6= l;

(2) for every l = 1 , N the domain SNl is a connected piece of the surface S with a
continuous boundary;

(3) for every l = 1 , N there exists a so-called control point xl ∈ SNl such that:

(3.1) rl(N) ∼ Rl(N) (rl(N) ∼ Rl(N) ⇔ C1 ≤ rl (N) /Rl (N) ≤ C2, C1 and C2 are
positive constants independent of N), where rl(N) = min

x∈∂SNl
|x− xl| and

Rl(N) = max
x∈∂SNl

|x− xl|;

(3.2.) Rl(N) ≤ d/2, where d is the radius of a standard sphere (see [9]);
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(3.3) for every j = 1 , N rj(N) ∼ rl(N).

It is clear that r(N) ∼ R(N) and lim
N→∞

R(N) = 0, where R(N) = max
l=1, N

Rl(N),

r(N) = min
l=1, N

rl(N).

Such a partition, as well as the partition of the unit sphere into elementary parts, has
been carried out earlier in [10].

Let Sd(x) and Γd(x) be the parts of the surface S and the tangential plane Γ(x),
respectively, at the point x ∈ S, contained inside the sphere Bd(x) of radius d centered at
the point x. Besides, let ỹ ∈ Γ(x) be the projection of the point y ∈ S. Then

|x− ỹ| ≤ |x− y| ≤ c1(S) |x− ỹ| and mesSd(x) ≤ c2(S)mesΓd(x), (3)

where c1(S) and c2(S) are positive constants depending only on S (if S is a sphere, then
c1(S) =

√
2 and c2(S) = 2).

The following lemma is true.

Lemma 1. (see [10]).There exist the constants C ′0 > 0 and C ′1 > 0, independent of N ,
such that for ∀ l, j ∈ {1, 2, ..., N} , j 6= l, and ∀ y ∈ SNj the inequality C ′0 |y − xl| ≤
|xj − xl| ≤ C ′1 |y − xl| holds.

For a function ϕ ∈ C (S), we introduce the modulus of continuity of the following
form:

ω(ϕ, τ) = max
|x−y|≤ δ
x, y∈S

|ϕ (x)− ϕ (y)| , δ > 0.

Let

bl j = 2 |sgn (l − j) |
(
−∂Φk(xl,xj)

∂~n (xl)
− λ (xl) Φk (xl, xj)

)
mesSNj for l , j = 1 , N .

Theorem 1. Let ϕ ∈ C (S). Then the expression

(
BNϕ

)
(xl) =

N∑
j=1

bl jϕ (xj) (4)

is a cubature formula for (Bϕ)(x) at the points xl , l = 1 , N , with

max
l=1 ,N

∣∣(Bϕ) (xl)−
(
BNϕ

)
(xl)

∣∣ ≤
M † [ ‖ϕ ‖∞R (N) | lnR (N) |+ ω (ϕ,R (N)) ] . (5)

†Here and after, M denotes positive constants which can be different in different inequalities.
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Proof. It is proved in [11] that the expressions

(
FNϕ

)
(xl) = 2

N∑
j=1
j 6=l

Φk (xl, xj) ϕ (xj) mesS
N
j

and (
K̃Nϕ

)
(xl) = 2

N∑
j=1
j 6=l

∂Φk (xl, xj)

∂~n (xl)
ϕ (xj) mesS

N
j

are cubature formulas for the integrals (Fϕ) (x) and
(
K̃ϕ
)

(x), respectively, at the points

xl, l = 1, N , with

max
l=1, N

∣∣ (Fϕ) (xl)−
(
FNϕ

)
(xl)

∣∣ ≤M ( ‖ϕ‖∞ R (N) | lnR (N) |+ ω (ϕ,R (N))) ,

max
l=1, N

∣∣∣ (K̃ϕ) (xl)−
(
K̃Nϕ

)
(xl)

∣∣∣ ≤M ( ‖ϕ‖∞ R (N) | lnR (N) |+ ω (ϕ,R (N))) .

Consequently, the expression
(
BNϕ

)
(xl) =

∑N
j=1 bl jϕ (xj) is a cubature formula for the

integral (Bϕ)(x) at the points xl, l = 1, N . Besides, taking into account the error

estimates for the cubature formulas for the integrals (Fϕ) (x) and
(
K̃ϕ
)

(x), we get the

validity of the estimate (5). J

Let

BN
l zN =

N∑
j=1

bl j z
N
j , l = 1, N , BN zN =

(
BN

1 zN , BN
2 zN , . . . , BN

N zN
)
,

for zN ∈ CN , where CN is a space of N -dimensional vectors zN =
(
zN1 , z

N
2 , . . . , z

N
N

)
,

zNl ∈ C , l = 1, N , with the norm
∥∥zN∥∥ = max

l=1,N

∣∣zNl ∣∣. Using cubature formula (4), we

replace BIE (2) by the system of algebraic equations with respect to zNl , approximate
values of ϕ (xl) , l = 1, N , stated as follows:

zN + BN zN = −2 gN , (6)

where gN = pNg = (g1, g2, . . . , gN ), gl = g (xl), l = 1, N , pN is a simple restriction
operator acting boundedly from C (S) to CN , and BN : CN → CN is a linear bounded
operator.

We will obtain justification for collocation method from Vainikko’s convergence the-
orem for linear operator equations (see [12]). To formulate that theorem, we need some
definitions and a theorem from [12].
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Definition 1. ([12]) A system Q =
{
qN
}

of operators qN : C (S) → CN is called a
connecting system for C (S) and CN if

∥∥qNϕ∥∥→ ‖ϕ ‖∞ as N →∞ , ∀ϕ ∈ C (S);∥∥qN (aϕ+ a′ϕ′)−
(
a qNϕ+ a′qNϕ′

) ∥∥→ 0 as N →∞ , ∀ϕ , ϕ′ ∈ C (S) , a , a′ ∈ C.

Definition 2. ([12]) A sequence {ϕN} of elements ϕN ∈ CN is called Q−convergent to

ϕ ∈ C (S) if
∥∥ϕN − qNϕ∥∥→ 0 as N →∞. We denote this fact by ϕN

Q→ϕ .

Definition 3. ([12]) A sequence {ϕN} of elements ϕN ∈ CN is called Q−compact if every

subsequence of it {ϕNm} contains a Q−convergent subsequence
{
ϕNmk

}
.

Proposition 1. ([12]) Let qN : C (S) → CN be linear and bounded. Then the following
conditions are equivalent:

1. the sequence {ϕN} is Q−compact and the set of its Q−limit points is compact in
C (S);

2. there exists a relatively compact sequence
{
ϕ(N)

}
⊂ C (S) such that∥∥∥ϕN − qNϕ(N)

∥∥∥→ 0 as N →∞.

Definition 4. ([12]) A sequence of operators BN : CN → CN is called QQ−convergent
to the operator B : C (S)→ C (S) if for every Q−convergent sequence {ϕN} the relation

ϕN
Q→ϕ ⇒ BNϕN

Q→Bϕ holds. We denote this fact by BN QQ→ B .

Definition 5. ([12]) A sequence of operators BN acting boundedly in CN is called com-

pactly convergent to the operator B, which is bounded in C (S), if BN QQ→ B and the follow-
ing compactness condition holds: ϕN ∈ CN , ‖ϕN‖ ≤M ⇒

{
BNϕN

}
is Q-compact.

Theorem 2. ([12]) Let the following conditions hold:

1. Ker (I +B) = { 0 }, where I is a unit operator in the space C (S);

2. IN + BN (N ≥ N0) are Fredholm operators of index zero, where IN is a unit
operator in the space CN ;

3. ψN
Q→ψ, ψN ∈ CN , ψ ∈ C (S);

4. BN → B compactly.

Then the equation (I +B) ϕ = ψ has a unique solution ϕ̃ ∈ C (S), the equation(
IN +BN

)
ϕN = ψN (N ≥ N0) has a unique solution ϕ̃N ∈ CN , and ϕ̃N

Q→ ϕ̃ with an
estimate
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c1

∥∥ (IN +BN
)
qN ϕ̃− ψN

∥∥ ≤ ∥∥ϕ̃N − qN ϕ̃ ∥∥ ≤ c2

∥∥ (IN +BN
)
qN ϕ̃− ψN

∥∥ ,
where

c1 = 1/ sup
N≥N0

∥∥ IN +BN
∥∥ > 0 , c2 = sup

N≥N0

∥∥∥ (IN +BN
)−1
∥∥∥ < +∞.

Theorem 3. Let Imk > 0. Then the equations (2) and (6) have unique solutions ϕ∗ ∈
C (S) and zN∗ ∈ CN (N ≥ N0), respectively, and

∥∥ zN∗ − pNϕ∗∥∥ → 0 as N → ∞ with an
estimate ∥∥ zN∗ − pNϕ∗∥∥ ≤ M [ ‖g‖∞ (R (N))α + ω (λ,R (N)) + ω (g,R (N)) ] ,

where α ∈ (0 , 1).

Proof. It is proved in [8] that if Imk > 0, then Ker (I +B) = { 0 }. It is clear that
the system of simple restriction operators P =

{
pN
}

is a connecting system for the spaces
C (S) and CN , and the operators IN + BN are Fredholm operators of index zero. Then

gN
P→ g, and from Theorem 1 we obtain IN + BN PP→ I + B. By Definition 5, it remains

only to verify the compactness condition, which in view of Proposition 1 is equivalent
to the following one: ∀

{
zN
}
, zN ∈ CN ,

∥∥zN∥∥ ≤ M there exists a relatively compact
sequence

{
BN z

N
}
⊂ C (S) such that

∥∥BN zN − pN
(
BN z

N
) ∥∥→ 0 as N →∞.

As
{
BN z

N
}

, we choose the sequence(
BN z

N
)

(x) = −
(
K̃N z

N
)

(x)− λ (x)
(
FN z

N
)

(x) ,

where

(
K̃N z

N
)

(x) = 2
N∑
j=1

zNj

∫
SNj

∂Φk (x, y)

∂~n (x)
dSy,

(
FN z

N
)

(x) = 2

N∑
j=1

zNj

∫
SNj

Φk (x, y) dSy.

Take arbitrary points x′ , x′′ ∈ S such that |x′ − x′′ | = δ < d/2. Then

∣∣∣ (K̃N z
N
) (

x′
)
−
(
K̃N z

N
) (

x′′
) ∣∣∣ ≤ M

∥∥zN∥∥ ∫
S

∣∣∣∣ ∂Φk (x′, y)

∂~n (x′)
− ∂Φk (x′′, y)

∂~n (x′′)

∣∣∣∣ dSy ≤
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M
∥∥zN∥∥ ∫

Sδ/2(x′)

∣∣∣∣ ∂Φk (x′, y)

∂~n (x′)

∣∣∣∣ dSy +M
∥∥zN∥∥ ∫

Sδ/2(x′′)

∣∣∣∣ ∂Φk (x′′, y)

∂~n (x′′)

∣∣∣∣ dSy+
M
∥∥zN∥∥ ∫

Sδ/2(x′)

∣∣∣∣ ∂Φk (x′′, y)

∂~n (x′′)

∣∣∣∣ dSy+
M
∥∥zN∥∥ ∫

Sδ/2(x′′)

∣∣∣∣ ∂Φk (x′, y)

∂~n (x′)

∣∣∣∣ dSy+
M
∥∥zN∥∥ ∫

S\(Sδ/2(x′)
⋃
Sδ/2(x′′))

∣∣∣∣ ∂Φk (x′, y)

∂~n (x′)
− ∂Φk (x′′, y)

∂~n (x′′)

∣∣∣∣ dSy.
Using the inequality ∣∣∣∣ ∂Φk (x, y)

∂~n (x)

∣∣∣∣ ≤ M

|x− y|
,∀x , y ∈ S, x 6= y,

and the formula for reducing a surface integral to a double integral, we obtain:∫
Sδ/2(x′)

∣∣∣∣ ∂Φk (x′, y)

∂~n (x′)

∣∣∣∣ dSy ≤M ∫
Sδ/2(x′)

1

|x′ − y |
dSy ≤ Mδ,

∫
Sδ/2(x′′)

∣∣∣∣ ∂Φk (x′′, y)

∂~n (x′′)

∣∣∣∣ dSy ≤ Mδ.

Besides, taking into account the inequalities |x′′ − y | ≥ δ/2 , ∀y ∈ Sδ/2 (x′) and
|x1 − y | ≥ δ/2 , ∀y ∈ Sδ/2 (x2), we have

∫
Sδ/2(x′)

∣∣∣∣ ∂Φk (x′′, y)

∂~n (x′′)

∣∣∣∣ dSy ≤M ∫
Sδ/2(x′)

1

|x′′ − y |
dSy ≤

2M

δ
mes

(
Sδ/2

(
x′
))
≤Mδ,

∫
Sδ/2(x′′)

∣∣∣∣ ∂Φk (x′, y)

∂~n (x′)

∣∣∣∣ dSy ≤Mδ.

It is not difficult to show that

∣∣∣∣ ∂Φk (x′, y)

∂~n (x′)
− ∂Φk (x′′, y)

∂~n (x′′)

∣∣∣∣ ≤ Mδ

|x′ − y|2
, ∀y ∈ S\

(
Sδ/2

(
x′
)⋃

Sδ/2
(
x′′
))
.

Hence
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∫
S\(Sδ/2(x′)

⋃
Sδ/2(x′′))

∣∣∣∣ ∂Φk (x′, y)

∂~n (x′)
− ∂Φk (x′′, y)

∂~n (x′′)

∣∣∣∣ dSy ≤M δ | ln δ | .

As a result, we obtain∣∣∣ (K̃N z
N
) (

x′
)
−
(
K̃N z

N
) (

x′′
) ∣∣∣ ≤M ∥∥zN∥∥ δ | ln δ | .

We can similarly prove this estimate for the sequence
{
FN z

N
}

. Consequently∣∣ (BN zN) (x′)− (BN zN) (x′′) ∣∣ ≤M ∥∥zN∥∥ δ | ln δ | , (7)

and hence,
{
BN z

N
}
⊂ C (S).

The relative compactness of the sequence
{
BN z

N
}

follows from the Arzela theorem.
In fact, the uniform boundedness follows directly from the condition

∥∥zN∥∥ ≤ M , and
the equicontinuity follows from the estimate (7). Besides, taking into account the way
the surface has been divided into elementary parts and using Lemma 1, it is not difficult
to prove that

∥∥BN zN − pN
(
BN z

N
) ∥∥ → 0 as N → ∞. Then, applying Theorem 2, we

obtain that the equations (2) and (6) have unique solutions ϕ∗ ∈ C (S) and zN∗ ∈ CN
(N ≥ N0), respectively, with

c1 δN ≤
∥∥ zN∗ − pNϕ∗∥∥ ≤ c2 δN ,

where

c1 = 1/ sup
N≥N0

∥∥ IN +BN
∥∥ > 0 , c2 = sup

N≥N0

∥∥∥ (IN +BN
)−1
∥∥∥ < +∞,

δN = max
l=1,N

∣∣BN
l

(
pNϕ∗

)
− (Bϕ∗) (xl )

∣∣ .
From Theorem 1 we obtain

δN ≤M [ ‖ϕ∗‖∞ (R (N))α + ω (ϕ∗, R (N)) ]

for ∀α ∈ (0 , 1). As ϕ∗ = −2 (I +B)−1 g, we have

‖ϕ∗‖∞ ≤ 2
∥∥∥ (I +B)−1

∥∥∥ ‖g‖∞ . (8)

Besides, in view of

ω (Bϕ∗, R (N)) ≤M ‖ϕ∗‖∞ ((R (N))α + ω (λ,R (N))) ,

we have
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ω (ϕ∗ , R (N)) = ω (−2 g −Bϕ∗, R (N)) ≤ 2ω (g,R (N)) + ω (Bϕ∗, R (N)) ≤

M [ω (g,R (N)) + ω (λ,R (N)) + ‖g‖∞ (R (N))α] , ∀ α ∈ (0 , 1) . (9)

As a result, from the obtained estimates we find that

δN ≤M [ ‖g‖∞ (R (N))α + ω (λ,R (N)) + ω (g,R (N)) ] ,∀α ∈ (0 , 1) .

J

3. Main result

Now let’s state the main result of this work.

Theorem 4. Let Imk > 0 and zN∗ = (z∗1 , z
∗
2 , . . . , z

∗
N )T be a solution of the system of

algebraic equations (6). Then the sequence

uN (x0) =
N∑
j=1

Φk (x0, xj) z
∗
j mesSj , x0 ∈ R3\D̄,

converges to the value of the solution u (x) of the boundary value problem for the Helmholtz
equation with impedance condition (1) at the point x0, with

∣∣ uN (x0)− u (x0)
∣∣ ≤M [ ‖g‖∞ R (N) | lnR (N) |+ ω (λ,R (N)) + ω (g,R (N)) ] .

Proof. Let the function ϕ∗ ∈ C (S) be a solution of the equation (2). Then the function

u (x) =

∫
S

Φk (x, y) ϕ∗ (y) dSy, x ∈ R3\D̄,

is a solution of the boundary value problem for the Helmholtz equation with impedance
condition (1). Obviously

u (x0)− uN (x0) =
N∑
j=1

∫
Sj

Φk (x0, y) (ϕ∗ (y)− ϕ∗ (xj)) dSy+

N∑
j=1

∫
Sj

Φk (x0, y)
(
ϕ∗ (xj)− z∗j

)
dSy +

N∑
j=1

∫
Sj

(Φk (x0, y) − Φk (x0, xj)) ϕ∗ (y) dSy+
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N∑
j=1

∫
Sj

( Φk (x0, xj)− Φk (x0, y)) (ϕ∗ (y)− ϕ∗ (xj)) dSy+

N∑
j=1

∫
Sj

( Φk (x0, xj)− Φk (x0, y))
(
ϕ∗ (xj)− z∗j

)
dSy.

As x0 /∈ S, it is clear that the function ψ (y) = Φk (x0, y) is continuously differentiable on
the surface S, and, consequently,

max
j=1,N

|ψ (y)− ψ (xj) | ≤ ‖gradψ‖∞ R (N) ,∀ y ∈ S.

By Theorem 3, we find

∣∣u (x0)− uN (x0)
∣∣ ≤MmesS ( ‖ψ ‖∞ (ω (ϕ∗, R (N)) + ‖g‖∞ (R (N))α +

ω (λ,R (N)) + ω (g,R (N))) +

‖gradψ‖∞R (N) ( ‖ϕ∗‖∞ + ω (ϕ∗, R (N)) + ‖g‖∞ (R (N))α +

ω (g,R (N)))) , α ∈ (0 , 1) .

As a result, in view of the inequalities (8) and (9), we obtain∣∣u (x0)− uN (x0)
∣∣ ≤M ( ‖ψ ‖∞ + ‖gradψ‖∞) ( ‖g‖∞ (R (N))α +

ω (λ,R (N)) + ω (g,R (N))) , α ∈ (0 , 1) .

J
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